
electronics

Article

A Deep Learning Model for Snoring Detection and
Vibration Notification Using a Smart Wearable Gadget

Tareq Khan

School of Engineering, Eastern Michigan University, Ypsilanti, MI 48197, USA; tareq.khan@emich.edu

Received: 6 August 2019; Accepted: 2 September 2019; Published: 4 September 2019
����������
�������

Abstract: Snoring, a form of sleep-disordered breathing, interferes with sleep quality and quantity,
both for the person who snores and often for the person who sleeps with the snorer. Poor sleep
caused by snoring can create significant physical, mental, and economic problems. A simple and
natural solution for snoring is to sleep on the side, instead of sleeping on the back. In this project, a
deep learning model for snoring detection is developed and the model is transferred to an embedded
system—referred to as the listener module—to automatically detect snoring. A novel wearable gadget
is developed to apply a vibration notification on the upper arm until the snorer sleeps on the side.
The gadget is rechargeable, and it is wirelessly connected to the listener module using low energy
Bluetooth. A smartphone app—connected to the listener module using home Wi-Fi—is developed to
log the snoring events with timestamps, and the data can be transferred to a physician for treating
and monitoring diseases such as sleep apnea. The snoring detection deep learning model has an
accuracy of 96%. A prototype system consisting of the listener module, the wearable gadget, and a
smartphone app has been developed and tested successfully.

Keywords: Bluetooth low energy; convolutional neural network; deep learning; Mel frequency
cepstral coefficients; raspberry pi; smartphone app; snoring sound; tilt sensor; vibration notification;
wearable gadget

1. Introduction

One of the world’s longest studies of adult life, conducted by the Harvard Medical School, revealed
that close relationships, more than money or fame, are what keep people happy throughout their
lives [1]. Snoring doesn’t only interfere with the snorer’s sleep, it often creates bitterness and resentment
between couples. About 40% of adult men and 24% of adult women are habitual snorers [2]. Snoring
starts when the muscles surrounding the throat relax during sleep. This narrows the airway, triggering
vibrations that cause snoring. Snoring generally occurs when a person sleeps on the back. A natural
cure for snoring problem is to sleep on the side [3]. In this project, a convolutional neural network
(CNN)-based deep learning model for snoring detection is developed, validated and tested. The model
is then transferred to an embedded system—referred to as the listener module—to automatically detect
snoring. A novel wearable gadget is developed to apply a vibration notification on the upper arm until
the snorer sleeps on the side. Unlike an alarm sound, as the vibration is only applied to the snorer, the
gadget doesn’t disturb any other person who is sleeping near the snorer. The gadget is low power,
rechargeable, and it is wirelessly connected to the listener module using Bluetooth low energy. A
smartphone app—connected with the listener module using home Wi-Fi—is developed to start/stop a
snoring session, and to log the snoring events with timestamps. The overall operation of the proposed
system is shown in Figure 1. The needs and significance of the proposed gadget are mentioned below:

• About 75% of people who snore suffer from disrupted breathing during sleep for short
periods—known as obstructive sleep apnea (OSA) [3]. Severe sleep apnea carries a significant risk

Electronics 2019, 8, 987; doi:10.3390/electronics8090987 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/8/9/987?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8090987
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 987 2 of 19

of early death, but even mild to moderate sleep disorders can be related to heart disease, diabetes,
reduced sexual function, obesity, gastroesophageal reflux disease, arrhythmia (irregular heart
rhythm), headache, nocturia (wake at night several times to urinate) and stroke [4]. The proposed
gadget will notify the snorer by vibration and compel them to sleep on their side. Moreover,
the logged snoring data can be used to diagnose and monitor OSA and other diseases by the
physicians, as discussed in [5–8].

• Snoring interferes with sleep quality and the sleep quantity of the individual who snores and
anyone who shares the same sleeping space. Poor quality and insufficient sleep reduce memory,
thinking skills, and the ability to manage conflict. Lack of sleep can make a person irritable,
short-tempered, and depressed [9]. The proposed gadget will reduce snoring, increase sleep
quality, and facilitate better mental health.

• In the United States, insufficient sleep and sleep disorders account for $411 billion in economic
losses and represent 2.28% of the country’s gross domestic product (GDP) annually [10]. This
device can improve sleep quality and reduce economic loss.

Electronics 2019, 8, x FOR PEER REVIEW 2 of 20 

 

• About 75% of people who snore suffer from disrupted breathing during sleep for short 
periods—known as obstructive sleep apnea (OSA) [3]. Severe sleep apnea carries a significant 
risk of early death, but even mild to moderate sleep disorders can be related to heart disease, 
diabetes, reduced sexual function, obesity, gastroesophageal reflux disease, arrhythmia 
(irregular heart rhythm), headache, nocturia (wake at night several times to urinate) and 
stroke [4]. The proposed gadget will notify the snorer by vibration and compel them to sleep 
on their side. Moreover, the logged snoring data can be used to diagnose and monitor OSA 
and other diseases by the physicians, as discussed in [5–8]. 

• Snoring interferes with sleep quality and the sleep quantity of the individual who snores and 
anyone who shares the same sleeping space. Poor quality and insufficient sleep reduce 
memory, thinking skills, and the ability to manage conflict. Lack of sleep can make a person 
irritable, short-tempered, and depressed [9]. The proposed gadget will reduce snoring, 
increase sleep quality, and facilitate better mental health.  

• In the United States, insufficient sleep and sleep disorders account for $411 billion in 
economic losses and represent 2.28% of the country’s gross domestic product (GDP) annually 
[10]. This device can improve sleep quality and reduce economic loss. 

Wi-Fi

BLE

(b)
(c)

(a) (d)
 

Figure 1. The proposed snoring detection and vibration notification system. The user configures the 
system and starts a snoring session using the smartphone app (a) – which connects with the listener 
module using Wi-Fi. The listener module (b) detects snoring sound and sends command using 
Bluetooth low energy (BLE) to the wearable gadget (c) to generate vibration notification to the snorer. 
Snoring events with a timestamp are logged in smartphone (a). The vibration stops automatically 
after the snorer changes sleeping position to the side (d). 

Some available anti-snoring mouthpieces on the market [11–14] hold the lower jaw forward to 
maintain an open airway to reduce snoring. However, these mouthpieces are often uncomfortable to 
wear, hamper the natural mouth function, and also require regular cleaning. Theravent [15] uses a 
strip that is put on the nose. The micro-valves in the strip create pressure in the airway when 
breathing out, keeping it open to reduce vibration. Smart Nora [16] uses hardware that is placed on 
a nearby table, listens for snoring. Once detected, another piece of hardware placed under the pillow 
starts to move in order to stimulate the throat muscles for breathing. The smartphone app, SnoreLab 
[17], records snoring sound while sleeping, however, it does not do any action to stop snoring. 
Compared to the existing anti-snoring devices, the proposed novel wearable device is more 
comfortable and will not hinder the natural mouth or nose functions, as it can be worn on the upper 
arm. After the listener module detects snoring, the wearable gadget applies vibration notification on 
the upper arm until the snorer sleeps on the side. The smartphone app also logs snoring data and 
generates bar graphs - that can be used to monitor and to treat snoring. Some snoring sound analysis 
and detection work using the Fourier transform method is found in the literature [18–26]. Compared 

Figure 1. The proposed snoring detection and vibration notification system. The user configures
the system and starts a snoring session using the smartphone app (a)—which connects with the
listener module using Wi-Fi. The listener module (b) detects snoring sound and sends command using
Bluetooth low energy (BLE) to the wearable gadget (c) to generate vibration notification to the snorer.
Snoring events with a timestamp are logged in smartphone (a). The vibration stops automatically after
the snorer changes sleeping position to the side (d).

Some available anti-snoring mouthpieces on the market [11–14] hold the lower jaw forward to
maintain an open airway to reduce snoring. However, these mouthpieces are often uncomfortable to
wear, hamper the natural mouth function, and also require regular cleaning. Theravent [15] uses a strip
that is put on the nose. The micro-valves in the strip create pressure in the airway when breathing out,
keeping it open to reduce vibration. Smart Nora [16] uses hardware that is placed on a nearby table,
listens for snoring. Once detected, another piece of hardware placed under the pillow starts to move
in order to stimulate the throat muscles for breathing. The smartphone app, SnoreLab [17], records
snoring sound while sleeping, however, it does not do any action to stop snoring. Compared to the
existing anti-snoring devices, the proposed novel wearable device is more comfortable and will not
hinder the natural mouth or nose functions, as it can be worn on the upper arm. After the listener
module detects snoring, the wearable gadget applies vibration notification on the upper arm until
the snorer sleeps on the side. The smartphone app also logs snoring data and generates bar graphs -
that can be used to monitor and to treat snoring. Some snoring sound analysis and detection work



Electronics 2019, 8, 987 3 of 19

using the Fourier transform method is found in the literature [18–26]. Compared to these works, the
proposed work uses a deep learning model to classify snoring sounds from non-snoring sounds.

2. Materials and Methods

In this paper, a deep learning classifier to detect snoring sound is modeled first. Then the proposed
system as shown in Figure 1 is designed and developed. They are briefly described below.

