Synthesis, characterization and application of 1-(2-cyanoethyl)-3-(3-methoxypropane)imidazolium bromide for CO₂ capture

Shantini Ravichandar^{1,*}, Cecilia Devi Wilfred¹, Chong Fai Kait¹, and Ng Zhung Gia¹

¹Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi Petronas (UTP), Seri Iskandar, 32610, Perak, Malaysia.

Abstract. Amine scrubbing is dominating in carbon dioxide (CO₂) capturing technology because of its high affinity towards CO₂. However, the drawbacks of amine solvents are its high corrosivity and volatility. Ionic liquids (ILs) have gained a lot of attention in recent years for CO₂ capturing and have been proposed to be one of the promising alternative to the conventional solvents. The objective of this research is to design a new imidazolium based ether-nitrile functionalized ionic liquid of low viscosity to improve CO₂ capturing. The molecular structure of the ionic liquid were confirmed by ¹H NMR, ¹³C NMR and FTIR. The thermal properties; glass transition temperature, thermal decomposition temperature, and their physical properties; water content and density were determined. The solubility of CO₂ in the synthesized ionic liquid was measured using pressure drop method. They showed high thermal stability above 200°C and the glass transition temperature was -49.80°C. The CO₂ sorption in the newly synthesized IL was 0.08, 0.12, 0.29, 1.01, 2.30 mol of CO₂/mol of IL at pressures 1, 5, 10, 15 and 20 bar respectively.

1 Introduction

Carbon dioxide has become abundant in the atmosphere due to the extensive burning of fossil fuels. The CO_2 capturing technology is now being the main focus among researchers battling against the dramatic climate change. At present, amine-based solvents are widely used in power plants to capture CO_2 [1]. However, the limitation of amine solvents is that they are highly corrosive and volatile, which is unfriendly to the environment [2]. Besides, they acquire large enthalpy of reaction and amine solvents are also sensitive to degradation in the presence of oxygen [3].

Ionic liquids (ILs) are organic salts which melts below 100°C and are liquid form at room temperature [4]. In light of these factors, ILs have been studied intensively as a potential replacement for amine solvents. This is due to the distinctive characteristics of ILs, i.e. low volatility, high chemical and thermal stability. Furthermore, the added characteristic of ILs is the ability of designing the IL according to the specified task of application.

Imidazolium-based ILs are mostly used in CO_2 solubility due to the presence of acidic hydrogen in its ring structure. CO_2 can act as both Lewis acid and Lewis base. The CO_2 solvation is initiated by some carboxylation reaction at the C2 position of the imidazolium ring [5]. Besides, the ether functionality helps in CO_2 capture whereby the lone pair of electrons present on the oxygen atom takes part in nucleophilic attack with the carbon atom on CO_2 [4]. In a recent

article, ILs with ether functionality has the ability to decrease the viscosity of ILs whereby the alkoxy chain is related to the high rotational flexibility and increases the total free volume [6, 7]. Anions play a vital role in CO_2 dissolution [8]. The common anions of interest are bromide [Br⁻], tetrafluoroborate [BF₄⁻], bis(trifluoromethylsulfonyl)imide [Tf₂N⁻], hexafluoroposphate [PF₆⁻] and methide. Carbon dioxide solubility is increased as the quantity of fluoroalkyl groups present in anions increased [9].

In the present research, ether-nitrile functionalized imidazolium-based

1-(2-cyanoethyl)-3-(3-methoxypropane)imidazolium bromide, [MOP-im C_2CN][Br] was synthesized, characterized and tested for the possible application on CO_2 capturing.

2 Methodology

2.1 Materials

Chemicals such as imidazole and 1-bromo-3-methoxypropane and solvents, i.e. methanol and acetonitrile, were purchased from Merck, Malaysia. Acrylonitrile was of Sigma Aldrich, Malaysia. All chemicals were used without any further purification.

^{*} Corresponding author: ravishantini@yahoo.com

2.2 Synthesis

2.2.1 Synthesis of 1-(2-cyanoethyl)imidazole

The starting material; 1-(2-cyanoethyl)imidazole was synthesized by reacting imidazole with acrylonitrile and methanol as a solvent [10]. The reaction conditions were $50-55^{\circ}$ C, under reflux and N_2 atmosphere for 10 h and cooled to room temperature. The impurities were removed by heating at 70° C under vacuum.

