Abstract

In the context of language recognition, we demonstrate the superiority of streaming property testers against streaming algorithms and property testers, when they are not combined. Initiated by Feigenbaum et al., a streaming property tester is a streaming algorithm recognizing a language under the property testing approximation: it must distinguish inputs of the language from those that are \(\varepsilon \)-far from it, while using the smallest possible memory (rather than limiting its number of input queries).

Our main result is a streaming \(\varepsilon \)-property tester for visibly pushdown languages (VPL) with one-sided error using memory space \(\text{poly}((\log n)/\varepsilon) \).

This constructions relies on a (non-streaming) property tester for weighted regular languages based on a previous tester by Alon et al. We provide a simple application of this tester for streaming testing special cases of instances of VPL that are already hard for both streaming algorithms and property testers.

Our main algorithm is a combination of an original simulation of visibly pushdown automata using a stack with small height but possible items of linear size. In a second step, those items are replaced by small sketches. Those sketches relies on a notion of suffix-sampling we introduce. This sampling is the key idea connecting our streaming tester algorithm to property testers.
1 Introduction

Visibly pushdown languages (VPL) play an important role in formal languages with crucial applications for databases and program analysis. In the context of structured documents, they are closely related with regular languages of unranked trees as captured by hedge automata. A well-known result [3] states that, when the tree is given by its depth-first traversal, such automata correspond to visibly pushdown automata (VPA) (see e.g. [19] for an overview on automata and logic for unranked trees). In databases, this word encoding of trees is known as XML encoding, where DTD specifications are examples of often considered subclasses of VPL. In program analysis, VPA also capture natural properties of execution traces of recursive finite-state programs, including non-regular ones such as those with pre and post conditions as expressed in the temporal logic of calls and returns (CaRet) [5, 4].

Historically, VPL got several names such as input-driven languages or, more recently, languages of nested words. Intuitively, a VPA is a pushdown automaton whose actions on stack (push, pop or nothing) are solely decided by the currently read symbol. As a consequence, symbols can be partitioned into three groups: push, pop and neutral symbols. The complexity of VPL recognition has been addressed in various computational models. The first results go back to the design of logarithmic space algorithms [11] as well as NC1-circuits [13]. Later on, other models motivated by the context of massive data were considered, such as streaming algorithms and property testers (described below).

Streaming algorithms (see e.g. [23]) have only a sequential access to their input, on which they can perform a single pass, or sometimes a small number of additional passes. The size of their internal (random access) memory is the crucial complexity parameter, which should be sublinear in the input size, and even polylogarithmic if possible. The area of streaming algorithms has experienced tremendous growth in many applications since the late 1990s. The analysis of Internet traffic [2], in which traffic logs are queried, was one of their first applications. Nowadays, they have found applications with big data, notably to test graphs properties, and more recently in language recognition on very large inputs. The streaming complexity of language recognition has been firstly considered for languages that arise in the context of memory checking [8, 12], of databases [29, 28], and later on for formal languages [21, 7]. However, even for simple VPL, any randomized streaming algorithm with p passes requires memory $\Omega(n/p)$, where n is the input size [18].

As opposed to streaming algorithms, (standard) property testers [9, 10, 16] have random access to their input but in the query model. They must query each piece of the input they need to access. They should sample only a sublinear fraction of their input, and ideally make a constant number of queries. In order to make the task of verification possible, decision problems need to be approximated as follows. Given a distance on words, an ε-tester for a language L distinguishes with high probability the words in L from those ε-far from L, using as few queries as possible. Property testing of regular languages was first considered for the Hamming distance [11]. When the distance allows sufficient modifications of the input, such as moves of arbitrarily large factors, it has been shown that any context-free language becomes testable with a constant number of queries [20, 15]. However, for more realistic distances, property testers for simple languages require a large number of queries, especially if they have one-sided error only. For example the complexity of an ε-tester for well-parenthesized expressions with two types of parentheses is between $\Omega(n^{1/11})$ and $O(n^{2/3})$ [26], and it becomes linear, even for one type of parentheses, if we require one-sided error [1]. The difficulty of testing regular tree languages was also addressed when the tester can directly query the tree structure [24, 25].

Faced by the intrinsic hardness of VPL in both streaming and property testing, we study the complexity of streaming property testers of formal languages, a model of algorithms combining both approaches. Such testers were historically introduced for testing specific problems (groupedness) [14] relevant for network data. They were later studied in the context of testing the insert/extract-sequence of a priority-queue structure [12]. We extend these studies to classes of problems. A streaming property tester is a streaming algorithm recognizing a language under the property testing approximation: it must distinguish inputs of
the language from those that are \(\varepsilon \)-far from it, while using the smallest possible memory (rather than limiting its number of input queries). Such an algorithm can simulate any standard non-adaptive property tester. Moreover, we will see that, using its full scan of the input, it can construct better sketches than in the query model.

In this paper, we consider a natural notion of distance for \(VPL \), the \textit{balanced-edit distance}, which refines the edit distance on \textit{balanced words} (where for each push symbol there is a matching pop symbol at the same height of the stack, and conversely). It can be interpreted as the edit distance on trees when trees are encoded as balanced words. Neutral symbols can be deleted/inserted, but any push symbol can only be deleted/inserted together with its matching pop symbol. Since our distance is larger than the standard edit distance, our testers are also valid for that distance.

In Section 3, we first design an exact algorithm that maintains a small stack but whose items can be of linear size as opposed to the standard simulation of a pushdown automaton which usually has a stack of possible linear size but with constant size items. In our algorithm, stack items are prefixes of some peaks (which we call unfinished peaks), where a \textit{peak} is a balanced factor whose push symbols appear all before the first pop symbol. Our algorithm compresses an unfinished peak \(u = u_+v_- \) when it is followed by a long enough sequence. More precisely, the compression applies to the peak \(v_+v_- \) obtained by disregarding part of the prefix of push sequence \(u_+ \). Those peaks are then inductively replaced, and therefore compressed, by the state-transition relation they define on the given automaton. The relation is then considered as a single symbol whose weight is the size of the peak it represents. In addition, to maintain a stack of logarithmic depth, one of the crucial properties of our algorithm (Proposition 3.3) is rewriting the input word as a peak formed by potentially a linear number of intermediate peaks, but with only a logarithmic number of nested peaks.

In Section 4, for the case of a single peak, we show how to sketch the current unfinished peak of our algorithm. The simplicity of those instances will let us highlight our first idea. Moreover, they are already expressive enough in order to demonstrate the superiority of streaming testers against streaming algorithms and property testers, when they are not combined. We first reduce the problem of streaming testing such instances to the problem of testing regular languages in the standard model of property testing (Theorem 4.9). Since our reduction induces weights on the letters of the new input word, we need a tester for weighted regular languages (Theorem A.2). Such a property tester has previously been devised in [25] extending constructions for unweighted regular languages [1, 24]. However, we consider a slightly simpler construction that could be of independent interest. As a consequence we get a streaming property tester with polylogarithmic memory for recognizing peak instances of any given \(VPL \) (Theorem 4.10), a task already hard for streaming algorithms and property testers (Fact 4.1).

In Section 5, we construct our main tester for a \(VPL \) \(L \) given by some \(VPA \). For this we introduce a more involved notion of sketches made of a polylogarithmic number of samples. They are based on a new notion of suffix sampling (Definition 5.1). This sampling consists in a decomposition of the string into an increasing sequence of suffixes, whose weights increase geometrically. Such a decomposition can be computed online on a data stream, and one can maintain samples in each suffix of the decomposition using a standard reservoir sampling. This suffix decomposition will allow us to simulate an appropriate sampling on the peaks we compress, even if we do not yet know where they start. Our sampling can be used to perform an approximate computation of the compressed relation by our new property tester of weighted regular languages which we also used for single peaks. We first establish a result of stability which basically states that we can assume that our algorithm knows in advance where the peak it will compress starts (Lemma 5.6). Then we prove the robustness of our algorithm: words that are \(\varepsilon \)-far from \(L \) are rejected with high probability (Lemma 5.8). As a consequence, we get a one-pass streaming \(\varepsilon \)-tester for \(L \) with one-sided error \(\eta \) and memory space \(\mathcal{O}(m^52m^2\log n)^6(\log 1/\eta)\varepsilon^{-4}) \), where \(m \) is the number of states of a \(VPA \) recognizing \(L \) (Theorem 5.4).
2 Definitions and Preliminaries

Let \mathbb{N}^* be the set of positive integers, and for any integer $n \in \mathbb{N}^*$, let $[n] = \{1, 2, \ldots, n\}$. A t-subset of a set S is any subset of S of size t. For a finite alphabet Σ we denote the set of finite words over Σ by Σ^*. For a word $u = u(1)u(2) \cdots u(n)$, we call n the length of u, and $u(i)$ the ith letter in u. We write $u[i,j]$ for the factor $u(i)u(i+1) \cdots u(j)$ of u. When we mention letters and factors of u we implicitly also mention their positions in u. We say that v is a sub-factor of v', denoted $v \leq v'$, if $v = u[i,j]$ and $v' = u[i',j']$ with $[i,j] \subseteq [i',j']$. Similarly we say that $v = v'$ if $[i,j] = [i',j']$. If $i \leq i' \leq j \leq j'$ we say that the overlap of v and v' is $u[i',j]$. If v is a sub-factor of v' then the overlap of v and v' is v. Given two multisets of factors S and S', we say that $S \leq S'$ if for each factor $v \in S$ there is a corresponding factor $v' \in S'$ such that $v \leq v'$.

Weighted Words and Sampling. A weight function on a word u with n letters is a function $\lambda : [n] \to \mathbb{N}^*$ on the letters of u, whose value $\lambda(i)$ is called the weight of $u(i)$. A weighted word over Σ is a pair (u, λ) where $u \in \Sigma^*$ and λ is a weight function on u. We define $|u(i)| = \lambda(i)$ and $|u[i,j]| = \lambda(i) + \lambda(i+1) + \ldots + \lambda(j)$. The length of (u, λ) is the length of u. For simplicity, we will denote by u the weighted word (u, λ). Weighted letters will be used to substitute factors of same weights. Therefore, restrictions may exist on available weights for a given letter.

