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Abstract
Drought is a global water shortage problem which poses challenge to crop productivity. Novel strategies are 
being tried to find out solution to sustain agriculture under drought conditions. Rhizobacteriome is an exclusive 
genetic material of bacteria resident to rhizosphere plays critical role to health and yield of plant. The interaction 
of rhizobacteriome with plant provides basis for protecting plants from various abiotic and biotic stresses. Plant 
growth promoting rhizobacteria (PGPR) are root-colonizing bacteria which produce array of enzymes and metabolites 
that assist plants to withstand harsh environmental conditions. Various formulations of rhizobacteria are being 
applied to enhance the tolerance or endurance to drought in crops which in turn increase crop productivity. This 
could be a one of the promising methods with wide potentiality to improve the growth and yield of crops under 
limited water resources and changing climatic conditions to ensure food security of the globe. In this review, we 
summarize (1) existing knowledge and understanding about the rhizobacteria, (2) their role in imparting tolerance 
to crops in drought conditions and (3) discuss future line of work in this frontier research area.

Keywords: Rhizobacteriome, bacteria- plant interactions, rhizosphere, drought stress, ACC deaminase, rhizobacteria

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0806-0107
https://orcid.org/0000-0002-2763-3065


  www.microbiologyjournal.org74

Yadav et al., J. Pure Appl. Microbiol., 14(1), 73-92 | March 2020 | https://doi.org/10.22207/JPAM.14.1.10

Journal of Pure and Applied Microbiology

INTRODUCTION
 D r o u g h t  s t r e s s  h a s  i n c r e a s e d 
tremendously in last few years affecting food 
security at global level. The drought stress 
duration is ranged as short, severe, extremely 
severe and prolonged that adversely affects 
the agricultural productivity1. Drought is the 
most destructive abiotic stress which may affect 
crops of 50% of the arable lands by 20502. It 
is a serious issue in the context of agricultural 
sector as it reduces crop yield in regions with 
scanty rainfall in various parts of the world3. 
Presently, various effective practices like efficient 
water irrigation techniques, conventional and 
modern plant breeding methods, and production 
of drought-tolerant transgenic plants through 
genetic engineering can be adopted to address 
the problem of sustainable crop production in 
drought situations. However, such techniques 
or procedures or methods need sophisticated 
technical knowhow and are costly and labor 
intensive as they are arduous to implement. An 
alternative method for promoting plant growth 
under drought conditions is to manipulate plant 
growth promoting rhizobacteria (PGPR) that are 
found in the rhizosphere and endorhizosphere in 
plant root systems. PGPR induces plant growth 
by various direct or indirect mechanisms under 
normal, biotic or abiotic stress conditions4. 
Rhizosphere is the area where, interaction among 
soil, plants and microorganisms take place. The 
microorganisms present in the rhizosphere, 
compete for their survival. This competition is 
for the need of nutrients, water and space to 
develop their association with plant. The plant-
microbes interactions lead to the improvement 
in growth and development of plants5. Diverse 
bacterial genera form the important component 
of soils facilitating various biotic activities like 
recycling nutrient of the soil ecosystem which 
is essential for sustainable crop yield6,7. PGPR 
mobilize different nutritive components in soil, 
produce plant growth regulators and inhibit 
phytopathogens8. They also improve quality of soil 
by bioremediation of the pollutants by facilitating 
uptake of heavy toxic metal and degradation of 
xenobiotic compounds including pesticides9,10. 
Agronomists and environmentalists adapting 
various biological methods for integrated plant 
nutrient management system11. Rigorous research 

has been undertaken globally on exploring 
rhizobacteria possessing novel characteristics 
like ability to detoxify heavy metals12, salinity 
tolerance13, biological control of phytopathogens 
and insects14 along with the plant growth promoting 
properties like, phytohormones production15,16 
phosphate solubilization17,1-aminocyclopropane-
1-carboxylate18,  hydrogen cyanide (HCN), 
and ammonia product ion 19 n itrogenase 
activity20, siderophore21 production. Hence, 
diverse groups of symbiotic bacteria like 
Bradyrhizobium, Rhizobium, Mesorhizobium 
and non-symbiotic like Bacillus, Klebsiella, 
P s e u d o m o n a s ,  A zo to b a c te r, A zo m o n a s , 
Azospirillum have been used worldwide as 
biofertilizer for promoting growth and development 
of plants under abiotic stress22,7. Although no single 
mechanism of rhizobacteria –mediated plant 
growth promotion is completely understood, 
however PGPR show significant contribution 
to the improvement in crop production23.The 
potential of inoculated bacteria to survive, 
multiply to outnumber the native bacteria and 
other microflora, and colonize the rhizosphere is 
crucial for its successful application22 specifically 
in drought-affected soils. The bacteria that are 
not adapted to drought conditions will die out 
under these unfavorable growth conditions24,25. 
But, the drought-tolerant rhizobacteria are 
capable of thriving in new drought stressed soil in 
sufficient number to show plant growth promoting 
manifestations on plants26,27. The present review 
highlights past and current status of role of 
rhizobacteriome on plant growth promotion under 
drought conditions. Further, it will also emphasize 
mechanisms associated with in conferring drought 
tolerance in crops on application of rhizobacteria. 
Rhizosphere and rhizobacteriome 
 The term “rhizosphere” was first used 
by Hiltner27. Rhizosphere is multidimensional and 
dynamic region around root where significant 
plant-microbe interactions occur28. The root 
exudates alter the physicochemical properties of 
soil, which directly effects the multiplication of soil 
microorganisms29. These root exudates have ability 
to attract or repel microorganisms and promote 
symbiotic interactions which help in growth and 
development of plant30. PGPR are characterized by 
their capability to colonize the plant root surface, 
multiply, compete and survive to promote plant 
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Table 1. Role of bacterial IAA on plant growth under drought stress condition