2.2.2 Synthesis of

1-(2-cyanoethyl)-3-(3-methoxypropane] imidazolium bromide, [MOP-imC₂CN][Br]

[MOP-imC₂CN][Br] was prepared by the reaction of 1-(2-cyanoethyl)imidazole with 1-bromo-3-methoxy propane at 70-80°, under reflux and N₂ atmosphere for 48 h. Then, the product was cooled to room temperature resulting [MOP-imC₂CN][Br].

2.2.3 Characterization of ILs

The synthesized IL was characterized using 1H NMR, ^{13}C NMR (Bruker Avance 500 MHz) and FTIR (Perkin Elmer Spectrum One). Water content in the ionic liquid was measured using Karl Fischer titrator model Mettler Toledo DL39. Density was measured using density meter (Anton-Paar, DMA 5000 M). The thermal properties and decomposition temperature (T_d) were measured using thermogravimetric analysis (TGA) and glass transition temperature (T_g) was measured with differential scanning calorimetry (DSC) (Mettler Toledo model DSC 1).

2.2.4 CO₂ sorption study

The possible application of the IL for CO_2 capture was investigated. A custom-made instrument was used for the CO_2 sorption studies (**Fig. 1**).

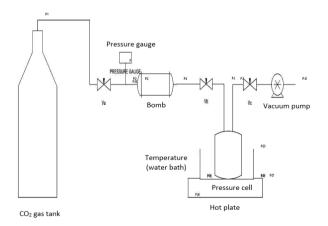


Fig. 1. Schematic diagram for CO₂ gas sorption cell

The measurement technique used was the pressure drop method. Using this method, temperature was held constant and the pressure difference was recorded during gas sorption into the sample. The initial pressure was set at a range of 1 bar to 20 bar. The amount of gas sorbed was calculated from the initial measurement of temperature, volume and pressure and the final measurement of the variables at equilibrium. The calculation was done by converting all three variables into moles of gas using Peng-Robinson equation of state [11].

The mole of CO₂ captured was calculated using equation (1).

$$n = \frac{P_{\text{ini}} \cdot V_{\text{tot}}}{Z_{\text{ini}} \cdot R \cdot T_{\text{ini}}} - \frac{P_{eq}(V_{\text{tot}} - V_{\text{sample}})}{Z_{eq} \cdot R \cdot T_{eq}}$$
(1)

where n = mol of CO_2 captured, P_{ini} = initial pressure obtained in the absence of sample after expansion of the gas sample from the bomb into the whole system, V_{tot} = total volume of system, Z_{ini} = compressibility factor $(P_{ini} \times T_{ini})$, Z_{eq} = compressibility factor $(P_{eq} \times T_{eq})$, P_{eq} = pressure at equilibrium, V_{sample} = volume of sample, R is the ideal gas constant, T_{ini} = initial temperature and T_{eq} = temperature at equilibrium. Compressibility factor for CO_2 modifies the ideal gas to account for real gas behaviour [11].

3 Results and discussion

3.1 NMR analysis

The ¹H-NMR data for the synthesized IL is as shown in **Fig. 2** and ¹³C-NMR data shown in **Fig. 3** respectively. The solvent used during NMR analysis was deuterated acetonitrile.

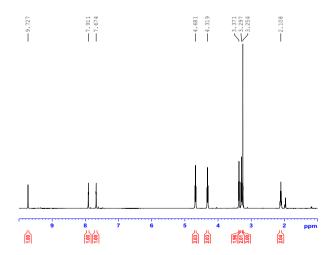


Fig. 2. ¹H-NMR spectra of [MOP-imC₂CN][Br]

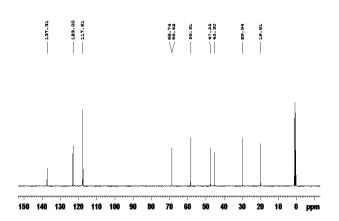


Fig. 3. ¹³C-NMR spectra of [MOP-imC₂CN][Br]