Our algorithms will be based on a sampling of small factors according to their weights. We introduce a very specific notion adapted to our setting. For a weighted word u, we denote by k-factor sampling on u the sampling over factors $u[i,i+l]$ with probability $|u[i])/|u|$, where $l \geq 0$ is the smallest integer such that $|u[i,i+l]| \geq k$ if it exists, otherwise l is such that $i+l$ is the last letter of u. More generally, we call k-factor such a factor. For the special case of $k = 1$, we call this sampling a letter sampling on u. Observe that both of them can be implemented using a standard reservoir sampling (see Algorithm 1 for letter sampling).

Even if our algorithm will require several samples from a k-factor sampling, we will often only be able to simulate this sampling by sampling either larger factors, more factors, or both. Let W_1 be a sampler producing a random multiset S_1 of factors of some given weighted word u. Then W_2 oversamples W_1 if it produces a random multiset S_2 of factors of u such that for each factor v, we have $\Pr(\exists v' \in S_2$ such that v is a factor of $v') \geq \Pr(\exists v' \in S_1$ such that v is a factor of $v')$.

Finite State Automata and Visibly Pushdown Automata. A finite state automaton is a tuple of the form $A = (Q, \Sigma, Q_i, Q_f, \Delta)$ where Q is a finite set of control states, Σ is a finite input alphabet, $Q_i \subseteq Q$ is a subset of initial states, $Q_f \subseteq Q$ is a subset of final states and $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation. We write $p \xrightarrow{u} q$, to mean that there is a sequence of transitions in A from p to q while processing u, and we call (p,q) a u-transitions. A word u is accepted if $q_i \xrightarrow{u} q_f$ for some $q_i \in Q_i$ and $q_f \in Q_f$. The language $L(A)$ of A is the set of words accepted by A, and we refer to such a language as a regular language. For

 Algorithm 1: Reservoir Sampling

<table>
<thead>
<tr>
<th>Input: Data stream u, Integer parameter $t > 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data structure:</td>
</tr>
<tr>
<td>$\sigma \leftarrow 0$ // Current weight of the processed stream</td>
</tr>
<tr>
<td>$S \leftarrow$ empty multiset // Multiset of sampled letters</td>
</tr>
<tr>
<td>Code:</td>
</tr>
<tr>
<td>$i \leftarrow 1$, $a \leftarrow$ Next(u), $\sigma \leftarrow</td>
</tr>
<tr>
<td>$S \leftarrow t$ copies of a</td>
</tr>
<tr>
<td>While u not finished</td>
</tr>
<tr>
<td>$i++$, $a \leftarrow$ Next(u), $\sigma \leftarrow \sigma +</td>
</tr>
<tr>
<td>For each $b \in S$</td>
</tr>
<tr>
<td>Replace b by a with probability $</td>
</tr>
<tr>
<td>Output S</td>
</tr>
</tbody>
</table>
\(\Sigma' \subseteq \Sigma\), the \(\Sigma'\)-diameter \((\text{or simply diameter when } \Sigma' = \Sigma)\) of \(A\) is the maximum over all possible pairs \((p, q) \in Q^2\) of \(\min\{|u| : p \xrightarrow{u} q \text{ and } u \in \Sigma^*\}\), whenever this minimum is not over an empty set. We say that \(A\) is \(\Sigma'\)-closed, when \(p \xrightarrow{u} q\) for some \(u \in \Sigma^*\) if and only if \(p \xrightarrow{u'} q\) for some \(u' \in \Sigma^*\).

A pushdown alphabet is a triple \((\Sigma_+, \Sigma_-, \Sigma_0)\) that comprises three disjoint finite alphabets: \(\Sigma_+\) is a finite set of push symbols, \(\Sigma_-\) is a finite set of pop symbols, and \(\Sigma_0\) is a finite set of neutral symbols. For any such triple, let \(\Sigma = \Sigma_+ \cup \Sigma_- \cup \Sigma_0\). Intuitively, a \(\text{visibly pushdown automaton}\) \([27]\) over \((\Sigma_+, \Sigma_-)\) is a pushdown automaton restricted so that it pushes onto the stack only on reading a push, it pops the stack only on reading a pop, and it does not modify the stack on reading a neutral symbol. Up to coding, this notion is similar to the one of input driven pushdown automata \([22]\) and of nested word automata \([6]\).

Definition 2.1 \((\text{Visibly pushdown automaton}\) \([27]\)). A visibly pushdown automaton \((\text{VPA})\) over \((\Sigma_+, \Sigma_-)\) is a tuple \(A = (Q, \Sigma, \Gamma, Q_m, Q_f, \Delta)\) where \(Q\) is a finite set of states, \(Q_m \subseteq Q\) is a set of initial states, \(Q_f \subseteq Q\) is a set of final states, \(\Gamma\) is a finite stack alphabet, and \(\Delta \subseteq (Q \times \Sigma_+ \times Q \times \Gamma) \cup (Q \times \Sigma_- \times \Gamma \times Q) \cup (Q \times \Sigma_0 \times Q)\) is the transition relation. To represent stacks we use a special bottom-of-stack symbol \(\bot\) that is not in \(\Gamma\). A configuration of a \(\text{VPA}\) \(A\) is a pair \((\sigma, q), q \in Q \text{ and } \sigma \in \bot \cdot \Sigma^*\). For \(\sigma \in \Sigma\), there is an \(a\)-transition from a configuration \((\sigma, q)\) to \((\sigma', q'), q \xrightarrow{a} (\sigma', q')\), in the following cases:

- If \(a\) is a push symbol, then \(\sigma' = \sigma \gamma\) for some \((q, a, q', \gamma) \in \Delta\), and we write \(q \xrightarrow{a} (q', \text{push}(\gamma))\).
- If \(a\) is a pop symbol, then \(\sigma = \sigma' \gamma\) for some \((q, a, \gamma, q') \in \Delta\), and we write \((q, \text{pop}(\gamma)) \xrightarrow{a} q'\).
- If \(a\) is a neutral symbol, then \(\sigma = \sigma'\) and \((q, a, q') \in \Delta\), and we write \(q \xrightarrow{a} q'\).

For a finite word \(u = a_1 \cdots a_n \in \Sigma^*\), if \((\sigma_{i-1}, q_{i-1}) \xrightarrow{a_i} (\sigma_i, q_i)\) for every \(1 \leq i \leq n\), we also write \((\sigma_0, q_0) \xrightarrow{u} (\sigma_n, q_n)\). The word \(u\) is accepted by a \(\text{VPA}\) if there is \((p, q) \in Q_m \times Q_f\) such that \((\bot, p) \xrightarrow{u} (\bot, q)\). The language \(L(A)\) of \(A\) is the set of words accepted by \(A\), and we refer to such a language as a \text{visibly pushdown language} \((\text{VPL})\).

At each step, the height of the stack is pre-determined by the prefix of \(u\) read so far. The height \(\text{height}(u)\) of \(u \in \Sigma^*\) is the difference between the number of its push symbols and of its pop symbols. A word \(u\) is \text{balanced} if \(\text{height}(u) = 0\) and \(\text{height}(u[i, j]) \geq 0\) for all \(i\). We also say that a push symbol \(u(i)\) \text{matches} a pop symbol \(u(j)\) if \(\text{height}(u[i, j]) = 0\) and \(\text{height}(u[i, k]) > 0\) for all \(i < k < j\). By extension, the height of \(u(i)\) is \(\text{height}(u[1, i - 1])\) when \(u(i)\) is a push symbol, and \(\text{height}(u[1, i])\) otherwise.

For all balanced words \(u\), the property \((\sigma, p) \xrightarrow{u} (\sigma, q)\) does not depend on \(\sigma\), therefore we simply write \(p \xrightarrow{u} q\), and say that \((p, q)\) is a \(u\)-transition. We also define similarly to finite automata the \(\Sigma'\)-diameter of \(A\) (or simply diameter) and the notion \(A\) being \(\Sigma'\)-closed on balanced words only.

Our model is inherently restricted to input words having no prefix of negative stack height, and we defined acceptance with an empty stack. This implies that only balanced words can be accepted. From now on, we will always assume that the input is balanced as verifying this in a streaming context is easy.

Balanced/Standard Edit Distance. The usual distance between words in property testing is the Hamming distance. In this work, we consider an easier distance to manipulate in property testing but still relevant for most applications, which is the edit distance, that we adapt to weighted words.

Given a word \(u\), we define two possible \text{edit operations}: the \text{deletion} of a letter in position \(i\) with corresponding cost \(|u(i)|\), and its converse operation, the \text{insertion} where we also select a weight, compatible with the restrictions on \(\lambda\), for the new \(u(i)\). Then the (standard) \text{edit distance} \(\text{dist}(u, v)\) between two weighted words \(u\) and \(v\) is simply defined as the minimum total cost of a sequence of edit operations changing \(u\) to \(v\). Note that all letters that have not been inserted nor deleted must keep the same weight. For a restricted set of letters \(\Sigma'\), we also define \(\text{dist}_{\Sigma'}(u, v)\) where the insertions are restricted to letters in \(\Sigma'\).

We will also consider a restricted version of this distance for balanced words, motivated by our study of \(\text{VPL}\). Similarly, \text{balanced-edit operations} can be deletions or insertions of letters, but each deletion of a push symbol (resp. pop symbol) requires the deletion of the matching pop symbol (resp. push symbol).
Similarly for insertions: if a push (resp. pop) symbol is inserted, then a matching pop (resp. push) symbol must also be inserted simultaneously. The cost of these operations is the weight of the affected letters, as with the edit operations. We define the balanced-edit distance $\text{bdist}(u, v)$ between two balanced words as the total cost of a sequence of balanced-edit operations changing u to v. Similarly to $\text{dist}_{\Sigma'}(u, v)$ we define $\text{bdist}_{\Sigma'}(u, v)$.