S.No.   PGPR Plant Impact on plant Reference Year

1. Azospirillum brasilense
  Tomato Nitric oxide a signaling Molina-Favero 2008
   molecules and  IAA pathway  et al.52

    for induction of lateral and
   root hair growth
2. Azospirillum sp. Wheat Enhanced  lateral roots, root  Arzanesh 2011
   growth, increased water and et al.51

   nutrient uptake
3. 	 Pseudomonas	putida,	 Trifolium	 Increased shoot Marulanda 2009
 Bacillus megaterium repens and root mass et al.57

 
4. B. thuringiensis Lavandula Increased  levels of K-and Armada 2014
  dentate proline, decresed glutathione et al. 55

   reductase (GR) and ascorbate
    peroxidase (APX)
5. Rhizobium phaseoli (MR-2)  Wheat IAA from consortia Hussain 2014
 Mesorhizobium ciceri (CR-30   improved  growth, biomass et al.56

 and CR-39) and Rhizobium  and drought tolerance index
  phaseoli (MR-2)

growth31. PGPR are broadly categorized into two 
classes: 1) ePGPR (extracellular PGPR) which 
grow in the rhizospheric area or in between cells 
of root cortex, examples include Agrobacterium, 
Azotobacter, Erwinia, Serratia, Bacillus etc. 2) 
iPGPR (intracellular PGPR) which grow inside 
root cells, examples include Azorhizobium, 
Mesorhizobium, Allorhizobium etc24. The entire set 
of genetic material of the root associated bacteria 
is called “rhizobacteriome”.
 The rhizosphere is hot spot for number 
of organisms which represent most complicated 
and dynamic ecosystems on the Earth32,33. 
Rhizosphere organisms consist of arthropods, 
archaea, viruses, algae, protozoa, nematodes, 
oomycetes, fungi and bacteria34. The rhizosphere 
examplifies complicated food web which utilise 
various nutrients produced by plants. Rhizosphere 
is identified by presence of exudates, border cells, 
mucilage called as rhizodeposits. Rhizodeposits 
represent diverse microbial community and 
microbial activity on plant roots35. However, the 
organisms of rhizosphere are analysed for their 
beneficial impact on growth and development of 
plants including nitrogen fixing bacteria, protozoa, 
mycoparasitic fungi, biocontrol microorganisms, 
fungi and plant growth promoting bacteria (PGPR)/ 
rhizobacteria. Some of organisms present in 

rhizosphere like nematodes, bacteria, oomycetes 
and pathogenic fungi, have adverse effects on 
growth of plants. Some human pathogens are 
also found in the rhizosphere36. Abiotic stresses 
have various impacts on rhizospheric bacteria. 
Total bacterial biomass decline under drought 
situations37 resource limitation but stable biomass 
has been observed in certain cases of soil bacteria 
in drought condition31 as repeated drought 
exposures make; bacteria to learn to survive38.
 D ro u g ht  fo rc e s  s h i f t  m i c ro b i a l 
composition in drought affected soil39. An 
increased ratio of Gram-positive to Gram-
negative bacteria has been observed during 
water stressed conditions40. Drought affected 
soil decreases members of Gram-negative 
phyla like Proteobacteria, Verrucomicrobia, 
and Bacteroidetes and increases members of 
Gram-positive phyla like Actinobacteria and 
Firmicutes41,42. Also, the total numbers of genes of 
microbes present in the drought striken rhizosphere 
are exceeding the numbers of genes in plant in 
that area. Variation in metatranscriptome and 
metagenomics profiling of microbial genes related 
to metabolism, signal transduction and other vital 
activities of dry and well aerated soil suggests 
that microbial genes might contribute to plant 
survival and drought tolerance43. Some important 
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members of rhizobacteriome are Acinetobacter, 
Achromobacter, Agrobacterium, Alcaligenes, 
Arthrobacter, Azotobacter, Azospirillum, Bacillus, 
Bradyrhizobium, Burkholderia, Enterobacter, 
Erwinia, Flavobacterium, Gluconacetobacter, 
Herbaspirillum, Klebsiella, Leclercia, Micrococcus, 
Paenibaci l lus,  Phyl lobacterium, Proteus, 
Pseudomonas, Raoultella, Rhizobium, Rhodococcus, 
Serratia,	Variovorax	and Xanthomonas24. These 
rhizospheric bacteria show profound impact 
on germination of seed, plant growth, seedling 
vigor, development, diseases, nutrition and 
productivity44.
PGPR and their drought tolerance mechanisms
 PGPR induce tolerance to drought 
stress in crops by production of phytohormones, 
producing volatile compounds, ACC deaminase, 
osmolyte and exopolysaccharides, and triggering 
antioxidant activities.
Role of rhizobacterial phytohormones in drought 
stress tolerance
 In drought stress, there is reduced 
production of phytohormones which inhibit 
normal plant growth. PGPR are capable for 
producing phytohormones that help to sustain 
growth and division of plant cell under abiotic 
environmental stress45. Phytohormones like 
indole -3-acetic acid (IAA), gibberellin (GA), 
cytokinin, abscisic acid and ethylene produced by 
rhizobacteriome become significant for promoting 
growth and development and helping plants to 
escape abiotic stress46,47. These pose as important 
targets for engineering metabolic products for 
conferring drought tolerance to crop plants48.
 Inoculation with various IAA producing 
bacteria enhanced lateral roots and roots hairs 
formation along with overall root growth, thus 
effecting increased water and nutrient uptake 