2.1. Deep Learning Model for Snoring Detection

2.1.1. Dataset Generation

A dataset of 1000 sound samples is developed in this project. The dataset contains 2 classes—snoring
sounds and non-snoring sounds. Each class has 500 samples. The snoring sounds were collected from
different online sources [27–31]. The non-snoring sounds were also collected from similar online sources.
Then silences were trimmed from the sound files and the files were split to equal-sized one-second
duration files using WavePad Sound Editor [32]. Thus, each sample has a duration of one second.

Among the 500 snoring samples, 363 samples consist of snoring sounds of children, adult men and
adult women without any background sound. The remaining 137 samples consist of snoring sounds
having a background of non-snoring sounds. Background non-snoring sounds were mixed with the
snoring sounds using [32]. The 500 non-snoring samples consist of background sounds that might be
available near the snorer. Ten categories of non-snoring sounds are collected, and each category has
50 samples. The ten categories are baby crying, the clock ticking, the door opened and closed, total
silence and the minor sound of the vibration motor of the gadget, toilet flashing, siren of emergency
vehicle, rain and thunderstorm, streetcar sounds, people talking, and background television news.

2.1.2. Feature Extraction

The first step to classify sound is to extract the features. In this paper, the Mel frequency cepstral
coefficients (MFCCs) [33–35] are calculated for each sample. The motivating idea of MFCC is to
compress information into a small number of coefficients based on an understanding of the human
ear. To calculate MFCC, the time-domain audio signal is first divided into 20–40 ms frames. Then, for
each frame, the power spectrum is calculated. Then triangular-shaped Mel filterbanks are calculated
and applied to the power spectra, and spectrogram is obtained. Human ears are much better at
discriminating small changes in pitch at low frequencies (below 1 kHz) than they are at high frequencies.
So, in Mel filterbank, the first 10 filters are placed linearly around 100, 200, . . . 1000 Hz. Above 1 kHz,
these bands are placed with logarithmic Mel-scale. Then the logarithm of all filterbank energies and
then their discrete cosine transform (DCT) are calculated to decorrelate the filter bank coefficients.

In this work, the sound sample is divided into 30 ms frames. The number of filters in the filterbank
was chosen to be 32, the number of FFT points set to 512, and the number of cepstral coefficients was
set to 32. The MFCCs are calculated using SpeechPy [36] library. Figure 2 shows a snoring class sample
and a non-snoring class sample in the time domain and its MFCC representation. After the MFCC
is calculated, the one-dimensional time-domain sound signal becomes a two-dimensional signal of
size 32 × 32—that can be treated as an image. We can then apply image classification deep learning
architectures—such as CNN—to classify the sample images. Thus, a dataset of 1000 MFCC images is
created from the sound samples to be fed to the deep learning network.



Electronics 2019, 8, 987 4 of 19Electronics 2019, 8, x FOR PEER REVIEW 4 of 20 

 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 2. (a) Time-domain snoring sound after amplitude normalization; (b) Mel frequency cepstral coefficients 
(MFCC) of the snoring sound in (a); (c) time-domain non-snoring sound of toilet flashing after amplitude 
normalization; (d) MFCC of the non-snoring sound in (c); 

2.1.3. Convolutional Neural Network Architecture 

A deep learning network, as shown in Figure 3, is used to classify the sound as snoring or as 
non-snoring. The different layers and optimizer of the network are briefly described below. 

• MFCC Image: The MFCC image is a tensor of size (32, 32, 1). The data type of the image pixel 
is converted to floating-point. To normalize the pixel values, the mean and the standard 
deviation of the training dataset is calculated and saved in a file. Then from all images of the 
dataset, the mean is subtracted from each pixel value and then each pixel value is divided by 
the standard deviation. 

• Convolutional Layer: A 2-D convolutional layer applies sliding convolutional filters to the 
input. The layer convolves the input by moving the filters along the input vertically and 
horizontally and computing the dot product of the weights and the input and then adding a 
bias term [37]. In the proposed model, four convolutional layers are used having filter sizes of 
3 × 3. The filters are initialized with random values and they are learnable network parameters. 
For instance, in Figure 3, in the conv2d_1 layer, there are 32 filters of size 3 × 3 with padding— 
thus they produce 32 output layers having the same height and width of the input layer. In the 
proposed model, conv2d_1 and conv2d_3 use padding to make the output size as same as the 
input size; whereas conv2d_2 and conv2d_4 do not use padding. 

• Activation Layer: The convolutional layers and the dense layers (except the last dense layer) 
are followed by a nonlinear activation function—the rectified linear unit (ReLU) [38]. A ReLU 
layer performs a threshold operation on each element, where any value less than zero is set to 
zero. 

 

Figure 2. (a) Time-domain snoring sound after amplitude normalization; (b) Mel frequency cepstral
coefficients (MFCC) of the snoring sound in (a); (c) time-domain non-snoring sound of toilet flashing
after amplitude normalization; (d) MFCC of the non-snoring sound in (c);

2.1.3. Convolutional Neural Network Architecture

A deep learning network, as shown in Figure 3, is used to classify the sound as snoring or as
non-snoring. The different layers and optimizer of the network are briefly described below.

• MFCC Image: The MFCC image is a tensor of size (32, 32, 1). The data type of the image pixel is
converted to floating-point. To normalize the pixel values, the mean and the standard deviation of
the training dataset is calculated and saved in a file. Then from all images of the dataset, the mean
is subtracted from each pixel value and then each pixel value is divided by the standard deviation.

• Convolutional Layer: A 2-D convolutional layer applies sliding convolutional filters to the input.
The layer convolves the input by moving the filters along the input vertically and horizontally
and computing the dot product of the weights and the input and then adding a bias term [37]. In
the proposed model, four convolutional layers are used having filter sizes of 3 × 3. The filters
are initialized with random values and they are learnable network parameters. For instance, in
Figure 3, in the conv2d_1 layer, there are 32 filters of size 3 × 3 with padding— thus they produce
32 output layers having the same height and width of the input layer. In the proposed model,
conv2d_1 and conv2d_3 use padding to make the output size as same as the input size; whereas
conv2d_2 and conv2d_4 do not use padding.

• Activation Layer: The convolutional layers and the dense layers (except the last dense layer) are
followed by a nonlinear activation function—the rectified linear unit (ReLU) [38]. A ReLU layer
performs a threshold operation on each element, where any value less than zero is set to zero.



Electronics 2019, 8, 987 5 of 19
Electronics 2019, 8, x FOR PEER REVIEW 5 of 20 

 

 
Figure 3. The proposed convolutional neural network architecture. 

• Max Pooling Layer: A max-pooling layer performs down-sampling by dividing the input into 
rectangular pooling regions and computing the maximum of each region [39]. In the proposed 
model, the dimensions of the pooling region are set to 2 × 2. 

• Dropout Layer: A dropout layer randomly sets input elements to zero with a given probability. 
This operation effectively changes the underlying network architecture between iterations and 
helps prevent the network from overfitting [40]. No learning takes place in this layer. In the 
proposed network architecture, three dropout layers are used to prevent overfitting of training 
data within a few epochs. The dropout probabilities for layers 1–3 are 0.25, 0.25, and 0.50, 
namely. 

• Flatten Layer: A flatten layer collapses the spatial dimensions of the input and make it a single 
column vector. In this model, the flatten layer converts the (6, 6, 64) tensor to a one-dimensional 
vector of size 2304. 

• Dense Layer: The dense layer or a fully connected (FC) layer calculates the dot product of the 
input and a weight matrix, and then adds a bias vector [41,42]. The weight matrix and bias are 
initialized with random values and they are learnable network parameters. 

Figure 3. The proposed convolutional neural network architecture.

• Max Pooling Layer: A max-pooling layer performs down-sampling by dividing the input into
rectangular pooling regions and computing the maximum of each region [39]. In the proposed
model, the dimensions of the pooling region are set to 2 × 2.

• Dropout Layer: A dropout layer randomly sets input elements to zero with a given probability.
This operation effectively changes the underlying network architecture between iterations and
helps prevent the network from overfitting [40]. No learning takes place in this layer. In the
proposed network architecture, three dropout layers are used to prevent overfitting of training
data within a few epochs. The dropout probabilities for layers 1–3 are 0.25, 0.25, and 0.50, namely.

• Flatten Layer: A flatten layer collapses the spatial dimensions of the input and make it a single
column vector. In this model, the flatten layer converts the (6, 6, 64) tensor to a one-dimensional
vector of size 2304.

• Dense Layer: The dense layer or a fully connected (FC) layer calculates the dot product of the
input and a weight matrix, and then adds a bias vector [41,42]. The weight matrix and bias are
initialized with random values and they are learnable network parameters.

• Loss Function and Optimizer: The last fully connected layer, dense layer 3, combines the features
to classify the images. Therefore, the output size of the last dense layer is set to one for binary



Electronics 2019, 8, 987 6 of 19

classification and it is followed by the Sigmoid [43] score function. A loss function quantifies the
agreement between the predicted scores and the ground truth labels and an optimizer tries to
reach the global minima where the loss function attains the least possible value for the network
parameters. In the proposed model, the binary_crossentropy loss is calculated and RMSprop [44]
optimizer is used.