When dealing with a visibly pushdown language, we will always use the balanced-edit distance, whereas we will use the standard-edit distance for regular languages. We also say that u is (ε, Σ')-far from v if $\text{dist}_{\Sigma'}(u, v) > \varepsilon |u|$, or $\text{bdist}_{\Sigma'}(u, v) > \varepsilon |u|$, depending on the context; otherwise we say that u is (ε, Σ')-close to v. We omit Σ' when $\Sigma' = \Sigma$.

Streaming Property Testers. An ε-tester for a language L accepts all inputs which belong to L with probability 1 and rejects with high probability all inputs which are ε-far from L, i.e. that are ε-far from any element of L. In particular, a tester for some given distance is also a tester for any other smaller distance. Two-sided error testers have also been studied but in this paper we stay with the notion of one-sided testers, that we adapt in the context of streaming algorithm as in [14].

Definition 2.2 (Streaming property tester). Let $\varepsilon > 0$ and let L be a language. A streaming ε-tester for L with one-sided error η and memory $s(n)$ is a randomized algorithm A such that, for any input u of length n given as a data stream:

- If $u \in L$, then A accepts with probability 1;
- If u is ε-far from L, then A rejects with probability at least $1 - \eta$;
- A processes u within a single sequential pass while maintaining a memory space of $O(s(n))$ bits.

3 Exact Algorithm

Fix a VPA A recognizing some VPL L on $\Sigma = \Sigma_+ \cup \Sigma_- \cup \Sigma_*$. In this section, we design an exact streaming algorithm that decides whether an input belongs to L. Algorithm 2 maintains a stack of small height but whose items can be of linear size. In Section 3 we replace stack items by appropriated small sketches.

3.1 Notations and Algorithm Description

Call a peak a sequence of push symbols followed by a sequence of pop symbols, with possibly intermediate neutral symbols, i.e. an element of the language $\Lambda = \bigcup_{j \geq 0} (\Sigma_+^*) \cdot \Sigma_+ \cdot (\Sigma^*)^j \cdot (\Sigma_- \cdot (\Sigma_*)^j)$. One can compress any pick $v \in \Lambda$ by the set $R_v = \{(p, q) : p \xrightarrow{v} q\}$ of the v-transitions, and consider R_v as a new neutral symbol with weight $|v|$. In fact, for the purpose of the analysis of our algorithm, we augment neutral symbols by many more relations for which A remains Σ-closed. For the rest of the paper, they will be the only symbols with weight potentially larger than 1.

Definition 3.1. Let Σ_Q be Σ_- augmented by all weighted letters encoding a relation $R \subseteq Q \times Q$ such that for every $(p, q) \in R$ there is a balanced word $u \in \Sigma^*$ with $p \xrightarrow{u} q$. Let Λ_Q be Λ where Σ_- is replaced by Σ_Q.

We then write $p \xrightarrow{R} q$ whenever $(p, q) \in R$, and extend A and L accordingly. Of course, our notion of distance will be solely based on the initial alphabet Σ.

A general balanced input instance u will consist of many nested peaks. However, we will recursively replace each factor $v \in \Lambda_Q$ by R_v with weight $|v|$. Denote by $\text{Prefix}(\Lambda_Q)$ the language of prefixes of words in Λ_Q. While processing the prefix $u[1, i]$ of the data stream u, Algorithm 2 maintains a suffix $u_0 \in \text{Prefix}(\Lambda_Q)$ of $u[1, i]$, that is an unfinished peak, with some simplifications of factors v in Λ_Q by their corresponding relation R_v. Therefore u_0 consists of a sequence of push symbols and neutral symbols possibly followed by a sequence of pop symbols and neutral
Algorithm 2: Exact Tester for a VPL

Input: Balanced data stream \(u \)

Data structure:
1. Stack \(\leftarrow \) empty stack // Stack of items \(v \) with \(v \in \text{Prefix}(\Lambda_Q) \)
2. \(u_0 \leftarrow \emptyset \) // \(u_0 \in \text{Prefix}(\Lambda_Q) \) is a suffix of the processed part \(u[1,i] \) of \(u \)
 // with possibly some factors \(v \in \Lambda_Q \) replaced by \(R_v \)
3. \(R_{\text{temp}} \leftarrow \{(p,p)\}_{p \in Q} \) // Set of transitions for the maximal prefix of \(u[1,i] \) in \(\Lambda_Q \)

Code:

While \(u \) not finished
1. \(a \leftarrow \text{Next}(u) \) // Read and process a new symbol \(a \)
2. If \(a \in \Sigma, \) and \(u_0 \) has a letter in \(\Sigma \) // \(u_0 \cdot a \not\in \text{Prefix}(\Lambda_Q) \)
 - Push \(u_0 \) on Stack, \(u_0 \leftarrow a \)
3. Else \(u_0 \leftarrow u_0 \cdot a \)
4. If \(u_0 \) is balanced // \(u_0 \in \Lambda_Q \); compression
 - Compute \(R_{u_0} \) the set of \(u_0 \)-transitions
 - If \(\text{Stack} = \emptyset \), then \(R_{\text{temp}} \leftarrow R_{\text{temp}} \circ R_{u_0}, \) \(u_0 \leftarrow \emptyset \)
 - // where \(\circ \) denotes the composition of relations
 - Else Pop \(v \) from Stack, \(u_0 \leftarrow v \cdot R_{u_0} \)
5. Let \((v_1 \cdot v_2) \leftarrow \text{top(Stack)} \) s.t. \(v_2 \) is maximal and balanced // \(v_2 \in \Lambda_Q \)
6. If \(|u_0| \geq |v_2|/2 \) // \(u_0 \) is big enough and \(v_2 \) can be replaced by \(R_{v_2} \)
 - Compute \(R_{v_2} \) the set of \(v_2 \)-transitions, Pop \(v \) from Stack, \(u_0 \leftarrow (v_1 \cdot R_{v_2}) \cdot u_0 \)
7. If \((Q_{in} \times Q_f) \cap R_{\text{temp}} \neq \emptyset \), Accept; Else Reject // \(R_{\text{temp}} = R_u \)

symbols. The algorithm also maintains a subset \(R_{\text{temp}} \subseteq Q \times Q \) that is the set of transitions for the maximal prefix of \(u[1,i] \) in \(\Lambda_Q \). When the stream is over, the set \(R_{\text{temp}} \) is used to decide whether \(u \in L \) or not.

When a push symbol \(a \) comes after a pop sequence, \(u_0 \cdot a \) is no longer in \(\text{Prefix}(\Lambda_Q) \) hence, Algorithm \(\text{[2]} \) puts \(u_0 \) on the stack of unfinished peaks (see lines \(10 \) to \(11 \) and Figure \(1a \)) and \(u_0 \) is reset to \(a \). In other situations, it adds \(a \) to \(u_0 \). In case \(u_0 \) becomes a word in \(\Lambda_Q \) (see lines \(13 \) to \(17 \) and Figure \(1b \)), Algorithm \(\text{[2]} \) computes the set of \(u_0 \)-transitions \(R_{u_0} \in \Sigma_Q, \) and adds \(R_{u_0} \) to the previous unfinished peak that is retrieved on top of the stack and becomes the current unfinished peak; in the special case where the stack is empty one simply updates the set \(R_{\text{temp}} \) by taking its composition with \(R_{u_0} \).

3.2 Algorithm Analysis

We now introduce the quantity \(\text{Depth}(v) \) for each factor \(v \) constructed in Algorithm \(\text{[2]} \). It quantifies the number of processed nested picks in \(v \) as follows:

Definition 3.2. For each factor constructed in Algorithm \(\text{[2]} \), Depth is defined dynamically by \(\text{Depth}(a) = 0 \) when \(a \in \Sigma \), \(\text{Depth}(v) = \max_i \text{Depth}(v(i)) \) and \(\text{Depth}(R_v) = \text{Depth}(v) + 1 \).

In order to bound the size of the stack, Algorithm \(\text{[2]} \) considers the maximal balanced suffix \(v_2 \) of the topmost element \(v_1 \cdot v_2 \) of the stack and, whenever \(|u_0| \geq |v_2|/2 \), it computes the relation \(R_{v_2} \) and continues with a bigger current peak starting with \(v_1 \) (see lines \(18 \) to \(20 \) and Figure \(1c \)). A consequence of this compression is that the elements in the stack have geometrically decreasing weight and therefore the height of the stack used by Algorithm \(\text{[2]} \) is logarithmic in the length of the input stream. This can be proved by a direct inspection of Algorithm \(\text{[2]} \).

Proposition 3.3. Algorithm \(\text{[2]} \) accepts exactly when \(u \in L \), while maintaining a stack of at most \(\log |u| \) items.

We state that Algorithm \(\text{[2]} \) when processing an input \(u \) of length \(n \), considers at most \(O(\log n) \) nested picks, that is \(\text{Depth}(v) = O(\log n) \) for all factors constructed in Algorithm \(\text{[2]} \).
(a) Illustration of lines 10 to 11 from Algorithm 2

(b) Illustration of lines 13 to 17 from Algorithm 2

(c) Illustration of lines 18 to 20 from Algorithm 2

Figure 1: Illustration of Algorithm 2
Lemma 3.4. Let v be the factor used to compute R_v at line either 14 or 20 of Algorithm 2. Then $|v(i)| \leq 2|v|/3$, for all i. Moreover, for any factor w constructed by Algorithm 2 it holds that $\text{Depth}(w) = O(\log |w|)$.

Proof. One only has to consider letters in Σ_Q. Hence, let R_w belongs to v for some w: either w was simplified into R_w at line 14 or at line 20 of Algorithm 2.

Let us first assume that it was done at line 20. Therefore, there is some $v' \in \text{Prefix}(\Lambda_Q)$ to the right of w with total weight greater than $|w|/2 = |R_w|/2$. This factor v' is entirely contained within v: indeed, when R_w is computed v includes v'. Therefore $|R_w| \leq 2|v|/3$.