in drought conditions49,50. For example, IAA 
produced by Azospirillum increased plant ability 
to tolerate drought stress in maize and wheat51, 
and by nitric oxide production in tomato52. The 
simultaneous production of siderophores and 
auxins by Streptomyces increases the plant 
growth-promoting effects of auxins, which in 
turn enhances the phytoremediation potential 
of plants53. A. brasilense Sp245 applied  in 
wheat (Triticum	aestivum) improved crop yield, 
micronutrients content, water content, water 
potential thus increased drought tolerance in 
plants54. A.brasilense also triggers nitric oxide 
signaling in IAA pathway and thereby improved 
growth of lateral root and root hair in tomato  
under drought stress52. B.thuringiensis improved 
nutritive value, physiological activities and 
metabolic activities of Lavandula dentate through 
IAA produced by the bacteria54,55. IAA signaling 
by consortium of Rhizobium leguminosarum (LR-
30), Mesorhizobium ciceri (CR-30 and CR-39), and 
Rhizobium phaseoli (MR-2) inoculated in wheat 
improved crop56. Inoculation of Pseudomonas 
putida,	Pseudomonas sp. and Bacillus megaterium 
increased water content and shoot / root 
biomass in Trifolium	repens under water stressed 
conditions57 (Table 1). Bacillus	subtilis, B. cereus, 
Enterobacter cloacae, Pseudomonas koreensis, 
and P.	fluorescens	promoted seed germination 
by IAA production and phosphate solubilization 
under drought like condition induced by different 
concentrations of polyethylene glycol (PEG 6000)58.
 The capability of gibberellin producing 
bacteria to stimulate plant growth has also been 
well documented as it plays prominent role in 
various physiological processes. For example 
gibberellin produced by bacterial strains B. 
macroides CJ-29, B. cereus MJ-1, and B. pumilus 

Table 2. Role of rhizobacterial gibberellin on plant growth under drought stress condition

S.No. PGPR Plant Impact on plant Reference Year

1 P.	putida H-2-3 Soybean Improved plant growth Sang-SM et al.60 2014b
    using  gibberellins  
2. Azospirillum Maize Gibberellins increased Cohen et al.50 2009
 lipoferum   ABA levels and  
    alleviated drought stress  
3. B. cereus MJ-1,  Pepper Increased GA  Joo et al.59 2005
 B. macroides CJ-29,    
 and B. pumilus CJ- 69
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CJ enhanced the growth of red pepper plants59. 
Similarly, gibberrelin producing P.	putida H-2–3, a 
increased growth of soybean plants in drought60 

(Table 2). Azospirillum	 lipoferum supported in 
mitigating activity of stress created by drought 
in plants of maize via yielding of ABA and 
gibberellin50.
 Under water deficit situation, biosynthesis 
of stress hormone i.e. ABA is triggered by 
dehydration conditions61. The involvement of ABA 
has been observed in regulating water loss through 
controlling the closing of stomata and transduction 
pathways of stress signals62. Arabidopsis plants 
showed elevated levels of ABA when inoculated 
with A. brasilense sp24550. Phyllobacterium 
brassicacearum strain STM196 isolated from 
the rhizosphere of Brassica napus, elevated ABA 
content leading to decreased leaf transpiration 
and enhanced osmotic stress tolerance in 
Arabidopsis plants63. Cytokinin producing Bacillus 
subtilis enhanced ABA in shoots and increased the 
stomatal conductance conferring drought stress 
resistance in Platycladus orientalis seedlings64 
(Table 3).
 Cytokinin producing bacterial strains 
like Pseudomonas E2, Bacillus	licheniformis	Am2 
and Bacillus subtilis BC1 reported to enhance 
cotyledon growth in cucumber65. Inoculation 
of lettuce with cytokinin producing bacteria 
increased shoot cytokinins and also promoted 
the accumulation of shoot mass and shortened 
roots66. Cytokinin producing B.	subtilis	strain IB-
21 stimulate rhizodeposition for rhizobacterial 
colonization in the wheat rhizosphere67,68(Table 4).
ACC deaminase production by rhizobacteria 
 Ethylene, a ubiquitous hormone in plants, 
plays role in seed germination, leaf abscission, 