2.2. Prototype System Architecture

The system architecture comprising of the listener module, the wearable gadget, and the
smartphone app—as shown in Figure 2—is designed and developed. The different modules of
the system are briefly described below.

2.2.1. Listener Module

The listener module can be attached on the bed headboard or placed on a table near the snorer. It
receives the user’s command from the smartphone to start/stop the snoring detection. When it detects
snoring, it sends the snoring status to the wearable gadget to vibrate. The hardware and firmware of
this module are briefly described below.

2.2.1.1. Hardware

The block diagram of the listener module hardware is shown in Figure 4. The single-board
computer, Raspberry Pi (RPi) [45], is used as the processor. It contains a 1.2 GHz 64-bit quad-core
ARMv8 microprocessor, 1 GB of RAM, micro secure digital (SD) card slot supporting up to 32 GB,
onboard Wi-Fi and BLE module, and other built-in hardware peripherals. A microphone with a built-in
sound card [46] is connected with the RPi using the USB interface. The power supply for the RPi board
is supplied using a 110 V AC to 5.1V DC adapter [47].

Electronics 2019, 8, x FOR PEER REVIEW 6 of 20 

 

• Loss Function and Optimizer: The last fully connected layer, dense layer 3, combines the 
features to classify the images. Therefore, the output size of the last dense layer is set to one for 
binary classification and it is followed by the Sigmoid [43] score function. A loss function 
quantifies the agreement between the predicted scores and the ground truth labels and an 
optimizer tries to reach the global minima where the loss function attains the least possible 
value for the network parameters. In the proposed model, the binary_crossentropy loss is 
calculated and RMSprop [44] optimizer is used. 

2.2. Prototype System Architecture 

The system architecture comprising of the listener module, the wearable gadget, and the 
smartphone app—as shown in Figure 2—is designed and developed. The different modules of the 
system are briefly described below. 

2.2.1. Listener Module 

The listener module can be attached on the bed headboard or placed on a table near the snorer. 
It receives the user’s command from the smartphone to start/stop the snoring detection. When it 
detects snoring, it sends the snoring status to the wearable gadget to vibrate. The hardware and 
firmware of this module are briefly described below. 

2.2.1.1. Hardware 

The block diagram of the listener module hardware is shown in Figure 4. The single-board 
computer, Raspberry Pi (RPi) [45], is used as the processor. It contains a 1.2 GHz 64-bit quad-core 
ARMv8 microprocessor, 1 GB of RAM, micro secure digital (SD) card slot supporting up to 32 GB, 
onboard Wi-Fi and BLE module, and other built-in hardware peripherals. A microphone with a built-
in sound card [46] is connected with the RPi using the USB interface. The power supply for the RPi 
board is supplied using a 110V AC to 5.1V DC adapter [47]. 

Raspberry Pi Micro
-phone

Sound
Card

USB

 
Figure 4. Block diagram of the listener module hardware. 

2.2.1.2. Firmware 

A Debian-based Linux operating system, Raspbian [45], is installed on a 16 GB SD card of the 
RPi board. The firmware is developed in Python language and the necessary packages such as 
Tensorflow, Keras, SpeechPy, Bluepy, and Sounddevice are installed. The deep learning model (H5 
file) for snoring detection, the mean and the standard deviation file of the training dataset are 
transferred in its SD card. The firmware is built on two layers—the driver layer and the application 
layer. The driver layer consists of low-level firmware for accessing different hardware peripherals. 
The application layer access the hardware by calling the functions of the driver layer. 

A pseudocode of the application layer is shown in Figure 5. The program waits for the 
smartphone to get connected using Wi-Fi socket. The RPi is configured as the server and the 
smartphone is configured as the client for the socket connection. The Wi-Fi Internet Protocol (IP) 
address of the RPi is made static at 192.168.1.55 by editing the dhcpcd.conf file [48] – so that smartphone 
does not need to find the IP address of the RPi each time it wants to connect. Once the connection is 
made, the smartphone sends the BLE media access control (MAC) address of the wearable gadget to 
the RPi. After receiving the BLE MAC address, the RPi connects with the wearable gadget using the 
Bluepy library. Then, the program enters in a loop and it continues until the user presses the stop 
button in the smartphone. 

Figure 4. Block diagram of the listener module hardware.

2.2.1.2. Firmware

A Debian-based Linux operating system, Raspbian [45], is installed on a 16 GB SD card of the RPi
board. The firmware is developed in Python language and the necessary packages such as Tensorflow,
Keras, SpeechPy, Bluepy, and Sounddevice are installed. The deep learning model (H5 file) for snoring
detection, the mean and the standard deviation file of the training dataset are transferred in its SD
card. The firmware is built on two layers—the driver layer and the application layer. The driver layer
consists of low-level firmware for accessing different hardware peripherals. The application layer
access the hardware by calling the functions of the driver layer.

A pseudocode of the application layer is shown in Figure 5. The program waits for the smartphone
to get connected using Wi-Fi socket. The RPi is configured as the server and the smartphone is
configured as the client for the socket connection. The Wi-Fi Internet Protocol (IP) address of the RPi is
made static at 192.168.1.55 by editing the dhcpcd.conf file [48]—so that smartphone does not need to find
the IP address of the RPi each time it wants to connect. Once the connection is made, the smartphone
sends the BLE media access control (MAC) address of the wearable gadget to the RPi. After receiving
the BLE MAC address, the RPi connects with the wearable gadget using the Bluepy library. Then, the
program enters in a loop and it continues until the user presses the stop button in the smartphone.



Electronics 2019, 8, 987 7 of 19
Electronics 2019, 8, x FOR PEER REVIEW 7 of 20 

 

 

Figure 5. Pseudocode of the application layer firmware of the listener module. 

Inside the loop, the program first detects snoring. To detect snoring, it records the sound for one 
second at a sampling rate of 48000 using the Sounddevice library. Then, the MFCC of the sound signal 
is calculated using the SpeechPy library and then the values are normalized. The signal is then 
classified using the deep learning model as snoring or non-snoring using the Keras library. The model 
outputs the snoring probability of the recorded sound – thus a probability greater than or equal to 
0.5 is classified as snoring sound. Most human snore during the inspiratory phase and the snoring 
sound has a duration between 1 and 2 seconds [49]. Most adults breathe in the range of 10-15 times 
in a minute and a snoring episode repeats in 4–6 seconds [50]. In order to avoid false alarms, six 
sound signals—each having a one-second duration—are recorded and classified one by one. If two 
of the six sounds are classified as snoring, then a snoring detection is considered. If the snoring 
detection status is changed, then the status is sent to the wearable gadget using BLE. The status along 
with the date & time stamp is also sent to the smartphone using Wi-Fi for data logging. 

2.2.2. Wearable Gadget 

The wearable gadget is a low power electronic device that is worn on the upper hand of the 
snorer. The device connects with the listener module using BLE. When snoring is detected, it 
generates vibration until the snorer sleeps on the side. A key design challenge of the gadget is 
lowering the power consumption—as it is powered by a battery. The hardware and firmware of the 
device are briefly described below. 

2.2.2.1. Hardware 

The block diagram of the hardware unit of the wearable gadget is shown in Figure 6. A low-
power, small-size system-on-chip (SoC) micro-controller with BLE, nRF52832 [51], is used as the 
processing and wireless communication unit. The micro-controller contains an industry-standard 
ARM Cortex M4F MCU, 512 kB in-system programmable flash memory, 64 kB RAM, 2.4 GHz BLE 
transceiver, general-purpose input/output (GPIO), Timer, and many other peripherals. It has low-
power sleep modes and it is suitable for systems where ultra-low power consumption is required to 
increase battery life. 

In this project, the nRF52 Feather [52] board is used which consists of the nRF52832 
microcontroller, USB-Serial converter for efficient programming and debugging, a connector for 3.7 
V lithium polymer (Li-Po) battery, onboard 3.3 V regulator, and a battery charging circuit. The 
programming and charging circuits only get power when the board is connected with USB and do 
not consume power when the battery is connected only. When both battery and USB are connected, 
the charging circuit starts to charge the battery from USB power. A 3.7 V Li-Po rechargeable battery 
[53] with a capacity of 500 mAh is used as the power source for this hardware unit. 

while True 
        WaitForSocketConnection (HOST_IP, PORT) 
        BLE_MAC := GetBLE_MAC () 
        ConnectWithWearableGadget (BLE_MAC) 
         
  Finish := 0 
        while not (Finish)  
            isSnore := detectSnore () 
            if (isSnore != isSnorePrev)    
                SendBLE(isSnore) 
                SendLogData (isSnore) 
                isSnorePrev := isSnore 
             
       sleep(SAMPLE_DELAY) 
       Finish := GetStopMSG () 
        CloseConnections() 

Figure 5. Pseudocode of the application layer firmware of the listener module.