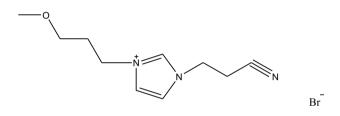


Fig. 4. Structure of [MOP-imC₂CN][Br]

¹H-NMR (500MHz, CD₃CN): δ (ppm) 9.73 (s, 1H, NCHN), 7.91 (d, 1H, CHN), 7.67 (d, 1H, CHN), 4.68 (t, 2H, CH₂CH₂N), 4.31 (t, 2H, CH₂CH₂N), 3.32 (t, 2H, CH₂CH₂CN), 3.30 (t, 2H, CH₃OCH₂), 3.25 (s, 3H, CH₃O), 2.11 (m, 2H, CH₂CH₂CH₂); ¹³C-NMR (125.77MHz, CD₃CN): δ (ppm) 137.31, 123.00, 117.81, 68.74, 58.31, 47.55, 45.30, 29.84, 19.81.

Spectroscopic data for this ionic liquid were consistent with the literature data [12].

3.2 FTIR analysis

The structure of [MOP-imC₂CN][Br] was analysed using Fourier transform infrared (FTIR) and the FTIR spectra obtained is shown in **Fig. 5**. The peaks of wavenumbers 660, 750 and 825 cm⁻¹ are the C-H stretching. A broad peak at about 3400 cm⁻¹ is the O-H stretch which could be due to the presence of water. Peak at wavenumber 2250 cm⁻¹ is due to C≡N stretching. Wave numbers 3050-3100 cm⁻¹ and 1400-1600 cm⁻¹ represents =C-H stretch and C=C of the aromatic heterocyclic ring respectively. The ether functionality (C-O-C) shows a strong stretching at about wavenumber 1160 cm⁻¹. Based on the FTIR analysis, it was observed that the IL synthesized is [MOP-imC₂CN][Br].

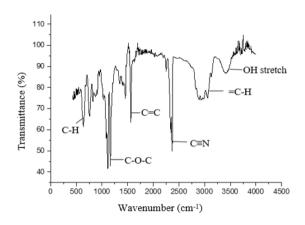


Fig. 5. FTIR spectra of [MOP-imC₂CN][Br]

3.3 Physical properties of [MOP-imC₂CN][Br]

The physical properties of [MOP-imC₂CN][Br] such as the water content, physical appearance and colour at room temperature are shown in **Table 1** below.

Table 1. Physical properties of [MOP-imC₂CN][Br]

IL	Water content (%)	Colour	Form
[MOP- imC ₂ CN][Br]	0.04	Yellowish	Liquid

3.3.1 Density of [MOP-imC2CN][Br]

The density of [MOP-imC₂CN][Br] at different temperatures is shown in **Fig. 6** below. The plot shows that the density of the synthesized IL decreased linearly with increasing temperature. As shown in Fig. 4, the density of the IL is below 1.36 g/cm³ at 293.15 K. Generally, ILs are much denser as compared to water [13].

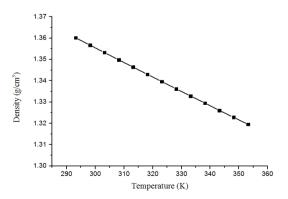


Fig. 6. Density of [MOP-im C_2CN][Br] as a function of temperature (K)

The density data could be correlated with equation (2).

$$\rho = A + BT \tag{2}$$

where ρ represents the density of [MOP-imC₂CN][Br] in g/cm³, T is the temperature in Kelvin (K) whereas A and B are the model parameters.

Fitting results are shown in Fig. 4 and the related model parameters are listed in **Table 2** below.

Table 2. Fitting result of the experimental density of [MOP-imC₂CN][Br]

Parameters	[MOP-imC ₂ CN][Br]	
A	1.5586	
$B \times 10^4$	-6.774	
R^2	0.9999	

3.4 Derived thermodynamic property

3.4.1 Thermal expansion coefficient

The thermal expansion coefficient was calculated for the synthesized IL using equation 3 below since the temperature-density relationship was linear.

$$\alpha_P = -\left(\frac{1}{\rho}\right) \left(\frac{\partial \rho}{\partial T}\right)_P = -(B)/(A+BT)$$
(3)

where α_P represents the thermal expansion coefficient in K^{-1} , ρ is the density, A and B are the fitting parameters of equation (2).