ripening of fruits, senescence of leaf, initiation 
and elongation of roots, rhizobia nodule formation 
etc.69,70. In drought stress, synthesis of ethylene 
increase by conversion of S-adenosylmethionine 
(SAM) into 1-aminocylcopropene-1-carboxylase 
(ACC), the precursor of ethylene, in presence 
of ACC synthase71. PGPR act as sink of ACC by 
controlling ethylene formation using the ACC 
(1-aminocyclopropane-1-carboxylate) deaminase 
enzyme. These PGPR hydrolyse the ACC into 
ammonia and α-ketobutyrate, and thereby 
stimulate the expulsion of ACC from the roots to 
the soil72. Decreased ACC concentration in root 
further decreases the formation of endogenous 
ethylene preventing retardation in plant growth. 
Reducing ethylene-mediated inhibitory effects 
on plant growth and facilitate enhanced plant 
resistance to drought. Achromobacter picchaudii 
ARU8 secretes ACC deaminase that degrades ACC 
to ammonia for nitrogen and energy supply and 
thus decreases ethylene production under water 
deficit condition73,74. Pseudomonas	fluorescens,	
Enterobacter hormaechei, and Pseudomonas 
migulae are three ACC and EPS producing 
microbes which when inoculated in foxtail 
millet could promote seedling germination 
in drought condition75. PGPR possessing ACC 
deaminase activity reduce toxicity of heavy 
metals, drought stress and other abiotic stresses 
like extreme temperature, salinity and soil pH, 
besides, antagonism against phytopathogens76. 
Dodd et al. (2005)77 studied effect of ACC 
deaminase producing Variovorax	paradoxus 5C-2 
on pea plant physiological (Pisum	sativum	L.) in 
water conditions. Consortium of Ochrobactrum. 
pseudogrignonense RJ12, Pseudomonas sp. RJ15, 
and B.	subtilis	RJ46 showed mitigation of drought 

Table 3. Role of rhizobacterial bacterial abscisic acid on plant growth under drought stress condition

S.No. PGPR Plant Impact on plant Reference Year

1. Bacillus	subtilis Platycladus  Increased shoot ABA levels  Liu et al.64 2013
  orientalis and increased the stomatal 
   conductance  
2. Phyllobacterium Arabidopsis Reduced leaf transpiration Arzanesh et al51 2013
 brassicacearum  thaliana due to increase level of
 STM 196   ABA  
3. Azospirillum  Maize Increased gibberellins and Cohen et al.50 2009
 lipoferum   ABA levels
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stress in garden pea and black gram plants73. 
Leclercia	 adecarboxylata and Agrobacterium 
fabrum,	Bacillus	 amyloliquifaciens with higher 
ACC-deaminase and IAA production traits elevated 
nutrients uptake and high chlorophyll contents78,79. 
Pseudomonas	fluorescens	DR7 having high ACC 
deaminase- and EPS-producing ability increased 
moisture content in soil and enhanced the root 
adhering soil and root growth in foxtail millet80. 
Pot trials experiment showed that inoculation 
with ACC deaminase-producing bacterial strains 
of Pseudomonas (DPB13, DPB15, and DPB16) 
conferred vital improvement in growth of wheat 
plant in drought-stressed conditions81,82. Similarly,  
Bacillus		lecheniformis	K11 protected pepper and 
Bacillus, Psuedomonas and Mesorhizobium ciceri 
protected chickpea in drought stress83,84,85  (Table 
5).
Volatile organic compounds (VOCs) producing 
rhizobacteria and drought stress tolerance
 Under stress condition, plants produce 
volatiles which act as signal for development of 
systemic response or for priming within the plant 
or in neighboring plants. VOCs that are produced 
by diverse group of bacteria Pseudomonas, 
Bacillus, Arthrobacter, Stenotrophomonas, 
and Serratia  increase growth of plants, 
inhibit fungal and bacterial pathogens and 
nematodes along with inducing systematic 
resistance in plants towards phytopathogens86. 
Various VOCs produced by different species of 
microorganisms in soil include 11-decyldocosane, 
dotriacontane, 2,6,10-trimethyl, tetradecane, 
1-chlorooctadecane, dodecane, benzene(1-
methylnonadecyl),1-(N-phenylcarbamyl)-2-

morpholinocyclohexene, decane, methyl, benzene, 
2-(benzyloxy) ethanamine and cyclohexane87.
 Gram-positive Bacillus spp. (GB03 and 
IN937a) and Gram-negative E. cloacae strain JM22 
elicited growth promotion of Arabidopsis seedlings 
through VOCs production88. Inoculated with P. 
chlororaphis O6 or exposed to 2,3-butanediol 
increased process of stomata closure and hence 
reduced loss of water in Arabidopsis plants 
thereby enhanced drought tolerance89. High rate 
of photosynthesis correlated with reduced VOCs 
production, enhanced survival under drought 
stress in plants primed with Bacillus thuringiensis 
AZP2. This proved that inoculation with bacterial 
improved drought stress tolerance90 (Table 6).
Exopolysaccarides (EPS) producing rhizobacteria 
and drought tolerance
 Many bacteria like Pseudomonas are 
capable of surviving in drought conditions due 
to development of exopolysaccharides (EPS). 
Pseudomonas sp. P45 produces EPS and protects 
sunflower plant from stress created by drought 
condition91. EPS consist of high molecular weight 
polymer of monosaccharide residues and their 
derivatives. These are biodegradable polymers 
biosynthesized by various algae, plants and 
bacteria91. Microbes produce EPS in capsular 
form and release it into the soil, the clay surface 
absorbs the EPS by Van der Waals force, hydrogen 
bonding, cation bridges or anionic absorption92. 
This protective capsule provides soil, the capacity 
of holding water and drying water more slowly 
under drought condition93 and nutrients uptake 
by increasing the water potential around roots. 
Inoculating with EPS and catalase producing 