If R_w comes from line 14 then $w = u_0$ and this u_0 is balanced and compressed. We claim that at the previous round the test in line 19 failed, that is $|u_0| - 1 \leq |v_2|/2$ where v_2 is the maximal balanced suffix of top(Stack). Indeed, when performing the sequence of actions following a positive test in line 19 the number of unmatched push symbols in the new u_0 is augmented at least by 1 from the previous u_0: hence, it cannot be equal to 1 as the elements in the stack have pending call symbols and therefore in the next round u_0 cannot be balanced. Therefore one has $|u_0| - 1 \leq |v_2|/2$. Now when $R_w = R_{u_0}$ is created, it is contains in a factor that also contains v_2 and at least one pending call before v_2. Hence, $|R_w| \leq 2|v|/3$.

Finally, the fact that for any factor w constructed by Algorithm 2 $\text{Depth}(w) = O(\log |w|)$ derives from the fact that if $\text{Depth}(w) = k$, then $|w| \geq (3/2)^k$. This can in turn be shown by induction on the depth. Obviously any factor will have weight at least 1. Let us assume all factors of depth k have weight at least $(3/2)^k$, and let $w(i)$ be a letter such that $\text{Depth}(w(i)) = k + 1$. By definition, $w(i) = R_v$ for some factor v with $\text{Depth}(v) = k$. This means v contains at least one letter $v(j)$ of depth k. By our induction hypothesis, $|v(j)| \geq (3/2)^k$, and therefore $|w(i)| = |v| \geq (3/2)|v(j)| \geq (3/2)^{k+1}$.

4 The Special Case Of Peaks

We now consider restricted instances consisting of a single peak. For these instances, Algorithm 2 never uses its stack but u_0 can be of linear size. We show how to replace u_0 by a small random sketch in order to get a streaming property tester using polylogarithmic memory. In Section 5 this notion of sketch will be later extended to obtain our final streaming property tester for general instances.

4.1 Hard Peak Instances

Peaks are already hard for both streaming algorithms and property testing algorithms. Indeed, consider the language $\text{Disj} \subseteq \Lambda$ over alphabet $\Sigma = \{0, 1, \emptyset, \top, a\}$ and defined as the union of all languages $a^* \cdot x(1) \cdot a^* \cdot \ldots \cdot x(j) \cdot a^* \cdot y(j) \cdot a^* \cdot \ldots \cdot y(1) \cdot a^*$, where $j \geq 1$, $x, y \in \{0, 1\}^j$, and $x(i)y(i) \neq 1$ for all i.

Then Disj can be recognized by a VPA with 3 states, $\Sigma_+ = \{0, 1\}$, $\Sigma_- = \{\emptyset, \top\}$ and $\Sigma_0 = \{a\}$. However, the following fact states its hardness for both models. The hardness for non-approximation streaming algorithms comes for a standard reduction to Set-Disjointness. The hardness for property testing algorithms is a corollary of a similar result due to 26 for parenthesis languages with two types of parentheses.

Fact 4.1. Any randomized p-pass streaming algorithm for Disj requires memory space $\Omega(n/p)$, where n is the input length. Moreover, any (non-streaming) (2^{-6})-tester for Disj requires to query $\Omega(n^{1/11} / \log n)$ letters of the input word.

Proof. The Set-Disjointness problem is defined as follows. Two players have respectively A and B of $\{1, \ldots, n\}$ and they must output whether $A \cap B = \emptyset$. The communication complexity of this problem is well known to be $\Omega(n)$. Therefore using the standard reduction of streaming algorithms to communication protocols, any randomised p-pass algorithm for Disj will require memory space $\Omega(n/p)$.

To prove the hardness of testing Disj in the query model, we use a result from 26 (Theorem 2) which states that any Hamming distance query model property tester for $\text{PAR}_2 \cap \Lambda$ the language on the alphabet $\{(, [,)], \ast\}$ consisting of well-parenthesized words that are also in Λ requires $\Omega(n^{1/11})$ queries.
Let \(\Sigma = (\Sigma, \Gamma, \Delta) \) be a \(\text{VPA} \). The slicing of \(\mathcal{A} \) is the finite automaton \(\widehat{\mathcal{A}} = (\widehat{Q}, \widehat{\Sigma}, \widehat{Q}_m, \widehat{Q}_f, \widehat{\Delta}) \) where \(\widehat{Q} = Q \times \Sigma \), \(\widehat{Q}_m = Q_m \times Q_f \), \(\widehat{Q}_f = \{ (p, p) : p \in Q \} \), and the transitions \(\widehat{\Delta} \) are:

1. \((p, q)(a, b) \rightarrow (p', q')\) when \(p \xrightarrow{a}(p', \text{push}(\gamma)) \) and \((q', \text{pop}(\gamma)) \xrightarrow{b} q \) are both transitions of \(\Delta \).
2. \((p, q)(c, l) \rightarrow (p', q)\), resp. \((p, q)(l, c) \rightarrow (p, q')\), when \(p \xrightarrow{c} p' \), resp. \(q \xrightarrow{c} q' \), is a transition of \(\Delta \).

Figure 2: Slicing of a word \(u \in \Lambda \) and evolution of the stack height for \(u \).
This construction will be later used in Section 5 for weighted languages. In that case, we define the weight of a letter in \(\hat{u} \) by \(|(a, b)| = |a| + |b| \), with the convention that \(|I| = 0\). Moreover, we write \(\Sigma_Q \) for the alphabet obtained similarly to \(\hat{\Sigma} \) using \(\Sigma_Q \) instead of \(\Sigma_w \). Note that the slicing automaton \(\hat{A} \) defined on \(\hat{\Sigma} \) is \(\hat{\Sigma} \)-closed and has \(\hat{\Sigma} \)-diameter at most \(2m^2 \).

Lemma 4.3. If \(\mathcal{A} \) is a \(\forall \mathcal{A} \) accepting \(L \), then \(\hat{\mathcal{A}} \) is a finite automaton accepting \(\hat{L} = \{ \hat{u} : u \in L \cap \Lambda \} \).

Proof. Because transitions on push symbols do not depend on the top of the stack, transitions in \(\hat{\mathcal{A}} \) correspond to slices that are valid for \(\Delta \) (see Figure 2). Finally, \(\hat{Q}_{in} \) ensures that a run for \(\hat{L} \) must start in \(Q_{in} \) and end in \(Q_f \), and \(\hat{Q}_f \) that a state at the top of the peak is consistent from both sides.

Proposition 4.4. Let \(v \in \Lambda \) be s.t. \((p, q) \rightarrow^\hat{v} (p', q') \). There is \(w \in \Lambda \) s.t. \(|w| \leq 2m^2\) and \((p, q) \rightarrow^w (p', q') \).

4.3 Random Sketches

We are now ready to build a tester for \(L \cap \Lambda \). To test a word \(u \) we use a property tester for the regular language \(\hat{L} \). Regular languages are known to be \(\varepsilon \)-testable for the Hamming distance with \(O((\log k)/\varepsilon) \) non-adaptive queries on the input word \([1]\), that is queries that can all be made simultaneously. Those queries define a small random sketch of \(u_0 \) that can be sent to the tester for approximating \(R_{u_0} \). Since the Hamming distance is larger than the edit distance, those testers are also valid for the latter distance. Observe also that, for \(u, v \in \Lambda_Q \), we have \(bdist(u, v) \leq 2dist(\hat{u}, \hat{v}) \). The only remaining difficulty is to provide to the tester an appropriate sampling on \(\hat{u} \) while processing \(u \).

We will proceed similarly for the general case in Section 5, but then we will have to consider weighted words. Therefore we show how to sketch \(u_0 \) in that general case already. Indeed, the tester of \([1]\) was simplified for the edit distance in \([24]\), and later on adapted for weighted words in \([25]\). We consider here an alternative approach that we believe simpler, but slightly less efficient than the tester of \([25]\). In particular, we introduce in Appendix A a new criterion, \(\kappa \)-saturation, that permits to significantly simplify the correctness proof of the tester compared to the one in \([1]\) and in \([25]\).

Our tester for weighted regular languages is based on \(k \)-factor sampling on \(\hat{u} \) that we will simulate by an over-sampling built from a letter sampling on \(u \), that is according to the weights of the letters of \(u \) only. This new sampling can be easily performed given a stream of \(u \) using a standard reservoir sampling.

Definition 4.5. For a weighted word \(u \in \Lambda_Q \), denote by \(\mathcal{W}_k(u) \) the sampling over subwords of \(u \) constructed as follows (see Figure 3):

1. Sample a factor \(u[i, i + k] \) of \(u \) with probability \(|u(i)|/|u|\).
2. If \(u(i) \) is in the push sequence of \(u \), let \(u[j, j'] \) be the matching pop sequence of \(u[i, i + k] \), including the first \(k \) neutral symbols after the last pop symbol, if any. Add \(u[j' - 2k, j'] \) to the sample. \footnote{Some matching pops of \(u[i, i + k] \) may be ignored.}

Fact 4.6. There is a randomized streaming algorithm with memory \(O(k + \log n) \) which, given \(k \) and \(u \) as input, samples \(\mathcal{W}_k(u) \).

Proof. (1) can easily be obtained using reservoir sampling. If the sampling enters the pop sequence as the current candidate is part of the push sequence, then (2) can be done for that candidate, and forgotten if the sampling eventually picks another one. That eventual candidate will not be part of the push sequence, so we are done.

Lemma 4.7. Let \(u \) be a weighted word, and let \(k \) be such that \(4k \leq |u| \). Then \(4k \) independent copies of \(\mathcal{W}_k(u) \) over-sample the \(k \)-factor sampling on \(\hat{u} \).
Theorem 4.9. We want to compress. We use the following notion of approximation.

2^z for all $v \in \Lambda_Q$.

Definition 4.8. Let $R \subseteq Q^2$. Then $R(\varepsilon, \Sigma)$-approximates a balanced word $u \in (\Sigma_+ \cup \Sigma_- \cup \Sigma_Q)^*$ on A, if for all $p, q \in Q$: (1) $(p, q) \in R$ when $p \xrightarrow{u} q$; (2) u is (ε, Σ)-close to some word v satisfying $p \xrightarrow{v} q$ when $(p, q) \in R$.

Our tester is going to be robust enough in order to consider samples that do not exactly match the peaks we want to compress.