Inside the loop, the program first detects snoring. To detect snoring, it records the sound for
one second at a sampling rate of 48000 using the Sounddevice library. Then, the MFCC of the sound
signal is calculated using the SpeechPy library and then the values are normalized. The signal is then
classified using the deep learning model as snoring or non-snoring using the Keras library. The model
outputs the snoring probability of the recorded sound—thus a probability greater than or equal to
0.5 is classified as snoring sound. Most human snore during the inspiratory phase and the snoring
sound has a duration between 1 and 2 seconds [49]. Most adults breathe in the range of 10–15 times in
a minute and a snoring episode repeats in 4–6 seconds [50]. In order to avoid false alarms, six sound
signals—each having a one-second duration—are recorded and classified one by one. If two of the six
sounds are classified as snoring, then a snoring detection is considered. If the snoring detection status
is changed, then the status is sent to the wearable gadget using BLE. The status along with the date &
time stamp is also sent to the smartphone using Wi-Fi for data logging.

2.2.2. Wearable Gadget

The wearable gadget is a low power electronic device that is worn on the upper hand of the
snorer. The device connects with the listener module using BLE. When snoring is detected, it generates
vibration until the snorer sleeps on the side. A key design challenge of the gadget is lowering the
power consumption—as it is powered by a battery. The hardware and firmware of the device are
briefly described below.

2.2.2.1. Hardware

The block diagram of the hardware unit of the wearable gadget is shown in Figure 6. A low-power,
small-size system-on-chip (SoC) micro-controller with BLE, nRF52832 [51], is used as the processing
and wireless communication unit. The micro-controller contains an industry-standard ARM Cortex
M4F MCU, 512 kB in-system programmable flash memory, 64 kB RAM, 2.4 GHz BLE transceiver,
general-purpose input/output (GPIO), Timer, and many other peripherals. It has low-power sleep
modes and it is suitable for systems where ultra-low power consumption is required to increase
battery life.



Electronics 2019, 8, 987 8 of 19Electronics 2019, 8, x FOR PEER REVIEW 8 of 20 

 

1µF

390kΩ 

nRF52 Feather 
Board

Li-Po 
Battery

nRF52832
SoC with BLE 

3.3V

Tilt 
Sensor

MOSFET

0.01 µF
M

1N4007

 

Figure 6. Block diagram of the wearable gadget hardware. 

A tilt sensor switch [54] is used to detect the snorer’s sleeping orientation—whether they are 
sleeping on their back or sleeping on their side. A metal ball inside the sensor makes contact with the 
sensor terminals when the sensor is upright; disconnects the terminals when the sensor is tilted. The 
sensor is connected to a GPIO interrupt pin of the microcontroller and the interrupt is configured to 
be triggered whenever it changes. A 1 µF capacitor is connected from the MCU pin to the ground to 
filter out the bounce signal from the sensor. An external pull-up resistor of 390 kΩ - as shown in 
Figure 6 - is used to make the pin high when the sensor terminals are open. The nRF52832 has internal 
pull-up resistors (Rpu) having a value of approximately 13 kΩ [51]. If the internal pull-up resistors are 
enabled, this branch through the switch will continuously consume 3.3 ÷ 13 k = 0.25 mA current 
whenever the sensor terminals are closed. This is a significant current. To solve this problem, the 
internal pull-up resistor was disabled and a higher value external pull-up resistor of 390 kΩ is used. 
In this case, the branch consumes only 3.3 ÷ 390 k = 8.46 µA current (measured 8.24 µA in real-time) 
when the sensor terminals are closed. Experiments showed that if a higher value of external resistor 
such as 1 MΩ is used, then too much voltage drops and the microcontroller pin does not recognize 
an interrupt event. Thus 390 kΩ external pull-up resistor is a good design choice. As the input 
resistance of the microcontroller pin is high, the sink current is approximately zero (measured 0.01 
µA in real-time). Now, when the snorer changes the sleep position on the back, the sensor terminals 
get open. This causes the microcontroller pin to go high and it triggers a rising interrupt event. When 
the snorer changes the sleep position on the side, the sensor terminals get closed. This causes the 
microcontroller pin to go low and it triggers a falling interrupt event. 

A vibration motor [55] is used to generate vibration notification – so that the snorer changes the 
sleeping position to the side. A metal-oxide-semiconductor field-effect transistor (MOSFET) [56] is used 
to connect and disconnect the motor’s ground pin from the power supply ground. The gate of the 
transistor is controlled by a GPIO pin of the microcontroller as shown in Figure 6. A 0.01 µF capacitor 
is connected across the motor in parallel to absorb noises generated from the motor brush. When the 
motor is turned off, a negative spike of voltage is generated across it. The diode protects the circuit 
against this by shorting such reverse current from the motor. 

2.2.2.2. Firmware 

In this proposed system, the listener module sends data to the wearable gadget using BLE. The 
listener module is configured as central and the wearable gadget is configured as peripheral [57]. A 
high-performance Bluetooth 5 qualified protocol stack for the nRF52832 SoC—referred to as 
SoftDevice—is implemented that contains complete stack with Generic Access Profile (GAP), generic 

Figure 6. Block diagram of the wearable gadget hardware.

In this project, the nRF52 Feather [52] board is used which consists of the nRF52832 microcontroller,
USB-Serial converter for efficient programming and debugging, a connector for 3.7 V lithium polymer
(Li-Po) battery, onboard 3.3 V regulator, and a battery charging circuit. The programming and charging
circuits only get power when the board is connected with USB and do not consume power when the
battery is connected only. When both battery and USB are connected, the charging circuit starts to
charge the battery from USB power. A 3.7 V Li-Po rechargeable battery [53] with a capacity of 500 mAh
is used as the power source for this hardware unit.

A tilt sensor switch [54] is used to detect the snorer’s sleeping orientation—whether they are
sleeping on their back or sleeping on their side. A metal ball inside the sensor makes contact with the
sensor terminals when the sensor is upright; disconnects the terminals when the sensor is tilted. The
sensor is connected to a GPIO interrupt pin of the microcontroller and the interrupt is configured to be
triggered whenever it changes. A 1 µF capacitor is connected from the MCU pin to the ground to filter
out the bounce signal from the sensor. An external pull-up resistor of 390 kΩ - as shown in Figure 6 - is
used to make the pin high when the sensor terminals are open. The nRF52832 has internal pull-up
resistors (Rpu) having a value of approximately 13 kΩ [51]. If the internal pull-up resistors are enabled,
this branch through the switch will continuously consume 3.3 ÷ 13 k = 0.25 mA current whenever the
sensor terminals are closed. This is a significant current. To solve this problem, the internal pull-up
resistor was disabled and a higher value external pull-up resistor of 390 kΩ is used. In this case, the
branch consumes only 3.3 ÷ 390 k = 8.46 µA current (measured 8.24 µA in real-time) when the sensor
terminals are closed. Experiments showed that if a higher value of external resistor such as 1 MΩ
is used, then too much voltage drops and the microcontroller pin does not recognize an interrupt
event. Thus 390 kΩ external pull-up resistor is a good design choice. As the input resistance of the
microcontroller pin is high, the sink current is approximately zero (measured 0.01 µA in real-time).
Now, when the snorer changes the sleep position on the back, the sensor terminals get open. This
causes the microcontroller pin to go high and it triggers a rising interrupt event. When the snorer
changes the sleep position on the side, the sensor terminals get closed. This causes the microcontroller
pin to go low and it triggers a falling interrupt event.

A vibration motor [55] is used to generate vibration notification—so that the snorer changes the
sleeping position to the side. A metal-oxide-semiconductor field-effect transistor (MOSFET) [56] is
used to connect and disconnect the motor’s ground pin from the power supply ground. The gate of the
transistor is controlled by a GPIO pin of the microcontroller as shown in Figure 6. A 0.01 µF capacitor
is connected across the motor in parallel to absorb noises generated from the motor brush. When the



Electronics 2019, 8, 987 9 of 19

motor is turned off, a negative spike of voltage is generated across it. The diode protects the circuit
against this by shorting such reverse current from the motor.

2.2.2.2. Firmware

In this proposed system, the listener module sends data to the wearable gadget using BLE.
The listener module is configured as central and the wearable gadget is configured as peripheral [57].
A high-performance Bluetooth 5 qualified protocol stack for the nRF52832 SoC—referred to as
SoftDevice—is implemented that contains complete stack with Generic Access Profile (GAP), generic
attribute profile (GATT), link and other layers [58]. A custom service, having a Universally Unique
ID (UUID) of 9ECA-DC24-0EE5-A9E0-93F3-A3B5-0100-406E, is created in the GATT profile. Under
this service, a custom characteristic having a UUID of 9ECA-DC24-0EE5-A9E0-93F3-A3B5-0200-406E is
created. The characteristic has a data length of 1 byte—for sending the Boolean snoring status. It’s
write and write without response properties were set so that the listener module can write data in this
characteristic. A call-back function is also assigned with the characteristic so that an event is raised
whenever data is written in this characteristic.

A flowchart of the wearable gadget firmware is shown in Figure 7. Once the listener module
receives the BLE MAC of the wearable gadget from the smartphone, it requests a connection, and then
a connection is established with the wearable gadget. A real-time operating system (RTOS), known as
FreeRTOS [59], is used in the firmware. The firmware is designed by an using event response—known
as call-backs—without always running codes inside a loop. The firmware goes to low power sleep
mode and waits for an event to happen to wake-up.