Table 4. Role of cytokinin producing rhizobacteria on plant growth under drought stress condition

S.No. PGPR Plant Impact on plant  Reference Year

1. Bacillus subtilis Wheat Stimulate  Kudoyarova et al.67 2014
 IB-21  rhizodeposition 
2. Micrococcus luteus Zea mays Growth promotion Raza and Faisal68 2013
 
3. Bacillus	subtilis	 Platycladus Stomatal conductance Liu  et al. 64 2013
  orientalis    
4. Bacillus	 Lettuce Increased growth of Arkhipova et al.66 2007
   plant  
5. Pseudomonas,  Maize Increased spike length, Hussain et al.65 2011
 Bacillus and  tiller number and  
 Azospirillum  seeds weight
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Mesorhizobium ciceri  (CR-30 and CR-39), 
Rhizobium leguminosarum (LR-30), and Rhizobium 
phaseoli (MR-2) increased root length, biomass 
and drought tolerant index in seedlings of wheat 
in presence of polyethylene glycol (PEG) 6000 
induced drought94. Priming of maize seeds with 
EPS- producing strains like Alcaligenes	faecalis AF3, 
Proteus penneri Pp1 and Pseudomonas aeruginosa 
Pa2 increased root and shoot length, biomass 
of plants, and moisture content in soil94. Under 
dehydrated conditions, sunflower showed increase 
in root tissue when inoculated with EPS-producing 
bacterial strain YAAF3495. EPS play a pivotal role 
to maintain water potential, make sure obligate 
connection among rhizobacteria and roots in stress 
condition created by drought96. Pseudomonas sp. 
strain P45 improved soil structure through EPS 
formation to protect sunflower seedlings from 

dehydration97,91. Ghosh et al., (2019)98 observed 
four drought tolerant bacterial strains namely 
Pseudomonas aeruginosa PM389, P. aeruginosa 
ZNP1, Bacillus	endophyticus J13 and B.	tequilensis	
J12 were able to alleviate the deterimental effects 
of osmotic-stress induced in Arabidopsis thaliana 
by adding 25% PEG in agar medium. Rhizobium sp., 
Xanthomonas sp., Agrobacterium sp., Enterobacter 
cloacae, Bacillus drentensis, Azotobacter vinelandii 
and Rhizobium leguminosarum play significant 
function in improving fertility of soil thus sustain 
agriculture99 (Table 7).
Role of osmolytes on drought tolerance in plants
 Under water deficit condition, plants 
secrete different forms of osmolytes such as 
sugar, betaine, proline, polyhydric alcohol or other 
amino acids or dehydrin (drought stress protein)100. 
PGPR also release osmolytes in drought stress 

Table 5. Role of ACC deaminase producing rhizobacteria  on plants growth  under drought stress condition

S.No. PGPR Plant Impact on plant Reference Year

1. Agrobacterium  Wheat Increased grain yield Zafar  et al.79 2019
 fabrum,	Bacillus	 	 and biomass   
 amyloliquifaciens
2. Leclercia	decarboxylata Wheat Elevated nutrients uptake  Danish et al.78 2019
 and A.	fabrum  and high chlorophyll contents  
3. O. pseudogrignonens Pea Decreased ACC accumulation Saika et al.73 2018
 eRJ12,     
 Pseudomonas sp. RJ15,     
 and B.	subtilis	RJ46
4. Pseudomonas	fluorescens,  Foxtail Improved seed germination Niu et al.75 2017
 Enterobacter hormaechei,  millet  and  seedling growth  
 Pseudomonas migulae    
5. Psuedomonas	flourescens Wheat Enhanced  root and  Chandra  et al.81 2018
 DPB15 and P.palleroniana  shoot growth   
 DPB16
6. Variovorax  Pea Reduction in ethylene  Belimov et al.82 2009
 paradoxus   production, increased growth,   
   yield and efficiency of water use   
7. Pseudomonas  Pea  Enhanced water uptake and Zahir et al.83 2008
 fluorescens   induced longer roots   
8. Variovorax  Pea Increased yield, nitrogen content Dodd et al.77 2005
 paradoxus   and number of seed   
9. Achromobacter  Tomato and  Increased fresh and dry weight Mayak et al.74 2004
 piechaudii Pepper    
10. B. licheniformis Pepper Increased expression Lim and Kim84 2013
   of stress genes   
11. Bacillus and Chickpea Increased concentration Sharma et al.85 2013
 Pseudomonas with   of proline, improved root  
 Mesorhizobium ciceris  and shoot, length, seed  
   germination
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condition (Table 8). These osmolytes interact with 
those produced by plants and enhance growth 
of plants101. These secreted solutes trap water  
molecules which help in decreasing the hydric 
potential of cells. This kind of regulation is known 
as osmoregulation. These accumulated solutes 
increase membrane integrity and protein stability 
to counteract cellular damage. Bacillus spp. effects 
osmoregulation by preventing electrolyte leakage 
and enhancing proline synthesis, sugars, free 
amino acids accumulation102. The function of the 
osmolytes is to prevent water molecules loss by 
reducing the cell water potential during drought 
period. Also, osmolytes help in protecting cellular 
damage by maintaining the integrity and stability 
of membranes and proteins in water scarce 
condition. PGPR consortia lessened the effect of 
drought stress in rice crop by accumulation of 
proline which improved the plant growth103.
 Inoculation of B. thuringiensis (Bt) 
in L. dentate showed increased shoot proline 
content in water shortage conditions55. Similarly, 
phosphate solubilizing bacteria Bacillus	polymyxa	
secreted excess proline in tomato plants to induce 
drought tolerance104. Sandhaya et al. (2010b)105 
showed that priming cultivars of rice with 
consortia containing Pseudomonas jessenii R62, 
Pseudomonas	 synxantha R81 and Arthrobacter 
nitroguajacolicus strain YB3 and YB5 increased 
plant growth in drought area. This consortium 
enhanced proline accumulation in plants by 
up regulating its biosynthetic pathway hence 
preserving cell water potential, stabilizing the cell 
membrane and protein during drought stress105. It 
has been reported that enhanced concentration 
of osmolytes like proline, betaine, glutamate, 
glycine and trehalose stimulated by Azospirillum 
help plants to overcome osmotic stress106.