Proof. Denote by \hat{W} the k-factor sampling on \hat{u}, and by W some $4k$ independent copies of $W_k(u)$. For any k-factor v of \hat{u}, we will show that the probability that \hat{v} is sampled by \hat{W} is at most the probability that \hat{v} is a factor of an element sampled by W. For that, we distinguish the following three cases:

- \hat{v} contains only letters in $\{I\} \times \Sigma_Q$. Then the probability that \hat{v} is sampled by \hat{W} is equal to the probability that it is sampled by $W_k(u)$ in step (1).
- \hat{v} starts by a letter (a, b) in $\Sigma_+ \times \Sigma_-$ or by a letter in $\Sigma_Q \times \{I\}$. Then the probability that the $u(i)$ selected by $W_k(u)$ is a is at least half of the probability that $W_k(u)$ samples \hat{v}, as a (push, pop) pair in \hat{u} has weight 2 while a push has weight 1 in u. Because \hat{v} is a k-factor, it is contained in $(u[i, i + k], u[j' - 2k, j'])$. Hence, the probability that \hat{v} is sampled by \hat{W} is at most the probability that \hat{v} is a factor of an element sampled by $W_k(u)$ in step (2).
- \hat{v} starts by a letter in $\{I\} \times \Sigma_Q$ but also contains letters outside of this set. Since $|\hat{u}| \geq |u|/2$, we get

$$\Pr(W_k(u) \text{ samples } \hat{v}) \geq 1/|u| \quad \text{and} \quad \Pr(\hat{W} \text{ samples } \hat{v}) \leq k/|\hat{u}| \leq 2k/|u|.$$

Thus the probability that one of the $4k$ samples of W has the factor \hat{v} is at least $1 - (1 - 1/|u|)^{4k}$. As $1 - (1 - 1/|u|)^{4k} \geq 1 - \frac{1}{1 + 4k/|u|} = \frac{4k}{|u|+4k} \geq 2k/|u|$ when $|u| \geq 4k$, we conclude again that the probability that \hat{v} is sampled by \hat{W} is at most the probability that \hat{v} is a factor of an element sampled by $W_k(u)$ in step (2).

We can now give an analogue of the property tester for weighted regular languages in $L \cap \Lambda_Q$. For that, we use the following notion of approximation.

Definition 4.8. Let $R \subseteq Q^2$. Then $R(\varepsilon, \Sigma)$-approximates a balanced word $u \in (\Sigma_+ \cup \Sigma_- \cup \Sigma_Q)^*$ on A, if for all $p, q \in Q$: (1) $(p, q) \in R$ when $p \xrightarrow{u} q$; (2) u is (ε, Σ)-close to some word v satisfying $p \xrightarrow{v} q$ when $(p, q) \in R$.

Figure 3: The sampling $W_k(u)$ from Definition 4.5 sample is in red, dotted parts are for omitted neutral symbols.
outputs a set $R \subseteq Q \times Q$ that (ε, Σ)-approximates v on A with bounded error η.

Let v' be obtained from v by at most $\varepsilon|v|$ balanced deletions. Then, the conclusion is still true if the algorithm is given an independent $W_k(v')$ for each z_i instead, except that R now provides a $(3\varepsilon, \Sigma)$-approximation. Last, each sampling can be replaced by an over-sampling.

Proof. The argument uses as a subroutine the algorithm of Theorem A.2 for \widehat{A}, where A has been extended to ΣQ. Recall that A is Σ-closed and its Σ-diameter is also the Σ-diameter of \widehat{A}. Also observe that $\text{bdist}_2(u, v) \leq 2\text{dist}_2(\widehat{u}, \widehat{v})$.

By Lemma 4.7 the T independent samplings $W_k(v)$ provide us the sampling we need for Theorem A.2.

For the case where we do not have an exact k-factor sampling on v however, we need to compensate for the prefix of v of size $\varepsilon|v|$ that may not be included in the sampling. This introduces potentially an additional error of weight $2\varepsilon|v|$ on the approximation R.

As a consequence we get our first streaming tester for $L \cap \Lambda$.

Theorem 4.10. Let A be a VPA for L with $m \geq 2$ states, and let $\varepsilon, \eta > 0$. Then there is a streaming ε-tester for $L \cap \Lambda$ with one-sided error η and memory space $O((m^8 \log(1/\eta)/\varepsilon^2)(m^3/\varepsilon + \log n))$, where n is the input length.

Proof. We use Algorithm 2 where we replace the current factor u_0 by $T = 4kt$ independent samplings $W_k(u_0)$. We know that such samplings can be computed using memory space $O(k + \log n)$ by Fact 4.6.

By Proposition 4.4 the slicing automaton has $\overline{\Sigma}$-diameter d at most $2m^2$. Therefore, from Theorem 4.9, taking $t = 4\lfloor 4dm^3(\log 1/\eta)/\varepsilon \rfloor$ and $k = \lfloor 4dm/\varepsilon \rfloor$ leads to the desired conclusion.

5 Algorithm With Sketching

5.1 Sketching Using Suffix Samplings

We now describe the sketches used by our main algorithm. They are based on the generalization of the random sketches described in Section 4.3. Moreover, they rely on a notion of suffix samplings, that ensures a good letter sampling on each suffix of a data stream. Recall that the letter sampling on a weighted word u samples a random letter $u(i)$ (with its position) with probability $|u(i)|/|u|$.

Definition 5.1. Let u be a weighted word and let $\alpha > 1$. An α-suffix decomposition of u of size s (see Figure 4) is a sequence of suffixes $(u^i)_{1 \leq i \leq s}$ of u such that: $u^1 = u$, u^s is the last letter of u, and for all l, u^{l+1} is a strict suffix of u^l and if $|u^l| > \alpha|u^{l+1}|$ then $u^l = a \cdot u^{l+1}$ where a is a single letter.

An (α, t)-suffix sampling on u of size s is an α-suffix decomposition of u of size s with t letter samplings on each suffix of the decomposition.

An (α, t)-suffix sampling can be either concatenated to another one, or compressed as stated below.

Proposition 5.2. Given as input an (α, t)-suffix sampling D_u on u of size s_u and another one D_v on v of size s_v, there is an algorithm $\text{Concatenate}(D_u, D_v)$ computing an (α, t)-suffix sampling on the concatenated word $u \cdot v$ of size at most $s_u + s_v$ in time $O(s_u)$.

Moreover, given as input an (α, t)-suffix sampling D_u on u of size s_u, there is also an algorithm $\text{Simplify}(D_u)$ computing an (α, t)-suffix sampling on u of size at most $2\lceil \log |u|/\log \alpha \rceil$ in time $O(s_u)$.

Proof. We sketch those procedures. They are fully described in Algorithm 3. For Concatenate, it suffices to do the following. For each suffix u^l of D_u: (1) replace u^l by $u^l \cdot v$; and (2) replace the i-th sampling of u^l by the i-th sampling of v with probability $|v|/(|u| + |v|)$, for $i = 1, \ldots, t$.

For Simplify, do the following. For each suffix u^l of D_u, from $l = s_u$ (the smallest one) to $l = 1$ (the largest one): (1) replace all suffixes $u^{l-1}, u^{l-2}, \ldots, u^m$ by the largest suffix u^m such that $|u^m| \leq \alpha|u^l|$; and (2) suppress all samples from deleted suffixes.
Using this proposition, one can easily design a streaming algorithm constructing online a suffix decomposition of polylogarithmic size. Starting with an empty suffix-sampling \(S \), simply concatenate \(S \) with the next processed letter \(a \) of the stream, and then simplify it. We formalize this, together with functions Concatenate and Simplify, in Algorithm 3.

Lemma 5.3. Given a weighted word \(u \) as a data stream and a parameter \(\alpha > 1 \), Online-Suffix-Sampling in Algorithm 3 constructs an \(\alpha \)-suffix sampling on \(u \) of size at most \(1 + 2 \lceil \log |u| / \log \alpha \rceil \).

One can then slightly modify Algorithm 3 so that within each suffix of the decomposition it simulates \(t \) letter samplings in order to construct an \((\alpha, t) \)-suffix sampling.

5.2 The Algorithm

Our final algorithm is a modification of Algorithm 2: in particular it will approximate relations \(R_v \) (in the spirit of Definition 4.8), instead of exactly computing them. Therefore, it may fail at various steps and produce relations that do not correspond to any word. But still, it will produce relations \(R \) such that for any \((p, q) \in R \), there is a balanced word \(u \in \Sigma^* \) with \(p \cdot u \rightarrow q \), that is \(R \in \Sigma Q \).

To mimic Algorithm 2 we need to encode (compactly) each unfinished peak \(v \) of the stack and \(u_0 \); for that we use the data structure described in Algorithm 4. Our final algorithm, Algorithm 5, is simply Algorithm 2 with this new data structure and corresponding adapted operations, where \(\epsilon' = \epsilon / (6 \log n) \).

We now detail the methods, where we implicitly assume that each letter processed by the algorithm comes with its respective height and (exact or approximate) weight. They use functions Concatenate and Simplify described in Proposition 5.2 (and in details in Algorithm 3), while adapting them.

In the next section, we show that the samplings \(S_v \) are close enough to an \((1 + \epsilon') \)-suffix sampling on \(u \). This let us build an over-sampling of an \((1 + \epsilon') \)-suffix sampling. We also show that it only requires a polylogarithmic number of samples. Then, we explain how to recursively apply the tester from Theorem 4.9 (with \(\epsilon' \)) in order to obtain the compressions at line 14 and 20 while keeping a cumulative error below \(\epsilon \). We now state our main result whose proof relies on Lemmas 5.6 and 5.8.

Theorem 5.4. Let \(A \) be a VPA for \(L \) with \(m \geq 2 \) states, and let \(\epsilon, \eta > 0 \). Then there is an \(\epsilon \)-streaming algorithm for \(L \) with one-sided error \(\eta \) and memory space \(O(m^5 2^{3m^2} (\log^6 n) (\log 1/\eta) / \epsilon^4) \), where \(n \) is the input length.