Electronics 2019, 8, x FOR PEER REVIEW 9 of 20 

 

attribute profile (GATT), link and other layers [58]. A custom service, having a Universally Unique ID 
(UUID) of 9ECA-DC24-0EE5-A9E0-93F3-A3B5-0100-406E, is created in the GATT profile. Under this 
service, a custom characteristic having a UUID of 9ECA-DC24-0EE5-A9E0-93F3-A3B5-0200-406E is 
created. The characteristic has a data length of 1 byte – for sending the Boolean snoring status. It’s 
write and write without response properties were set so that the listener module can write data in this 
characteristic. A call-back function is also assigned with the characteristic so that an event is raised 
whenever data is written in this characteristic. 

A flowchart of the wearable gadget firmware is shown in Figure 7. Once the listener module 
receives the BLE MAC of the wearable gadget from the smartphone, it requests a connection, and 
then a connection is established with the wearable gadget. A real-time operating system (RTOS), 
known as FreeRTOS [59], is used in the firmware. The firmware is designed by an using event 
response—known as call-backs—without always running codes inside a loop. The firmware goes to 
low power sleep mode and waits for an event to happen to wake-up. 

Init

Wait for 
event

Get snoring status: 
is_snore

Get sleeping position 
status: is_flat

Calculate motor status:
Is_motor := is_snore AND is_flat

Start Timer Stop Timer

Blink motor

 

Figure 7. Flowchart of the wearable gadget firmware. 

Whenever the listener module sends the snoring status to the wearable gadget, a BLE data 
arrival event occurs. Whenever the snorer changes sleeping position, the tilt sensor interrupt event 
occurs. On those events - the gadget wakes up from sleep mode, updates the snoring and sleeping 
position status namely, and recalculates the vibration motor status. The vibration motor status is set 
to true when snoring is detected, and the person is sleeping flat on their back. If the vibration motor 
status is true, then a timer having an interval of 1 second is started. It triggers a timer event every 
after one second and the vibration motor is turned ON and OFF on alternate seconds. If the vibration 

Figure 7. Flowchart of the wearable gadget firmware.



Electronics 2019, 8, 987 10 of 19

Whenever the listener module sends the snoring status to the wearable gadget, a BLE data arrival
event occurs. Whenever the snorer changes sleeping position, the tilt sensor interrupt event occurs.
On those events - the gadget wakes up from sleep mode, updates the snoring and sleeping position
status namely, and recalculates the vibration motor status. The vibration motor status is set to true
when snoring is detected, and the person is sleeping flat on their back. If the vibration motor status is
true, then a timer having an interval of 1 second is started. It triggers a timer event every after one
second and the vibration motor is turned ON and OFF on alternate seconds. If the vibration motor
status is false, then the motor is turned OFF and the timer is stopped. After starting or stopping the
timer, the program goes to sleep mode and waits for an event.

To make the program power efficient, the following configurations were done:

• The frequency of the RTOS tick interrupt (referred to as configTICK_RATE_HZ) was reduced from
1024 Hz to 4 Hz to reduce power. This change caused 200 µA current reduction. The tick interrupt
is used to measure time. Therefore, a higher tick frequency means the timer can measure time to
a higher resolution. The RTOS scheduler will share processor time between tasks of the same
priority by switching between the tasks during each RTOS tick. A high tick rate frequency will
therefore also have the effect of reducing the ’time slice’ given to each task [59]. The system clock
of the microcontroller (referred to as SystemCoreClock) is 64 MHz and it is not changed. Thus,
the microcontroller executes instructions at a high speed without sacrificing the performance.

• No floating-point numbers were used because the floating-point unit (FPU) consumes significant
power. To take the microcontroller in low power mode, the exception flags and the pending FPU
interrupts were cleared [60].

• The DC/DC converter of the microcontroller is enabled instead of low dropout (LDO) regulator [61].
• The advertising BLE connection interval was set to 20 ms and the transmission power level was

set to 0 dB to balance between power consumption and performance. We did an experiment by
reducing the transmission power level to -30 dB—however, no significant reduction of current
consumption was noticed, but created a problem during connection.

2.2.3. Smartphone App

The smartphone app is developed for the Android platform. The first screen of the app contains a
list-view box showing information about each sleeping session—snoring duration, the percentage of
the snoring time in the session, and the session start date and time. It also contains a button to start
and to stop a session, and a label showing the connection status with the listener module.

The app contains a settings menu for configuring the listener module’s IP and wearable gadget’s
BLE MAC. The IP of the listener module can be found by visiting the router devices list webpage or
using the Fing app [62]. As the IP of the listener module was made static, the user will only need to
configure the IP once. To get the BLE MAC of the wearable gadget, the user presses the ‘Start Scan’
button to find the nearby BLE devices that are advertising. The nearby BLE devices are added in a
list-view box and the user can select the required MAC address from the list. The listener module’s IP
and the wearable gadget’s BLE MAC address are saved in a settings file.

After configuration, the user presses the ‘start’ button to get connected with the listener module
using home Wi-Fi. This is done using socket connection where the listener module is configured as a
server and the smartphone is configured as a client. Once the connection is made, the smartphone app
sends the BLE MAC address to the listener module using the socket connection. After receiving the
BLE MAC, the listener module connects with the wearable gadget and starts detecting snoring sound
as discussed in Section 2.2.1. Whenever a change is the snoring status occurs, the listener module sends
the snoring status with the date and time stamp to the smartphone using the Wi-Fi socket connection.
After receiving the data, the app stores them in a log file and keep track of total snoring duration of that
session. When the user presses the ‘stop’ button to end the sleep session, the socket is disconnected,
the session duration and snoring duration are calculated and appended in a file with session start date
and time, and session information is displayed in the front screen’s list view box.



Electronics 2019, 8, 987 11 of 19

To monitor snoring durations and progress, a graph generation function is also added in the
smartphone app where the user can select any date, and the total snoring time of each date in the last
seven days can be displayed as a bar graph. This is calculated from the data stored in the log file.

3. Results

3.1. Snoring Detection Deep Learning Model Results

The dataset of 1000 sounds was first converted to 1000 MFCC images. Then the images were
randomly shuffled preserving the ground truth label correspondence. Then the dataset is split into
three—700 images for training, 200 images for validation, and 100 images for testing. The 100 images
for testing were kept separate until the model is trained and validated. Then the final accuracy of the
model was evaluated with the unseen test images.

The deep learning network, as shown in Figure 3, was constructed in Python using Keras library.
Keras is a high-level neural networks application programming interface (API), written in Python and
it runs on top of TensorFlow [63]. The model was trained on a desktop computer with Intel Core i7
(6 Cores) 4.6 GHz microprocessor, 32 GB RAM and NVIDIA GeForce GTX1060 graphics processing
unit (GPU).

The model was trained and validated simultaneously for 6000 epochs with a learning rate of
1 × 10−5. The training and validation time was approximately seven minutes and 33 s. The plots of
loss w.r.t. epochs and accuracy w.r.t. epochs are shown in Figure 8a,b namely for both training and
validation dataset. From Figure 8, we see that both training and validation loss decrease, and that
accuracy increases with more epochs. After 6000 epochs, the training loss is 0.10 and the validation
loss is 0.08. Both the training and validation dataset gets an accuracy of approximately 0.96 after
6000 epochs.

Electronics 2019, 8, x FOR PEER REVIEW 11 of 20 

 

The dataset of 1000 sounds was first converted to 1000 MFCC images. Then the images were 
randomly shuffled preserving the ground truth label correspondence. Then the dataset is split into 
three—700 images for training, 200 images for validation, and 100 images for testing. The 100 images 
for testing were kept separate until the model is trained and validated. Then the final accuracy of the 
model was evaluated with the unseen test images. 

The deep learning network, as shown in Figure 3, was constructed in Python using Keras library. 
Keras is a high-level neural networks application programming interface (API), written in Python 
and it runs on top of TensorFlow [63]. The model was trained on a desktop computer with Intel Core 
i7 (6 Cores) 4.6 GHz microprocessor, 32 GB RAM and NVIDIA GeForce GTX1060 graphics processing 
unit (GPU). 

The model was trained and validated simultaneously for 6000 epochs with a learning rate of 1e-
5. The training and validation time was approximately seven minutes and 33 seconds. The plots of 
loss w.r.t. epochs and accuracy w.r.t. epochs are shown in Figures 8a and 8b namely for both training 
and validation dataset. From Figure 8, we see that both training and validation loss decrease, and 
that accuracy increases with more epochs. After 6000 epochs, the training loss is 0.10 and the 
validation loss is 0.08. Both the training and validation dataset gets an accuracy of approximately 0.96 
after 6000 epochs. 

 
(a) (b) 

Figure 8. (a) Loss vs epochs for training and validation datasets; (b) Accuracy vs epochs for training 
and validation datasets. 

After the training and validation are done, the model and its total 1,278,049 learned parameters 
(i.e. filters, weights, and biases) were saved in an H5 file. The size of the model in the disk is 9.80 MB. 
Then the model was tested with an unseen test set of 100 MFCC images. For the test set, the loss was 
0.13 and accuracy was 0.96. Here, we see that the model has similar accuracy for the test set when 
compared with the training and validation set—indicating that the model is well generalized. 