Similarly, A.	 lipoferum metabolic activities lead 
to accumulation of free amino acids and soluble 
sugars thus improving maize growth in drought107.
Pseudomonas putida GAP-P45 enhance plant 
biomass, relative water content and leaf water 
potential by stimulating accumulation of proline in 
maize plants in drought conditions97. Azospirillium 
spp. z19 made maize seedling to tolerate drought 
stress to a higher level as compared to uninoculated 
plants due to higher proline levels108. Evidences 
of increased biosynthesis and accumulation of 
choline, a precursor of gibberellin (GB), showed 
increased biosynthesis in maize when inoculated 
with Klebsiella variicola F2, P. fluorescens YX2 and 
Raoultella	planticola	YL2.This resulted in upgraded 
level GB thereby bettering leaf relative water 
content (RWC) and dry matter weight (DMW)109,110. 
Inoculating plants with PGPR increases existing 
concentrations of proline in maize plants by P. 
fluorescens under drought stress111. Phaseolus 
vulgaris plants inoculated with Rhizobium showed 
improved metabolism of carbon and nitrogen and 
upregulation of trehalose-6-phosphate synthase 
gene112,113. Pseudomonas	putida GAP-P45 showed 
upgraded expression of polyamine biosynthetic 
genes (ADC, AIH, CPA, SPDS, SPMS and SAMDC) 
and polyamine levels in Arabidopsis thaliana 
during drought stress114,98.
Role of rhizobacteria on antioxidant defense 
system for induction of drought tolerance
 During normal growth of plant, ROS is 
produced at low level. Stress condition results 
into overproduction of ROS which causes oxidative 
damage. ROS affects signalling, transport, 
metabolism and biosynthesis of auxin. It also 
interacts with phytohormones production process, 
for example, H2O2 causes ethylene production. 
In response to the stress condition, antioxidant 

Table 6. Role of rhizobacterial-VOCs on plant growth under drought stress condition

S.No. PGPR Plant Impact on plant Reference Year

1. Bacillus thuringiensis Wheat Increased rate of Timmusk et al.90 2014
   photosynthesis and reduction
   in emission of volatiles  
2. Pseudomonas chlororaphis Arabidopsis Prevent loss of Cho et al.89 2008
  thaliana water by stomatal closure
3. Bacillus spp. (GB03) Arabidopsis Phenotypic Zhang et al.88 2010
 and (IN937a), Enterobacter   thaliana improvement
 cloacae JM22
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Table 7. Effect of rhizobacterial-EPS on plant growth under drought stress condition

S. PGPR Plant Impact on plant Reference Year
No.

1. Pseudomonas aeruginosa Arabidopsis Increased in IAA,  cytokinin,  Ghosh et al.99 2019
 PM389, P. aeruginosa  thaliana gibberellins, and EPS secretion
 ZNP1, Bacillus 
 endophyticus J13 and  
	 B.	tequilensis	J12
2. Proteus perneri, Pseudomonas Maize Enhanced protein, proline, sugar Naseem & Bano93 2014
 aeruginosa,	Alcaligenes	faecalis	 	 and relative water content
3. R. leguminosarum,  Wheat Promoted growth of plant, drought Hussain et al.56 2014
 M. ciceri and R. phaseoli  tolerance index and biomass
4. Bacillus thuringienesis Wheat Production of alginate resulted into Timmusk et al.90 2014
   drought tolerance
5. Pseudomonas sp. Sunflower Enhanced plant biomass, Sandhya et al.91 2009
   RAS/RT ratio
6. P.	putida Maize Improved physiological response Vardharajul et al.96 2009
7. Rhizobium sp. YAS34 Sunflower Enhanced ratio of RAS/RT (Root Alami et al.95 2000
   adhering soil per root tissue)