Proof. We use Algorithm 5 which uses the tester from Theorem 4.9 for the compressions at lines 14 and 20 of Algorithm 2. We know from Lemma 5.8 and Lemma 4.7 that it is enough to choose \(\epsilon' = \epsilon / (6 \log n) \), \(\eta' = \eta / n \), and Fact 5.5 gives us \(d = 2^{m^2} \). Therefore we need \(T = 2304 m^{14} 2^{2m^2} (\log^2 n) (\log 1/\eta) / \epsilon^2 \) independent \(k \)-factor samplings of \(u \) augmented by one, with \(k = 24 m^{2m^2} (\log n) / \epsilon \). Lemma 5.6 tells us...
Algorithm 3: α-Suffix Sampling

Data structure:
// D, D_u, D_v, D_{temp} stacks of items (σ, b), one for each suffix // of the decomposition where σ encodes the weight and b the t samples

Code:

Concatenate(D_u, D_v)
$D \leftarrow D_u$
$(c_1, \ldots, c_t) \leftarrow$ all t samples on v (the largest suffix in D_v)
For each $(\sigma, b) \in S$ where $b = (b_1, \ldots, b_t)$
 Replace each b_i by c_i with probability $|v|/(|v| + \sigma)$
 Replace (σ, b) by $(\sigma + |v|, b)$
Append D_v to the top of D
Return D

Simplify(D_u)
$D \leftarrow D_u$
For each $(\sigma, b) \in D$ from top to bottom
 $D_{temp} \leftarrow$ elements $(\tau, c) \in D$ below (σ, b) with $\tau \leq \alpha \sigma$
 Replace D_{temp} in D by the bottom most element of D_{temp}
Return D

Online-Suffix-Sampling
$D \leftarrow \emptyset$
While u not finished
 $a \leftarrow$ Next(u)
 Concatenate(D, a) where a encodes the suffix sampling $(|a|, (a, \ldots, a))$
 Simplify(D)
Return D

Algorithm 4: Sketch for an unfinished peak

Parameters: real $\varepsilon' > 0$, integer $T \geq 1$

Data structure for a weighted word $v \in$ Prefix(Λ_Q)
 Weights of v and of its first letter $v(1)$
 Height of $v(1)$
 Boolean indicating whether v contains a pop symbol
$(1 + \varepsilon')$-suffix decomposition v', \ldots, v^* of v encoded by
 Estimates $|v'|_{low}$ and $|v'|_{high}$ of $|v'|$
 T independent samplings S_{vl} on v' // see details below
 with corresponding weights and heights
that using twice as many samples from our algorithm, that is for each \(S_{v,i} \), is enough in order to over-sample them.

Because of the sampling variant we use, the size of each decomposition is at most \(96(\log^2 n)/\varepsilon + O(\log n) \) by Lemma 5.6. The samplings in each element of the decomposition use memory space \(k \), and there are \(2T \) of them. Furthermore, each element of the stack has its own sketch, and the stack is of height at most \(\log n \). Multiplying all those together gives us the upper bound on the memory space used by Algorithm 5.

5.3 Final Analysis

As Algorithm 5 may fail at various steps, the relations it considers may not correspond to any word. However, each relation \(R \) that it produces is still in \(\Sigma_Q \). Furthermore, the slicing automaton \(\bar{A} \) that we define over \(\hat{\Sigma}_Q \) is \(\hat{\Sigma} \)-closed. Fact 5.5 below bounds the \(\hat{\Sigma} \)-diameter of \(\bar{A} \) (which is equal to the \(\Sigma \)-diameter of \(A \)) by \(2m^2 \).

Note that for simpler languages, as those coming from a DTD, this bound can be lowered to \(m \).

Fact 5.5. Let \(A \) be a VPA with \(m \) states. Then the \(\Sigma \)-diameter of \(A \) is at most \(2m^2 \).

Proof. A similar statement is well known for any context-free grammar given in Chomsky normal form. Let \(N \) be the number of non-terminal symbols used in the grammar. If the grammar produces one balanced word from some non-terminal symbol, then it can also produce one whose length is at most \(2^N \) from the same non-terminal symbol. This is proved using a pumping argument on the derivation tree. We refer the reader to the textbook [17].

Now, in the setting of visibly pushdown languages one needs to transform \(A \) into a context-free grammar in Chomsky normal form. For that, consider first an intermediate grammar whose non-terminal symbols are all the \(X_{pq} \) where \(p \) and \(q \) are states from \(A \) such that \(p \) is neither \(q \) nor \(q_f \), hence our initial symbol will be those of the form \(X_{q_0q_f} \) where \(q_0 \) is an initial state and \(q_f \) is a final state. The rewriting rules are the following ones:

- \(X_{pp} \rightarrow \varepsilon \)
• $X_{pq} \rightarrow X_{pr}X_{rq}$ for any state r

• $X_{pq} \rightarrow aX_{p'q}b$ whenever one has in the automaton $p \xrightarrow{a}(p', \text{push}(\gamma))$ and $(q', \text{pop}(\gamma)) \xrightarrow{a} q$ for some push symbol a, pop symbol b and stack letter γ.

• $X_{pq} \rightarrow aX_{p'q}$ whenever one has in the automaton $p \xrightarrow{a} p'$ for some neutral symbol a.

• $X_{pq} \rightarrow X_{pq'}a$ whenever one has in the automaton $q' \xrightarrow{a} q$ for some neutral symbol a.

Obviously, this grammar generates language $L(A)$.

As we are here interested only in the length of the balanced words produced by the grammar, we can replace any terminal symbol by a dummy symbol \sharp. Now, once this is done we can put the grammar into Chomsky normal form by using an extra non-terminal symbol (call it X_{s} as it is used to produce the \sharp terminal). As we have $m^2 + 1$ non-terminal in the resulting grammar we are almost done. To get to the tight bound announced in the statement, one simply removes the extra non-terminal symbol X_{s} and reasons on the length of the derivation directly.

We first show that the decomposition, weights and sampling we maintain are close enough to an $(1 + \varepsilon')$-suffix sampling with the correct weights. Recall that $\varepsilon' = \varepsilon/(6 \log n)$.

Lemma 5.6 (Stability lemma). Let v, W be an unfinished peak with a sampling maintained by the algorithm. Then $W \otimes W$ over-samples an $(1 + \varepsilon')$-suffix sampling on v, and W has size at most $144(|v|)(\log n)/\varepsilon + O(\log n)$.

Before proving the stability lemma, we first prove that Algorithm5 maintains a structure that is not too far from $(1 + \varepsilon')$-suffix sampling.

Proposition 5.7. Let v be an unfinished peak, and let v^1, \ldots, v^m be the suffix decomposition maintained by the algorithm. The following is true:

1. v^1, \ldots, v^m is a valid $(1 + \varepsilon')$-suffix decomposition of v.

2. For each letter a of every v^i, and for every sample s, $\Pr[|S_{\otimes} = a| \geq |a|/|v^i|_{hi\text{gh}}$.

3. Each v^i satisfies $|v^i|_{hi\text{gh}} - |v^i|_{lo\text{w}} \leq 2\varepsilon'|v^i|_{lo\text{w}}/3$.

Proof. Property (1) is guaranteed by the (modified) Simplify function used in Algorithm5 which preserves even more suffixes than the original algorithm.

Properties (2) and (3) are proven by induction on the last letter read by Algorithm5. Both are true when no symbol has been read yet.

We start with property (2). Let us first consider the case where we use bullet-concatenation after the last letter was read. Then for all v^i, the (modified) Concatenate function ensures S_{\otimes} becomes a with probability $1/|v^i|_{hi\text{gh}}$. Otherwise, S_{\otimes} remains unchanged and by induction $S_{\otimes} = b$ with probability at least $(1 - 1/|v^i|_{hi\text{gh}})|b|/(|v^i|_{hi\text{gh}} - 1) = |b|/|v^i|_{hi\text{gh}}$ for each other letter b of v^i.

The other case is that some R_{v_2} is computed at line 20 of Algorithm2 in this case, v is equal to some $(v_1 \cdot R_{v_2}) \cdot u_0$ concatenation. For each suffix $(v_1 \cdot v_2)$ in $D_{v_1 \cdot v_2}$ containing R_{v_2}, we proceed in the same way with the Concatenate function, replacing any sample in v_2 with R_{v_2}. Now consider v_2 the largest suffix of $D_{v_1 \cdot v_2}$ contained in v_2, and $v' = R_{v_2} \cdot u_0$. We use the fact that Concatenate looks at $|v'|_{hi\text{gh}} \geq |u_0| + |R_{v_2}|$ for replacing samples. This means that we choose R_{v_2} as a sample for v' with probability $(|v'|_{hi\text{gh}} - |u_0|)/|v'|_{hi\text{gh}} \geq |R_{v_2}|/|v'|_{hi\text{gh}}$, and therefore the property is verified.

We now prove property (3). If v^i has just been created, it contains only one letter of weight 1, and obviously $|v^i|_{lo\text{w}} = |v^i|_{hi\text{gh}} = |v^i|$. In addition, unless some R_{v_2} has been computed at line 20 of Algorithm2 when the last letter was read, then $|v^i|$ is only augmented by some exactly known $|a|$ or $|u_0|$ compared to the previous step. Therefore the difference $|v^i|_{hi\text{gh}} - |v^i|_{lo\text{w}}$ does not change, and by induction it remains smaller than $2\varepsilon'|v^i|_{lo\text{w}}/3$ which can only increase. Now consider R_{v_2} computed at line 20 and $v^i = R_{v_2} \cdot u_0$.\hfill\qedsymbol
We again consider v^i_j for the largest suffix in the decomposition of $v_1 \cdot v_2$ that is contained within v_2, as used in Algorithm 5 and v^i_{2-1} is the suffix immediately preceding v^i_2 in that decomposition.

If $|v^i_{2-1}|_{\text{high}} > (1 + \varepsilon') |v^i_{2}|_{\text{low}}$, then from the \texttt{Simplify} function, the difference between those two suffixes cannot be more than one letter, and then $v^i_2 = v_2$. Therefore, we have $|R_{v_2} \cdot u_0|_{\text{high}} = |v^i_{2}|_{\text{high}} + |u_0|$ and $|R_{v_2} \cdot u_0|_{\text{low}} = |v^i_{2}|_{\text{low}} + |u_0|$. We conclude by induction on $|v^i_2|$.