3.2. Prototype System Results 

A prototype of the proposed system comprising of the listener module, wearable gadget, and a 
smartphone app has been developed and tested successfully. A photograph of the listener module is 
shown in Figure 9. The hardware is designed with a Raspberry Pi board interfaced with a microphone 
with a sound card – is shown in Figure 9. The hardware was programmed according to the discussion 
in Section 2.2.1.2 and was configured to run the program automatically on boot. On the RPi, the 
average pre-processing time of one recorded sound—which includes MFCC generation and 
normalization—is approximately 53 ms and the classification time by the deep learning model is 
approximately 47 ms. 

Figure 8. (a) Loss vs epochs for training and validation datasets; (b) Accuracy vs epochs for training
and validation datasets.

After the training and validation are done, the model and its total 1,278,049 learned parameters
(i.e., filters, weights, and biases) were saved in an H5 file. The size of the model in the disk is 9.80 MB.
Then the model was tested with an unseen test set of 100 MFCC images. For the test set, the loss was
0.13 and accuracy was 0.96. Here, we see that the model has similar accuracy for the test set when
compared with the training and validation set—indicating that the model is well generalized.

3.2. Prototype System Results

A prototype of the proposed system comprising of the listener module, wearable gadget, and a
smartphone app has been developed and tested successfully. A photograph of the listener module is



Electronics 2019, 8, 987 12 of 19

shown in Figure 9. The hardware is designed with a Raspberry Pi board interfaced with a microphone
with a sound card—is shown in Figure 9. The hardware was programmed according to the discussion
in Section 2.2.1.2 and was configured to run the program automatically on boot. On the RPi, the average
pre-processing time of one recorded sound—which includes MFCC generation and normalization—is
approximately 53 ms and the classification time by the deep learning model is approximately 47 ms.Electronics 2019, 8, x FOR PEER REVIEW 12 of 20 

 

1

2

3

 

Figure 9. Photograph of the listener module – (1) Raspberry Pi; (2) Sound card; (3) Microphone. 

The photograph of the wearable gadget on a proto-board is shown in Figure 10. 

1

2

3

4

 
(a) 

5
6

 
(b) 

Figure 10. Photograph of the wearable gadget – (a) Top view: (1) SoC microcontroller with BLE and 
battery charger; (2) Tilt sensor; (3) MOSFET; (4) Li-Po rechargeable battery. (b) Bottom view: (5) 
Vibration motor; (6) Gadget sewed on loop style non-adhesive nylon strips fabric. 

The gadget has a size of 8 × 5 cm. An ammeter was connected through the positive wire of the 
battery to measure the current consumption. The measured current consumptions of the gadget at 
different states are shown in Table 1. 

Table 1. Measured current consumption of the gadget at different states. 

State Current Consumption (µA) 
Advertising ~ 195 
Idle 240 
Generating vibration  635 

The BLE will advertise only when it needs to be discovered. Once discovered and connected 
with the listener module, the device consumes 240 µA when it is waiting for an event in idle state. It 
consumes 635 µA when the vibration motor is on. The prototype uses a Li-Po rechargeable battery 
having a capacity of 500 mAh. Assuming the gadget is powered on for eight hours and the snoring 
happens for four hours in one day—the gadget will be in the idle state for 6 hours and generate 
vibration for 2 hours as the vibration motor is blinked with a frequency of 0.5 Hz. In this case, the 
battery life of the gadget is approximately 500 ÷ (2 × 0.635 + 6 × 0.240) = 184 days. 

Some screenshots of the smartphone app are shown in Figure 11. The first screen of the app 
contains a list-view box showing information about each sleeping session, a button to start and to 
stop a session, and a label showing the connection status with the listener module—as shown in 
Figure 11a. Figure 11b shows the settings screen for configuring listener module’s IP and wearable 

Figure 9. Photograph of the listener module—(1) Raspberry Pi; (2) Sound card; (3) Microphone.

The photograph of the wearable gadget on a proto-board is shown in Figure 10.

Electronics 2019, 8, x FOR PEER REVIEW 12 of 20 

 

1

2

3

 

Figure 9. Photograph of the listener module – (1) Raspberry Pi; (2) Sound card; (3) Microphone. 

The photograph of the wearable gadget on a proto-board is shown in Figure 10. 

1

2

3

4

 
(a) 

5
6

 
(b) 

Figure 10. Photograph of the wearable gadget – (a) Top view: (1) SoC microcontroller with BLE and 
battery charger; (2) Tilt sensor; (3) MOSFET; (4) Li-Po rechargeable battery. (b) Bottom view: (5) 
Vibration motor; (6) Gadget sewed on loop style non-adhesive nylon strips fabric. 

The gadget has a size of 8 × 5 cm. An ammeter was connected through the positive wire of the 
battery to measure the current consumption. The measured current consumptions of the gadget at 
different states are shown in Table 1. 

Table 1. Measured current consumption of the gadget at different states. 

State Current Consumption (µA) 
Advertising ~ 195 
Idle 240 
Generating vibration  635 

The BLE will advertise only when it needs to be discovered. Once discovered and connected 
with the listener module, the device consumes 240 µA when it is waiting for an event in idle state. It 
consumes 635 µA when the vibration motor is on. The prototype uses a Li-Po rechargeable battery 
having a capacity of 500 mAh. Assuming the gadget is powered on for eight hours and the snoring 
happens for four hours in one day—the gadget will be in the idle state for 6 hours and generate 
vibration for 2 hours as the vibration motor is blinked with a frequency of 0.5 Hz. In this case, the 
battery life of the gadget is approximately 500 ÷ (2 × 0.635 + 6 × 0.240) = 184 days. 

Some screenshots of the smartphone app are shown in Figure 11. The first screen of the app 
contains a list-view box showing information about each sleeping session, a button to start and to 
stop a session, and a label showing the connection status with the listener module—as shown in 
Figure 11a. Figure 11b shows the settings screen for configuring listener module’s IP and wearable 

Figure 10. Photograph of the wearable gadget—(a) Top view: (1) SoC microcontroller with BLE and
battery charger; (2) Tilt sensor; (3) MOSFET; (4) Li-Po rechargeable battery. (b) Bottom view: (5)
Vibration motor; (6) Gadget sewed on loop style non-adhesive nylon strips fabric.

The gadget has a size of 8 × 5 cm. An ammeter was connected through the positive wire of the
battery to measure the current consumption. The measured current consumptions of the gadget at
different states are shown in Table 1.

Table 1. Measured current consumption of the gadget at different states.

State Current Consumption (µA)

Advertising ~195
Idle 240
Generating vibration 635

The BLE will advertise only when it needs to be discovered. Once discovered and connected
with the listener module, the device consumes 240 µA when it is waiting for an event in idle state. It
consumes 635 µA when the vibration motor is on. The prototype uses a Li-Po rechargeable battery
having a capacity of 500 mAh. Assuming the gadget is powered on for eight hours and the snoring



Electronics 2019, 8, 987 13 of 19

happens for four hours in one day—the gadget will be in the idle state for 6 hours and generate
vibration for 2 h as the vibration motor is blinked with a frequency of 0.5 Hz. In this case, the battery
life of the gadget is approximately 500 ÷ (2 × 0.635 + 6 × 0.240) = 184 days.

Some screenshots of the smartphone app are shown in Figure 11. The first screen of the app
contains a list-view box showing information about each sleeping session, a button to start and to
stop a session, and a label showing the connection status with the listener module—as shown in
Figure 11a. Figure 11b shows the settings screen for configuring listener module’s IP and wearable
gadgets BLE MAC address. Figure 11c shows the bar graph of snoring duration on last seven days of
the selected date.

Electronics 2019, 8, x FOR PEER REVIEW 13 of 20 

 

gadgets BLE MAC address. Figure 11c shows the bar graph of snoring duration on last seven days of 
the selected date. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Screenshots of the smartphone app – (a) front screen showing session log, start/stop session 
button and connection status with listener module; (b) setting screen for configuring listener module’s 
IP and wearable gadgets BLE MAC address; (c) bar graph of snoring duration on last seven days of 
the selected date. 

3.3. Experimental Setup and Results 

The wearable gadget was put on the upper left arm of a mannequin as shown in Figure 12. The 
gadget was approximately 30° tilted towards the floor so that the tilt sensor terminals are 
disconnected when the mannequin is sleeping on the back. A speaker was attached at the place of the 
nose of the mannequin and it was connected with a laptop to generate snoring and non-snoring 
sounds. The experimental setup is shown in Figure 13. The listener module was attached near the 
front wall of the mannequin. The smartphone app was used to start the sleep session. Snoring sounds 
were played using the laptop through the speaker placed at the nose. The listener module 
successfully detected the snoring and sent snoring status to the wearable gadget using BLE. The 
wearable gadget vibrated as long as the snoring sound was playing and stopped vibrating when the 
snoring sound was stopped. The vibration also stopped when the sleeping position was changed to 
the side as shown in Figure 13b. Non-snoring sounds such as silence, street sound, thunderstorm, 
door opening were played, and the listener module classified them as non-snoring sounds.  

Figure 11. Screenshots of the smartphone app—(a) front screen showing session log, start/stop session
button and connection status with listener module; (b) setting screen for configuring listener module’s
IP and wearable gadgets BLE MAC address; (c) bar graph of snoring duration on last seven days of the
selected date.