defense system is used by plants, in which 
plants produce various enzymatic and non-
enzymatic antioxidants115. It has been observed 
that enzymatic activities lead to reduction of 
oxidative damage but at very high level of ROS, 
it can results into deleterious effects116. Thus, it 
is important to maintain balance between ROS 
production and annihilation of free radicals 
produced117. This can be done by using PGPR and 
their inoculation to plants shows higher survival 
rate by preventing oxidative damage than those 
which were not inoculated with PGPR.
 Pseudomonas sp.  is  reported to 
improve catalase activity in drought stress 
condition in basil plants (Ocimum basilicum L.). 
Similarly, Pseudomonas sp., Bacillus lentus and 
A. brasilense consortium induce high activity of 
glutathione peroxidase and ascorbate peroxidase 
in Ocimum basilicum L.118. Consortium of PGPR 
containing P. jessenii R62, P.	 synxantha R81 and 
A. nitroguajacolicus strainYB3 and YB5 improved 
growth of plant along with inducing superoxide 
dismutase, catalase (CAT), peroxidase (PX), 
ascorbate peroxidase (APX) and lowering H2O2, 
malondialdehyde (MDA) in Sahbhagi (drought 
tolerance) and IR-64 (drought sensitive) rice 
crop103. Pseudomonas spp. namely P. entomophila, 
P.	 stutzeri,	 P.	putida,	P.	 syringae	and P. montelli 
are responsible for reducing action of antioxidant 
enzymes significantly in maize under drought 

stress97. Bacillus species have also shown protection 
against drought stress by decreasing antioxidant 
enzymes APX and glutathione peroxidase (GPX)96. 
B. thuringiensis (Bt) improved growth via drought 
avoidance and reduction of glutathione reductase 
(GR) and ascorbate peroxidase (APX) activity 
in Lavandula dentata and Salvia	 officinalis in 
drought conditions55. Streptomyces pactum Act12 
treatment in wheat increased osmoregulation 
and antioxidant efficiency of plants. Bacillus 
pumilus DH-11 and B.	 firmus	40 induced ROS-
scavenging enzymes like ascorbate peroxidase 
and catalase in tomato plants. A remarkable 
increase in antioxidant enzymes like APX, SOD, 
and CAT was evident under drought stress in 
PGPR treated plants compared with non-treated 
plants119,120. Increased activity of CAT in green gram 
plants inoculated with Pseudomonas	fluorescens 
Pf1 and Bacillus subtilis EPB was reported by 
Saravanakumar et al. (2011)121. Similarly, increased 
level of CAT production and drought tolerance 
has also been correlated in cucumber122 and 
maize96,98,123. Up-regulation of expression of 
drought resistance-related genes like EXPA2, 
EXPA6, P5CS, SAMSI HSP17.8 and SnRK2 and 
accumulation of abscisic acid mitigated drought 
stress impact in wheat124,119. These experimental 
evidences proves that PGPR have significant role 
in increasing plant tolerance towards drought  
(Table 9). 
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Molecular mechanism of drought stress tolerance 
induced by rhizobacteria
 In water deficit conditions, gene induction 
forms two different types of proteins: functional 
proteins and regulatory proteins. Functional 
proteins include mRNA binding proteins, LEA 
proteins, water channel proteins, enzymes for 
osmolytes biosynthesis, proteases etc125. They 
function directly in abiotic stresses. On the 
other hand, regulatory proteins include protein 
kinase, calmodulin binding protein, phosphatase 
and other transcription factors. These are 
involved in stress responsive genes expression 
and signal transduction126. Hsps are heat shock 
proteins which inhibit misfolding of protein 
and are classified according to their molecular 
weight 127. LEA proteins are the proteins which 
accumulate during late embryonic phase in 
response to abiotic stress. Plants inoculated with 
PGPR helps in up regulation of stress tolerance 
inducing genes. Various molecular strategies 
have established the mechanism of microbes 
induced gene expression modulation for abiotic 
stress tolerance. The differential expression of 
multiple genes such as COX1 (regulates energy and 
carbohydrate metabolism), ERD15 (Early response 
to	dehydration	15), PKDP (protein kinase), AP2-
EREBP (stress responsive pathway), Hsp20, 
bZIP1 and COC1(chaperones in ABA signalling) 
in Pseudomonas	 fluorescens treated rice was 
established. Similarly RAB18 (ABA-responsive 
gene), LbKT1,	 LbSKOR (encoding potassium 
channels) in Lycium barbarum, jasmonate MYC2 
gene in chickpea, ADC, AIH, CPA, SPDS,SPMS 
and SAMDC (polyamine biosynthesis), ACO, 
ACS (ethylene biosynthesis), PR1 (SA regulated 
gene), pdf1.2 (JA marker genes) and VSP1	
(ethylene-response gene) in Pseudomonas treated 
Arabidopsis plants were established for drought 
tolerance125,128,129. Molecular networks of signal 
transduction genes are also involved in drought 
stress responses130,131.
 There are different molecular techniques 
which give huge amount of information about 
induced genes expressions and pathways 
during plant and rhizobacteria interactions. 
The techniques include high throughput whole 
genome gene expression such as microarrays, 
proteomics, RNA sequencing, 2D-PAGE, differential 
display132,133. This helps in exploring physiological 
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functions of such genes and tolerance induced 
by PGPR134. Upregulation of EARLY	RESPONSE	TO	
DEHYDRATION	15	(ERD15) in Arabidopsis thaliana 
was seen when inoculated with Paenibacillus 
polymyxa B2 as investigated at transcriptional 
level135. Pepper plants when inoculated with 
Bacillus showed more than 1.5-folds increase in 
Cadhn, VA, sHSP and CaPR-1084. Inoculation of 
Bacillus	amyloliquefaciens 5113 and A. brasilense 
NO40 alleviating the deleterious impact of 
drought stress in leaves of wheat by upregulation 
of stress response genes APX1, SAMS1, and 
HSP17.8. These upregulated genes enhanced 
plant ascorbate–glutathione redox cycle help in 
alleviating drought stress124. Bacterial priming of 