The calculated thermal expansion coefficient is presented in **Table 3**. The thermal expansion coefficient of [MOP-imC $_2$ CN][Br] obtained in the present work do not change significantly in the temperature range from 293.15 to 353.15 K. Besides, dual functionalized IL has low thermal expansion coefficient [10].

Table 3. Density and thermal expansion coefficients, α_p for [MOP-imC₂CN][Br]

Temperature	Density	$\alpha_p \times 10^{-4}$
(K)	(g/cm^3)	(K^{-1})
293.15	1.360	4.98
298.15	1.357	4.99
303.15	1.353	5.01
308.15	1.350	5.02
313.15	1.346	5.03
318.15	1.343	5.04
323.15	1.340	5.06
328.15	1.336	5.07
333.15	1.333	5.08
338.15	1.330	5.10
343.15	1.326	5.11
348.15	1.323	5.12
353.15	1.320	5.13

3.5 Thermal analysis

The IL was heated over a temperature range of 45-600°C at a heating rate of 10°C/min . The synthesized ionic liquid, [MOP-imC2CN][Br], has a good thermal stability whereby the onset thermal decomposition started at 246°C with a weight loss of 7.65% and the decompositions ends around 313°C with a weight loss of 97.39%. The T_g of [MOP-imC2CN][Br] was -49.80°C. The TGA profile of [MOP-imC2CN][Br] is as illustrated in **Fig. 7**.

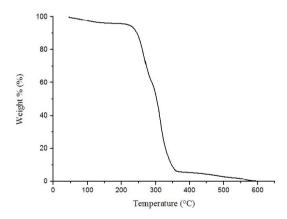


Fig. 7. TGA profile of [MOP-imC₂CN][Br]

A high thermal decomposition temperature of ILs gives a long-term stability of the ILs. Mostly ionic liquids are highly viscous, however, they exhibit a high thermal stability. Therefore, this property enables ILs to be used for a specified application under high temperature which significantly reduces their viscosity [10].

3.6 CO₂ solubility

FluidsChE 2017

The CO₂ sorption using [MOP-imC₂CN][Br] was investigated at 25°C using the custom-made gas sorption cell under different pressure condition 1, 5, 10, 15 and 20 bar.

Fig. 8 shows that CO_2 solubility in [MOP-imC₂CN][Br] increases with increasing pressure. At equilibrium pressure, $P_{eq} = 0.73$ bar (at 1 bar), the CO_2 absorbed was 0.08 mol of CO₂/mol of IL whereas at Peq=15.82 bar (at 20 bar) the CO₂ shows an absorption of 2.30 mol of CO₂/mol of IL at 25°C. Ziyada, (2011) has that 1-butyl-3-propanenitrile imidazolium dioctylsulfosuccinate [C2CN Bim][DOSS] has CO2 absorption capacity about 2.47 mol of CO₂/mol of IL at 20 bar [10].

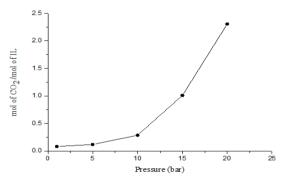


Fig. 8. Effect of pressure on CO_2 solubility in [MOP-imC₂CN][Br] at 25°C

Table 4 below shows the comparison of experimental solubility data for CO₂ in [C₂CN Bim][DOSS] and [MOP-imC₂CN][Br] at 25°C respectively.