3.3. Experimental Setup and Results

The wearable gadget was put on the upper left arm of a mannequin as shown in Figure 12. The
gadget was approximately 30◦ tilted towards the floor so that the tilt sensor terminals are disconnected
when the mannequin is sleeping on the back. A speaker was attached at the place of the nose of the
mannequin and it was connected with a laptop to generate snoring and non-snoring sounds. The
experimental setup is shown in Figure 13. The listener module was attached near the front wall of the
mannequin. The smartphone app was used to start the sleep session. Snoring sounds were played
using the laptop through the speaker placed at the nose. The listener module successfully detected the
snoring and sent snoring status to the wearable gadget using BLE. The wearable gadget vibrated as
long as the snoring sound was playing and stopped vibrating when the snoring sound was stopped.
The vibration also stopped when the sleeping position was changed to the side as shown in Figure 13b.
Non-snoring sounds such as silence, street sound, thunderstorm, door opening were played, and the
listener module classified them as non-snoring sounds.



Electronics 2019, 8, 987 14 of 19
Electronics 2019, 8, x FOR PEER REVIEW 14 of 20 

 

 

Figure 12. Wearable gadget attached at the upper left arm of a mannequin. 

 
(a) 

 
(b) 

Figure 13. Photograph of the experimental setup. (a) The wearable gadget generates vibration when 
the listener module detects snoring and the mannequin is sleeping on the back. (b) Vibration stops 
when the mannequin’s sleeping position is changed to the side. 

3.4. Comparison with Other Works 

A comparison with other related works is shown in Table 2. Here we see that the proposed 
wearable device is more comfortable than the mechanical devices as it will not hinder the natural 
mouth or nose functions. The listener module detects snoring using CNN-based deep learning 
method and have a good detection accuracy of 96%. The wearable gadget applies vibration alert on 
the upper arm until the snorer sleeps on the side to prevent snoring. The smartphone app also logs 
snoring data and generates bar graphs that can be used to monitor and to treat snoring related 
diseases. 

Table 2. Comparison with other works. 

Figure 12. Wearable gadget attached at the upper left arm of a mannequin.

Electronics 2019, 8, x FOR PEER REVIEW 14 of 20 

 

 

Figure 12. Wearable gadget attached at the upper left arm of a mannequin. 

 
(a) 

 
(b) 

Figure 13. Photograph of the experimental setup. (a) The wearable gadget generates vibration when 
the listener module detects snoring and the mannequin is sleeping on the back. (b) Vibration stops 
when the mannequin’s sleeping position is changed to the side. 

3.4. Comparison with Other Works 

A comparison with other related works is shown in Table 2. Here we see that the proposed 
wearable device is more comfortable than the mechanical devices as it will not hinder the natural 
mouth or nose functions. The listener module detects snoring using CNN-based deep learning 
method and have a good detection accuracy of 96%. The wearable gadget applies vibration alert on 
the upper arm until the snorer sleeps on the side to prevent snoring. The smartphone app also logs 
snoring data and generates bar graphs that can be used to monitor and to treat snoring related 
diseases. 

Table 2. Comparison with other works. 

Figure 13. Photograph of the experimental setup. (a) The wearable gadget generates vibration when
the listener module detects snoring and the mannequin is sleeping on the back. (b) Vibration stops
when the mannequin’s sleeping position is changed to the side.

3.4. Comparison with Other Works

A comparison with other related works is shown in Table 2. Here we see that the proposed
wearable device is more comfortable than the mechanical devices as it will not hinder the natural
mouth or nose functions. The listener module detects snoring using CNN-based deep learning method
and have a good detection accuracy of 96%. The wearable gadget applies vibration alert on the upper
arm until the snorer sleeps on the side to prevent snoring. The smartphone app also logs snoring data
and generates bar graphs that can be used to monitor and to treat snoring related diseases.



Electronics 2019, 8, 987 15 of 19

Table 2. Comparison with other works.

Snoring Detection Snoring Detection
Accuracy

Snoring Prevention Obstruct Any Natural
Body Function?

Data Logging in
Smartphone

Mechanical
devices [11–14]

No N/A Mechanical device on
mouth moving the lower
jaw slightly forward to
maintain an open airway

Yes, Mouth No

Theravent [15] No N/A Strip on nose creates
pressure in the airway to
reduce vibration.

Yes, Nose No

Smart Nora [16] Yes – 1 Hardware placed under
the pillow starts to move
to stimulates the throat
muscles for breathing

No No

SnoreLab [17] Yes – 1 No No Yes

R. Nonaka, et. al.
[26]

Yes, using logistic
regression classifier
with auditory image
modeling features

97.30% No No No

E. Dafna, et. al.
[49]

Yes, AdaBoost
classifier with 34 time
and spectral features

98.40% No No No

H. Romero, et. al.
[64]

Yes, using deep
learning with
bottleneck features.

91.11% No No No

T. Emoto, et. al.
[65]

Yes, deep neural
network

75.10% No No No

B. Arsenali, et. al.
[66]

Yes, Recurrent Neural
Network with MFCC
feature

95.00% No No No

Proposed Yes, CNN based deep
learning with MFCC
feature

96.00% Vibration on arm until
sleep on the side

No Yes

1 not reported.

4. Discussion

In the dataset, each sample has a duration of one second. When 2D MFCC is generated from the
one second 1D sample, it generates 32 timeframes i.e., 32 columns. The size of the MFCC is 32 × 32.
These dimensions are powers of two—thus, they’re good for computer memory and the input layer of
the deep learning model. It is possible to make each sample larger. However, this will make the size of
the input layer—causing an increase in model size, training time, and latency (i.e., classification time).
Moreover, most human snore during the inspiratory phase and the snoring sound has a duration of
1–2 s [49]. Thus, choosing one second sample size is a good choice.

CNN has the ability to extract feature from the time domain sound wave, thus it is possible to
directly feed the 1D sound wave to the CNN—without calculating the MFCC. However, each snoring
sound is one second in duration and recorded at a sampling rate of 48,000. Thus, the 1D signal has
a size of 1 × 48,000. This will make the input layer size of the deep learning model large and will
increase the model size, training time, and the latency (i.e., classification time). Using MFCC, the input
layer size of the model is 32 × 32 = 1024, which is about 47 times smaller than the time domain signal.
This reduces the model size, training time, and latency. The only tradeoff in this approach is to spend
approximately 53 ms for MFCC generation.

There are several popular CNN architectures found in the literature. Some examples of such
models are LeNet, AlexNet, VGG Net, NiN, DenseNet, FractalNet, GoogLeNet with Inception units,
and Residual Networks [67]. For instance, VGGNet is slow to train and the network architecture
weights themselves are quite large. Due to its depth and number of fully connected nodes, VGG is
over 533 MB for VGG16 and 574 MB for VGG19. Even though ResNet is much deeper than VGG16
and VGG19, the model size is about 102 MB for ResNet50. The weights for Inception V3 are smaller
than both VGG and ResNet, coming in at 96 MB [68]. The large size makes deploying these models
in an embedded system difficult. Picking the right network architecture requires running several



Electronics 2019, 8, 987 16 of 19

architectures by changing network layers and hyper-parameters - then choosing the best architecture.
This is more of an art than a science [69]. In this work, several architectures were tested by rearranging
the layers and changing the network hyper-parameters - and the proposed model was found to be
working well in terms of accuracy, training time, and model size. The model has a good accuracy of
96%, the training time of only 7 minutes and 33 s, and the model size of only 9.8 MB. Moreover, some
of these popular CNN models are for multiclass classification problems—aimed for specific dataset
such as ImageNet, whereas, the proposed model is designed for binary classification problem - aimed
to classify the new snoring dataset.

The proposed system worked as expected. However, during the prototype testing, we found
that the listener module sometimes classifies an unknown sound—which was not in the non-snoring
dataset—as snoring sound and thus creating a false alarm. This problem can be solved by adding
more samples of non-snoring sounds in the dataset. Another way to solve this problem is to design the
system in such a way that the model will learn the possible snoring and non-snoring sound in the
house at run time dynamically as trained by the user.

It is possible to program the smartphone app to detect snoring and then send the snoring status to
the wearable gadget using BLE—omitting the listener module from the proposed system. However, at
the time writing this paper, a well maintained and stable compiler to run python libraries with deep
learning models in Android is hardly available. We plan to implement the listener module to the
smartphone as future work.

To find out the user acceptance of the technology, a group of survey participants can be hired
who will use the prototype for several months and then complete a feedback form. This will provide
information about the strengths and weaknesses of the design from the user’s perspective.

Another test with participants is important in a sleep lab - is to observe the behavior of the snorers
when vibration notification is generated. The snorer might notice the vibration and sleep on the
side—as expected. It may happen that the snorer is not alert by the vibration during sleep and do
nothing. It may also happen that the snorer is alert by the vibration but do unexpected actions such as
removing the gadget. As future work, we plan to make several prototypes of the system and apply
for Institutional Review Board (IRB) approval to perform tests with human subjects in a sleep lab.
Once approved, the tests for user acceptance of the technology and the tests on user behavior will
be conducted.