Gluconacetobacter diazotrophicus PAL5 stimulated 
the ABA-dependent signalling genes which confer 
tolerance to drought in sugarcane cv. SP70-
1143 as studied by Illumina sequencing (HiSeq 
2000 system)135,136 (Table 10). In Pseudomonas  
chlororaphis colonized Arabidopsis thaliana plants, 
upregulated but differential expression of jasmonic 
acid-marker genes, VSP1 and pdf-1.2, salicylic acid 
regulated gene, PR-1 and the ethylene-response 
gene, was observed137. 
 In the past several decades, researchers 
have been able develop many resistant varieties 
of plant species, but they have gained a very little 
success in development of drought tolerant crops 
using genetic engineering138. Monsanto introduced 

Fig. 1. Strategies used by PGPR to modulate plant growth under stress conditions (a) Poor plant growth without 
PGPR and (b) Enhanced plant growth with PGPR
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GM crop MON 87460, a maize (Zea mays L), in 
2009 which was drought stress tolerant. This crop 
increased production 5.5-folds from 50,000 ha in 
2013 to 275,000 ha in 2014. Cold shock protein B 
(CSPB) inserted from Bacillus	subtilis in MON 87460 
expresses to imparted drought tolerance139,140. In 
bacteria, cold shock proteins  help in preserving 
normal cellular functions by stabilizing cellular 
RNA and enhancing gene expression under abiotic 
stress141. Similarly, the translation of CSPB have 
been reported to enhance tolerance to abiotic 
stress in Arabidopsis and rice142. Another important 
gene OsNLI-IF overexpressed by cold, heat, salt and 
drought stresses improved drought tolerance in 
transgenic tobacco plants143. Argentina developed 
genetically modified soybean contains a gene from 
a naturally drought-resistant sunflower adapted to 
drought. Rhizospheric microbes not only support 
the growth of plants in limited water conditions 
but also reduce use of chemical fertilisers.
 The rhizosphere research field is flooded 
with metagenomics and metabolomics data, 
establishing genes identity and their functional 
taxonomic relationships. Scientists are putting 
their research efforts on developing consortia of 
microbes and metabolites of microbial origin in the 
formulations that best suited for individual crops 
in stressed environment144.

CONCLUSION
 In this review, we have attempted to 
highlights the existing knowledge of plant-bacterial 
interactions in maintaining plant growth under 
drought stress. To overcome drought conditions, 
plants adapt various morphological, biochemical 
and physiological changes. Now, it has been 
established that members of the rhizospheric 
bacteria can alleviate abiotic stress of drought 
in plants. This can be a promising alternative to 
tedious and costly genetic engineering and plant 
breeding methods. This review establishes that 
various PGPR play significant role in inducing 
tolerance to drought stress in plants employing 
different mechanisms. The rhizobacterial induced 
drought stress tolerance in the plant is over and 
above the drought resistance genes either present 
or absent in the plant (Fig. 1).

Future Perspectives
 Future research should be undertaken 
to increase crop yield, soil fertility and shelf life 
of products of PGPRs. Drought stress is a severe 
environmental factor that limits agricultural 
productivity. Rhizobacteriome offer plethora 
of PGPR in imparting adaptation and tolerance 
to drought stresses and prove to be promising 
strategy to improve productivity in drought 
areas. The plant and rhizobacteria interaction 
changes plant as well as soil properties in drought 
conditions. Rhizobacterial stimulation of osmotic 
responses and induction of novel genes expression 
play a significant role in ensuring plant survival 
under drought stress conditions. The development 
of drought tolerant crop varieties through genetic 
engineering and plant breeding approaches is good 
option but it is a labor intensive, lengthy and costly 
affair. Alternately, rhizobacteria inoculation to 
mitigate drought stresses in plants is environment 
friendly and safe option for agriculture drought 
affected areas. Future research must focus on (1) 
identification and characterization of the novel 
abiotic stress-tolerant bacteria from unexplored 
niches, (2) discover novel bacteria with novel 
molecule or mechanism, (3) better formulation 
with appropriate delivery system and (4) perform 
rigorous field trial in order to select potential 
rhizobacterial candidate to combat drought stress. 
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