Table 4. Experimental solubility data for CO₂ in [C₂CN Bim][DOSS] and [MOP-imC₂CN][Br] at 25°C

Pressure	CO ₂ solubility (mol of CO ₂ /mol of IL)		
(bar)	[C ₂ CN Bim]	[MOP-imC ₂ CN]	
	[DOSS]	[Br]	
1	0.06	0.08	
5	0.30	0.12	
10	0.70	0.29	
15	1.28	1.01	
20	2.47	2.30	

At 5, 10, 15 and 20 bar, [C₂CN Bim][DOSS] has a higher CO₂ sorption than [MOP-imC₂CN][Br]. This might be due to the significant role of the DOSS anion present which has a higher affinity towards CO₂ [10]. However, [MOP-imC₂CN][Br] showed equally good CO₂ sorption whereby the imidazolium ring of the cation is tethered to the ether and nitrile functionality. In addition, at 1 bar, [MOP-imC₂CN][Br] has slightly higher CO₂ sorption compared to [C₂CN Bim][DOSS]. The presence of ether functionality enables dipole-quadrupole interactions between the oxygen atoms

present and CO₂ [14]. Besides, high CO₂ solubility can also be correlated with the nitrile group that weakens the cation-anion interaction [7].

Literature shows that CO_2 sorption capacity increases with pressure because at high pressure, physical sorption becomes more significant [15]. From the trend shown in Fig. 8, it is expected that when the pressure is increased to >20 bar, the CO_2 sorption will gradually increase.

4 Conclusion

The imidazolium based ether-nitrile functionalized ionic liquid, [MOP-imC₂CN][Br] has been successfully synthesized, characterized and evaluated for CO₂ sorption. The NMR and FTIR confirmed the structure of the synthesized ionic liquid. The technique used for CO₂ sorption was the pressure-drop method. The results obtained from this study implies that

[MOP-imC₂CN][Br] has a good sorption of CO_2 which is 0.08 mol of CO_2 /mol of IL at P_{eq} = 0.73 bar (at 1 bar), and 2.30 mol of CO_2 /mol of IL at P_{eq} =15.82 bar (at 20 bar), at 25°C. Besides, the CO_2 sorption can be further enhanced by anion exchange using selective anions which is CO_2 -philic.

The authors acknowledges support from Centre of Research in Ionic Liquids (CORIL) and Fundamental & Applied Sciences Department (FASD), Universiti Teknologi Petronas (UTP). The authors also would like to appreciate and thank E-Science, MOSTI for funding this research.

References

- A.B. Rao, E.S. Rubin, Environ. Sci. Technol. 44, 20 (2002).
- M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Chem. Eng. Res. Des. 89, 9 (2011).
- 3. H. Gao, W. Rongwong, C. Peng, Z. Liang, K. Fu, R. Idem, P. Tontiwachwuthikul, Energy Procedia 63, 1911-1918 (2014).
- 4. P. Sharma, S.D. Park, K.T. Park, S.K. Jeong, S.C. Nam, I.H. Baek, Bull. Korean Chem. Soc. 33, 7 (2012).
- C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, J. Am. Chem. Soc. 126, 16 (2004).
- 6. P. Sharma, S.H. Choi, S.D. Park, I.H. Baek, G.S. Lee, Chem. Eng. J. **181**, 834-841 (2012).
- 7. Y. Park, K.A. Lin, A.A. Park, C. Petit, Front. Energy Res. 3, 42 (2015).
- M. Kanakubo, T. Umecky, Y. Hiejima, T. Aizawa, H. Nanjo, Y. Kameda, J. Phys. Chem. B 109, 29 (2005).
- 9. M.J. Muldoon, S.N. Aki, J.L. Anderson, J.K. Dixon, J.F. Brennecke, J. Phys. Chem. B, 111, 30 (2007).
- 10. A.B. Ziyada, Thermophysical properties and carbon dioxide solubility of novel room temperature ionic liquids (2011).

- 11. E. Torralba-Calleja, J. Skinner, D. Gutierrez-Tauste J. Chem. (2013).
- 12. S. Ravichandar, C.D. Wilfred, F.K. Chong, M.A. Abdul Halim, Z.G. Ng, *Contemporary of Sciences: Physics, Chemistry and Mathematics*, **2**, (2016).
- 13. J.S. Wilkes, J. Mol. Catal. A: Chem. 214, 1 (2015).
- 14. Y.J. Heintz, L. Sehabiague, B.I. Morsi, K.L. Jones, D.R. Luebke, H.W. Pennline, Energy Fuels **23**, 10 (2009).
- 15. Y. Cheng-Hsiu, H. Chih-Hung, T. Chung-Sung, Aerosol Air Qual Res, **12** (2011).