We end with the case $|v^i_{2-1}|_{\text{high}} \leq (1 + \varepsilon') |v^i_{2}|_{\text{low}}$. By definition, $|R_{v_2} \cdot u_0|_{\text{high}} = |v^i_{2-1}|_{\text{high}} + |u_0|$ and $|R_{v_2} \cdot u_0|_{\text{low}} = |v^i_{2-1}|_{\text{low}} + |u_0|$. Therefore, the difference $|v^i|_{\text{high}} - |v^i|_{\text{low}}$ is at most $\varepsilon' |v^i_{2}|_{\text{low}}$. Since the test at line 19 of Algorithm 2 (modified by Algorithm 5) was satisfied, we know that $|v^i_{2}|_{\text{low}} \leq 2 |u_0|$, and finally $\varepsilon' |v^i_{2}|_{\text{low}} \leq 2 \varepsilon' (|v^i_{2}|_{\text{low}} + |u_0|)/3 \leq 2 \varepsilon' |v^i|_{\text{low}}/3$, which concludes the proof.

We can now prove the stability lemma.

\textbf{Proof of Lemma 5.6} The first property is a direct consequence of property (1) and (2) in Proposition 5.7, as in the proof of Lemma 4.7.

The second is a consequence of the (modified) \texttt{Simplify} used in Algorithm 5. D_{temp} is defined as the set of suffixes below with $m < l$ such that $|v^m|_{\text{high}} \leq (1 + \varepsilon') |v^l|_{\text{low}}$. Because \texttt{Simplify} deletes all but one elements from D_{temp}, it follows that $|v^{l-2}|_{\text{high}} > (1 + \varepsilon') |v^l|_{\text{low}}$. Now, from property (3) of Proposition 5.7 we have that $|v^l|_{\text{low}} \geq |v^l|_{\text{high}} - 2\varepsilon' |v^l|_{\text{low}}/3 \geq (1 - 2\varepsilon'/3) |v^l|_{\text{high}}$. Therefore we have that $|v^{l-2}|_{\text{high}} > (1 + \varepsilon')(1 - 2\varepsilon'/3) |v^l|_{\text{high}}$.

By successive applications, we obtain $|v^{l-2}|_{\text{high}} > (1 + \varepsilon')^3 (1 - 2\varepsilon'/3)^3 |v^{l}|_{\text{high}}$. Now, as $|v^{l}|_{\text{high}} > |v^{l}|$ and $|v^{l}| \geq |v^{l}|_{\text{low}} \geq (1 - 2\varepsilon'/3) |v^{l}|_{\text{high}}$, we have: $|v^{l-6}|/(1 - 2\varepsilon'/3) > (1 + \varepsilon')^3 (1 - 2\varepsilon'/3)^3 |v^{l}|$. Equivalently, $|v^{l-6}| > (1 + \varepsilon')^3 (1 - 2\varepsilon'/3)^3 |v^{l}|$.

Thus, the size of the suffix decomposition is at most $6 \log (1 + \varepsilon')^3 (1 - 2\varepsilon'/3) n |v| \leq 6 \log |v|/ \log (1 + \varepsilon'/3 + O(\varepsilon^2)) \leq 144 (\log |v|)(\log n)/\varepsilon + O(\log(n))$. \hfill \Box

Using the tester from Theorem 4.9 for computing each R, we can then prove the robustness lemma.

\textbf{Lemma 5.8} (Robustness lemma). Let A a VPA recognizing L and let $u \in \Sigma^n$. Let R_{final} be the final value of R_{temp} in the Algorithm 5 using the tester from Theorem 4.9 at lines 17 and 20 of Algorithm 2. If $u \in L$, then $R_{\text{final}} \in L$; and if $R_{\text{final}} \in L$, then $b\text{dist}_A(u, L) \leq \varepsilon n$ with probability at least $1 - \eta$.

\textbf{Proof}. One way is easy. A direct inspection reveals that each substitution of a factor w by a relation R enlarges the set of possible w-transitions. Therefore $R_{\text{final}} \in L$ when $u \in L$.

For the other way, consider some word u such that $R_{\text{final}} \in L$. Since the tester of Theorem 4.9 has bounded error $\eta' = \eta/n$ and was called at most than n times, none of the calls fails with probability at least $1 - \eta$. From now on we assume that we are in this situation.

Let $h = \text{Depth}(R_{\text{final}})$. We will inductively construct sequences $u_0 = u, \ldots, u_h = R_{\text{final}}$ and $v_h = R_{\text{final}}, \ldots, v_0$ such that for every $0 \leq l \leq h, u_l, v_l \in (\Sigma_+ \cup \Sigma_- \cup \Sigma_Q)^* \setminus \text{bdist}_A(u_l, v_l) \leq 3(h - l)\varepsilon' |u_l|$ and $v_l \in L$. Furthermore, each word u_l will be the word u with some substitutions of factors by relations R computed by the tester. Therefore, $\text{Depth}(u_l)$ is well defined and will satisfy $\text{Depth}(u_l) = l$. This will conclude the proof using that $\text{Depth}(R_{\text{final}}) \leq \log_3/2 n$ from Lemma 3.4. This will give us $\text{bdist}_A(u, v_0) \leq 6\varepsilon' n \log n \leq \varepsilon n$.

We first define the sequence $(u_l)_l$ (see Figure 5 for an illustration). Starting from $u_0 = u$, let u_{l+1} be the word u_l where some factors in $A Q$ have been replaced by a $(3\varepsilon', \Sigma)$-approximation in Σ_Q. These correspond to all the approximations eventually performed by the algorithm that did not involve a symbol already in Σ_Q. Observe that after this collapse, the symbol is still a $(3\varepsilon', \Sigma)$-approximation. In particular, $u_h = R_{\text{final}}$, $u_l \in (\Sigma_+ \cup \Sigma_- \cup \Sigma_Q)^*$ and $\text{Depth}(u_l) = l$ by construction.

We now define the sequence $(v_l)_l$ such that $v_l \in L$. Each letter of v_l will be annotated by an accepting run of states for A. Set $v_h = R_{\text{final}}$ with an accepting run from p_m to q_f for some $(p_m, q_f) \in R_{\text{final}} \cap$
Figure 5: Constructing the words u_0, u_1 and u_2 as in Lemma 5.8 where $\text{Depth}(R_{\text{final}}) = 2$

(Qin \times Qf). Consider now some level $l < h$. Then v_l is simply v_{l+1} where some letters $R \in \Sigma_Q$ in common with u_{l+1} are replaced by some factors in $w \in (\Lambda_Q)^*$ as explained in the next paragraph. Those letters are the ones that are present in u_l but not u_{l+1}, and are still present in v_{l+1} (i.e. they have not been further approximated down the chain from u_{l+1} to u_h, or deleted by edit operations moving up from v_h to v_{l+1}).

Let $w \in (\Lambda_Q)^*$ be one of those factors and $R \in \Sigma_Q$ its respective $(3\varepsilon', \Sigma)$-approximation. By hypothesis R is still in v_{l+1} and corresponds to a transition (p, q) of the accepting run of v_{l+1}. We replace R by a factor w' such that $p \xrightarrow{w'} q$ and $\text{bdist}_\Sigma(w, w') \leq 3\varepsilon'|w|$, and annotate w' accordingly. By construction, the resulting word v_l satisfies $v_l \in L$ and $\text{bdist}_\Sigma(u_l, v_l) \leq 3(h - l)\varepsilon'|u_l|$. \hfill \qed

References

A A Tester for Weighted Regular Languages

We design a non-adaptive property tester for weighted regular languages that serves as a basic routine of our main algorithm. Property testing of regular languages was first considered in [1] for the Hamming distance and we adapt this tester to weighted words for the simple case of edit distance. Such a property tester has been already constructed first for edit distance in [24], and later on for weighted words in [25], with an approach based on [1].

In this work, we take an alternative approach that we believe simpler, but slightly less efficient than the tester of [25]. We consider the graph of components of the automaton and focus on paths in this graph; we however introduce a new criterion, κ-saturation (for some parameter 0 < κ ≤ 1), that permits to significantly simplify the correctness proof of the tester compared to the one in [1] and in [25]. In particular Lemma A.5 permits to design a non-adaptive tester for L and also to approximate the action of u on A as follows.

Definition A.1. Let $\Sigma' \subseteq \Sigma$ and $R \subseteq Q \times Q$. Then $R (\varepsilon, \Sigma')$-approximates a word u on A (or simply ε-approximates when $\Sigma' = \Sigma$), if for all $p, q \in Q$: (1) $(p, q) \in R$ when $u \rightarrow^p q$; (2) u is (ε, Σ')-close to some word v satisfying $\rightarrow^u q$ when $(p, q) \in R$.

Our main contribution is the following one.

Theorem A.2. Let A be an automaton with $m \geq 2$ states and diameter $d \geq 2$. Let $\varepsilon > 0$, $\eta > 0$, $t \geq 2 |2dn^{3}(\log 1/\eta)/\varepsilon|$ and $k \geq 2 \eta n^{1/\varepsilon}$. There is an algorithm that, given t random factors of v_{1}, \ldots, v_{t} of some weighted word u, such that each v_{i} comes from an independent k-factor sampling on u, outputs a set $R \subseteq Q \times Q$ that ε-approximates u on A with one-sided error η.

This is still true with any combination of the following generalization:

- The algorithm is given an over-sampling of each of factors v_{i} instead.
- When A is Σ'-closed, and d is the Σ'-diameter of A, then R also (ε, Σ')-approximates u on A.

The rest of this section is devoted to the proof of Theorem A.2 and therefore we fix a regular language L recognized by some finite state automaton A on Σ with a set of states Q of size $m \geq 2$, and a diameter $d \geq 2$. Define the directed graph G_{A} on vertex set Q whose edges are pairs (p, q) when $u \rightarrow^p q$ for some $a \in \Sigma$.

A component C of G_{A} is a maximal subset (w.r.t. inclusion) of vertices of G_{A} such that for every p_{1}, p_{2} in C one has a path in G_{A} from p_{1} to p_{2}. The graph of components G_{A} of G_{A} describes the transition relation of A on components of G_{A}: its vertices are the components and there is a directed edge (C_{1}, C_{2}) if there is an edge of G_{A} from a vertex in C_{1} toward a vertex in C_{2}.

Definition A.3. Let C be a component of G_{A}, let $\Pi = (C_{1}, \ldots, C_{l})$ be a path in G_{A}.

- A word u is C-compatible if there are states $p, q \in C$ such that $u \rightarrow^{p} q$.
- A word u is Π-compatible if u can be partitioned into $u = v_{1}a_{1}v_{2} \ldots a_{l-1}v_{l}$ such that $p_{i} \rightarrow^{p_{i}} q_{i}$ and $q_{i} \rightarrow^{a_{i}} p_{i+1}$, where v_{i} is a factor, a_{i} a letter, and $p_{i}, q_{i} \in C_{i}$.
- A sequence of factors (v_{1}, \ldots, v_{t}) of a word u is Π-compatible if they are factors of another Π-compatible word with the same relative order and same overlap.

Note that the above properties are easy to check. Indeed, C-compatibility is a reachability property while the two others easily follow from C-compatibility checking.

We now give a criterion that characterizes those words u that are ε-far to every Π-compatible word. Note that it will not be used in the tester that we design in Theorem A.2 for weighted regular languages, but only in Lemma A.5 which is the key tool to prove its correctness.

For a component C and a C-incompatible word v, let $v_{1} \cdot a$ be the shortest C-incompatible prefix of v. We define and denote the C-cut of v as $v = v_{1} \cdot a \cdot v_{2}$. When v_{1} is not the empty word, we say that v_{1} is a C-factor and a is a C-separator for v_{1}, otherwise we say that a is a strong C-separator.
Fix a path \(\Pi = (C_1, \ldots, C_l) \) in \(\mathcal{G}_A \), a parameter \(0 < \kappa \leq 1 \), and consider a weighted word \(u \). We define a natural partition of \(u \) according to \(\Pi \), that we call the \(\Pi \)-partition of \(u \). For this, start with the first component \(C = C_1 \), and consider the \(C_1 \)-cut \(u_1 \cdot a \cdot u_2 \) of \(u \). Next, we inductively continue this process with either the suffix \(a \cdot u_2 \) if \(a \) is a \(C_1 \)-separator, or the suffix \(u_2 \) if \(a \) is a strong \(C_1 \)-separator. Based on some criterion defined below we will move from the current component \(C_i \) to a next component \(C_j \) of \(\Pi \), where most often \(j = i + 1 \), until the full word \(u \) is processed. If we reach \(j = l + 1 \), we say that \(u \) \(\kappa \)-saturates \(\Pi \) and the process stops. We now explain how we move on in \(\Pi \). We stay within \(C_i \) as long as both the number of \(C_i \)-factors and the total weight of strong \(C_i \)-separators are at most \(\kappa |u| \) each. Then, we continue the decomposition with some fresh counting and using a new component \(C_j \) selected as follows. One sets \(j = i + 1 \) except when the transition is the consequence of a strong \(C_i \)-separator \(a \) of weight greater than \(\kappa |u| \), that we call a heavy strong separator. In that case only, one lets \(j \geq i + 1 \), if exists, to be the minimal integer such that \(q \xrightarrow{a} q' \) with \(q \in C_{j-1} \cup C_j \) and \(q' \in C_j \), and \(j = l + 1 \) otherwise.

Proposition A.4. Let \(0 < \kappa \leq \varepsilon/(2dl) \). If \(u \) is \(\varepsilon \)-far to every \(\Pi \)-compatible word, then \(u \) \(\kappa \)-saturates \(\Pi \).

Proof. The proof is by contraposition. For this we assume that \(u \) does not \(\kappa \)-saturate \(\Pi \) and we correct \(u \) to a \(\Pi \)-compatible word as follows.

First, we delete each strong separator of weight less that \(\kappa |u| \). Their total weight is at most \(2l\kappa |u| \). Because \(u \) does not saturate, each strong separator of weight larger than \(\kappa |u| \) fits in the \(\Pi \)-partition, and does not need to be deleted.

We now have a sequence of consecutive \(C_i \)-factors and of heavy strong \(C_i \)-separators, for some \(1 \leq i \leq l \), in an order compatible with \(\Pi \). However, the word is not yet compatible with \(\Pi \) since each factor may end with a state different than the first state of the next factor. However, for each such pair there is a path connecting them. We can therefore bridge all factors by inserting a factor of weight at most \(d \), the diameter of \(A \).

The resulting word is then \(\Pi \)-compatible by construction, and the total cost of the edit operations is at most \((2l + dl)\kappa |u| \leq \varepsilon |u| \), since \(d \geq 2 \).

For a weighted word \(u \), we remind that the \(k \)-factor sampling on \(u \) is defined in Section 2. The following lemma is the key lemma for the tester for weighted regular languages.

Lemma A.5. Let \(u \) be a weighted word, let \(\Pi = C_1 \ldots C_l \) be a path in \(\mathcal{G}_A \). Let \(0 < \kappa \leq \varepsilon/(2dl) \) and let \(\mathcal{W} \) denote the \(\lceil 2/\kappa \rceil \)-factor sampling on \(u \). Then for every \(0 < \eta < 1 \) and \(t \geq 2l(\log 1/\eta)/\kappa \), the probability \(P(u, \Pi) = \Pr_{(v_1, \ldots, v_l) \sim \mathcal{W}^\varepsilon}[(v_1, \ldots, v_l) \text{ is } \Pi\text{-compatible}] \) satisfies \(P(u, \Pi) = 1 \) when \(u \) is \(\Pi \)-compatible, and \(P(u, \Pi) \leq \eta \) when \(u \) is \(\varepsilon \)-far from being \(\Pi \)-compatible.

Proof. The first part of the theorem is immediate. For the second part, assume that \(u \) is \(\varepsilon \)-far from any \(\Pi \)-compatible word. For simplicity we assume that \(2/\kappa \) and \(\kappa |u|/2 \) are integers. We first partition \(u \) according to \(\Pi \) and \(\kappa \). Then, Proposition A.4 tells us that \(u \) \(\kappa \)-saturates \(\Pi \). For each \(C_i \), we have three possible cases.

1. There are \(\kappa |u| \) disjoint \(C_i \)-factors in \(u \). Since they have total weight at most \(|u| \), there are at least \(\kappa |u|/2 \) of them whose weight is at most \(2/\kappa \) each. Since each letter has weight at least 1, the total weight of the first letters of each of those factors is at least \(\kappa |u|/2 \). Therefore one of them together with its \(C_i \)-separator is a sub-factor of some sampled factor \(v_j \) with probability at least \(1 - (1 - \kappa/2)^t \).
2. The total weight of strong \(C_i \)-separators of \(u \) is at least \(\kappa |u| \). Therefore one of them is the first letter of some sampled factor \(v_j \) with probability at least \(1 - (1 - \kappa)^t \).
3. There is not any \(C_i \)-factor and any \(C_i \)-separator of \(u \), because of a strong \(C_i \)-separator of weight greater than \(\kappa |u| \), for some \(i' < i \). This separator is the first letter of some sampled factor \(v_j \) with probability at least \(1 - (1 - \kappa)^t \).
By union bound, the probability that one of the above mentioned samples fails to occurs is at most \(l(1 - \kappa)^t \leq \eta \). We assume now that they all occur, and we show that they form a \(\Pi \)-incompatible sequence. For each \(i \), let \(w_i \) be the above described sub-factors of those samples. Each \(w_i \) appears in \(u \) after \(w_{i-1} \) or, in the case of a strong separator of heavy weight, \(w_i = w_{i-1} \). Moreover each factor \(w_i \) which is distinct from \(w_{i-1} \) forces next factors to start from some component \(C_i' \) with \(i' > i \). As a result \((w_1, \ldots, w_l) \) is not \(\Pi \)-compatible, and as a consequence \((v_1, \ldots, v_t) \) neither, so the result.

We can now conclude with the proof of Theorem A.2.

Proof of Theorem A.2 The algorithm is very simple:

1. Set \(R = \emptyset \)
2. For all states \(p, q \in Q \)
 (a) Check if factors \(v_1, \ldots, v_t \) could come from a word \(v \) such that \(p \xrightarrow{v} q \)
 // Step (a) is done using the graph \(G_A \) of connected components of \(A \)
 (b) If yes, then add \((p, q) \) to \(R \)
3. Return \(R \)

It is clear that this \(R \) contains every \((p, q) \) such that \(p \xrightarrow{u} q \). Now for the converse, we will show that, with bounded error \(\eta \), the output set \(R \) only contains pairs \((p, q) \) such that there exists a path \(\Pi = C_1, \ldots, C_l \) on \(G_A \) such that \(p \in C_1 \), \(q \in C_l \), and \(u \) is \(\Pi \)-compatible. In that case, there is an \(\varepsilon \)-close word \(v \) satisfying \(p \xrightarrow{v} q \).

Indeed, using \(l \leq m \) and Lemma A.5 with \(t, \kappa = \varepsilon/(2dm) \) and \(\eta' = \eta/2^m \), the samples satisfy \(P(u, \Pi) \leq \eta/2^m \), when \(u \) is not \(\Pi \)-compatible. Therefore, we can conclude using a union bound argument on all possible paths on \(G_A \), which have cardinality at most \(2^m \), that, with probability at least \(1 - \eta \), there is no \(\Pi \) such that the samples are \(\Pi \)-compatible but \(u \) is not \(\Pi \)-compatible.

The structure of the tester is such that it has only more chances to reject a word that is not \(\Pi \)-compatible given an over-sampling as input instead. Words \(u \) such that \(p \xrightarrow{u} q \) will always be accepted no matter the amount and length of samples. Therefore the theorem still holds with an over sampling.

Last, \(A \) being \(\Sigma \)-closed ensures that the notions of compatibility and saturation remain unchanged. Using the \(\Sigma' \)-diameter in Lemma A.5 (and therefore in Proposition A.4) let us use bridges in \(\Sigma'^* \) instead of \(\Sigma^* \) with weight at most \(d \).