It should be noted that although the deep learning model showed 96% accuracy for unseen
snoring sounds, clinical trials are required with several participants to verify the accuracy in real-time -
as snoring sound may differ from individual to individual. Moreover, an option to retrain the deep
learning model with the individual user’s snoring sound should be added in the listener module. This
will adjust the model to that particular user and can increase detection accuracy and user satisfaction.
We plan to do the clinical trials with participants after IRB approval and implement real-time training
option of the model with the individual user’s snoring sound as future work.

Some future works include making a larger dataset and using data augmentation for training
the deep learning model, adding another tilt sensor in the gadget to detect sleeping on both left and
right sides, making the gadget size smaller by using surface-mounted device (SMD) components, and
making a flexible printed circuit board (PCB) for the gadget.

5. Conclusions

In this paper, a deep learning model for snoring detection is trained, validated and tested. A
prototype system comprising of a listener module for snoring detection, a low power wearable gadget
to notify the snorer, using vibration, to sleep on their side, and a smartphone app to log snoring data is
developed and tested successfully.

Author Contributions: Conceptualization, methodology, software, validation, analysis, investigation, resources,
writing—original draft preparation, writing—review and editing, visualization, supervision, project administration,
funding acquisition—by T.K.



Electronics 2019, 8, 987 17 of 19

Funding: This research was funded by the Summer Research/Creative Activity (SRA) award of Eastern
Michigan University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mineo, L. Good Genes Are Nice, But Joy Is Better. The Harvard Gazette. Available online: https:
//news. harvard.edu/gazette/story/2017/04/over-nearly-80-years-harvard-study-has-been-showing-how-
to-live-a-healthy-and-happy-life/ (accessed on 6 August 2019).

2. Snoring—Overview and Facts. Available online: http://sleepeducation.org/essentials-in-sleep/snoring/

overview-and-facts (accessed on 6 August 2019).
3. Melone, L. 7 Easy Fixes for Snoring. Available online: https://www.webmd.com/sleep-disorders/features/

easy-snoring-remedies#1 (accessed on 6 August 2019).
4. Vann, M.R. 11 Health Risks of Snoring. Available online: https://www.everydayhealth.com/news/eleven-

health-risks-snoring/ (accessed on 6 August 2019).
5. Lee, G.S.; Lee, L.A.; Wang, C.Y.; Chen, N.H.; Fang, T.J.; Huang, C.G.; Cheng, W.N.; Li, H.Y. The Frequency

and Energy of Snoring Sounds Are Associated with Common Carotid Artery Intima-Media Thickness in
Obstructive Sleep Apnea Patients. Sci. Rep. 2016, 6, 30559. [CrossRef]

6. Alencar, A.M.; da Silva, D.G.V.; Oliveira, C.B.; Vieira, A.P.; Moriya, H.T.; Lorenzi-Filho, G. Dynamics of
snoring sounds and its connection with obstructive sleep apnea. Phys. A Stat. Mech. Its Appl. 2013, 392,
271–277. [CrossRef]

7. Smith, D.L.; Gozal, D.; Hunter, S.J.; Gozal, L.K. Frequency of snoring, rather than apnea–hypopnea index,
predicts both cognitive and behavioral problems in young children. Sleep Med. 2017, 34, 170–178. [CrossRef]
[PubMed]

8. Yunus, F.M.; Khan, S.; Mitra, D.K.; Mistry, S.K.; Afsana, K.; Rahman, M. Relationship of sleep pattern and
snoring with chronic disease: Findings from a nationwide population-based survey. Sleep Health 2018, 4,
40–48. [CrossRef] [PubMed]

9. Breus, M.J. How to Keep Snoring from Hurting Your Relationship. Available online: https://www.
psychologytoday.com/us/blog/sleep-newzzz/201412/how-keep-snoring-hurting-your-relationship (accessed
on 6 August 2019).

10. Why Sleep Matters: Quantifying the Economic Costs of Insufficient Sleep. Available online: https://www.rand.
org/randeurope/research/projects/the-value-of-the-sleep-economy.html (accessed on 6 August 2019).

11. SnoreRx. Available online: https://www.snorerx.com/ (accessed on 6 August 2019).
12. ZQuiet. Available online: https://zquiet.com/ (accessed on 6 August 2019).
13. Good Morning Snore Solution. Available online: https://goodmorningsnoresolution.com/ (accessed on 6

August 2019).
14. VitalSleep Anti-Snoring Mouthpiece. Available online: https://www.vitalsleep.com/anti-snoring-device-by-

vital-sleep.html (accessed on 6 August 2019).
15. Theravent. Available online: https://www.theraventsnoring.com (accessed on 6 August 2019).
16. Smartnora. Available online: https://www.smartnora.com/ (accessed on 6 August 2019).
17. SnoreLab. Available online: https://www.snorelab.com (accessed on 6 August 2019).
18. Agrawal, S.; Stone, P.; McGuinness, K.; Morris, J.; Camilleri, A.E. Sound frequency analysis and the site of

snoring in natural and induced sleep. Clin. Otolaryngol. Allied Sci. 2002, 27, 162–166. [CrossRef] [PubMed]
19. Shiomi, F.K.; Pisa, I.T.; Campos, C.J.R. Computerized analysis of snoring in Sleep Apnea Syndrome. Braz. J.

Otorhinolaryngol. 2011, 77, 488–498. [CrossRef] [PubMed]
20. Pevernagie, D.; Aarts, R.M.; De Meyer, M. The acoustics of snoring. Sleep Med. Rev. 2009, 14, 131–144.

[CrossRef] [PubMed]
21. Calabrese, B.; Pucci, F.; Sturniolo, M.; Guzzi, P.H.; Veltri, P.; Gambardella, A.; Cannataro, M. A System for the

Analysis of Snore Signals. Procedia Comput. Sci. 2011, 4, 1101–1108. [CrossRef]
22. Al-Mardini, M.; Aloul, F.; Sagahyroon, A.; Al-Husseini, L. Classifying obstructive sleep apnea using

smartphones. J. Biomed. Inform. 2014, 52, 251–259. [CrossRef] [PubMed]
23. Koo, S.K.; Kwon, S.B.; Moon, J.S.; Lee, S.H.; Lee, H.B.; Lee, S.J. Comparison of snoring sounds between natural

and drug-induced sleep recorded using a smartphone. Auris Nasus Larynx 2018, 45, 777–782. [PubMed]

https://news.
https://news.
harvard.edu/gazette/story/2017/04/over-nearly-80-years-harvard-study-has-been-showing-how-to-live-a-healthy-and-happy-life/
harvard.edu/gazette/story/2017/04/over-nearly-80-years-harvard-study-has-been-showing-how-to-live-a-healthy-and-happy-life/
http://sleepeducation.org/essentials-in-sleep/snoring/overview-and-facts
http://sleepeducation.org/essentials-in-sleep/snoring/overview-and-facts
https://www.webmd.com/sleep-disorders/features/easy-snoring-remedies#1
https://www.webmd.com/sleep-disorders/features/easy-snoring-remedies#1
https://www.everydayhealth.com/news/eleven-health-risks-snoring/
https://www.everydayhealth.com/news/eleven-health-risks-snoring/
http://dx.doi.org/10.1038/srep30559
http://dx.doi.org/10.1016/j.physa.2012.08.008
http://dx.doi.org/10.1016/j.sleep.2017.02.028
http://www.ncbi.nlm.nih.gov/pubmed/28522088
http://dx.doi.org/10.1016/j.sleh.2017.10.003
http://www.ncbi.nlm.nih.gov/pubmed/29332678
https://www.psychologytoday.com/us/blog/sleep-newzzz/201412/how-keep-snoring-hurting-your-relationship
https://www.psychologytoday.com/us/blog/sleep-newzzz/201412/how-keep-snoring-hurting-your-relationship
https://www.rand.org/randeurope/research/projects/the-value-of-the-sleep-economy.html
https://www.rand.org/randeurope/research/projects/the-value-of-the-sleep-economy.html
https://www.snorerx.com/
https://zquiet.com/
https://goodmorningsnoresolution.com/
https://www.vitalsleep.com/anti-snoring-device-by-vital-sleep.html
https://www.vitalsleep.com/anti-snoring-device-by-vital-sleep.html
https://www.theraventsnoring.com
https://www.smartnora.com/
https://www.snorelab.com
http://dx.doi.org/10.1046/j.1365-2273.2002.00554.x
http://www.ncbi.nlm.nih.gov/pubmed/12071989
http://dx.doi.org/10.1590/S1808-86942011000400013
http://www.ncbi.nlm.nih.gov/pubmed/21860976
http://dx.doi.org/10.1016/j.smrv.2009.06.002
http://www.ncbi.nlm.nih.gov/pubmed/19665907
http://dx.doi.org/10.1016/j.procs.2011.04.117
http://dx.doi.org/10.1016/j.jbi.2014.07.004
http://www.ncbi.nlm.nih.gov/pubmed/25038556
http://www.ncbi.nlm.nih.gov/pubmed/28964567


Electronics 2019, 8, 987 18 of 19

24. Markandeya, M.N.; Abeyratne, U.R.; Hukins, C. Characterisation of upper airway obstructions using
wide-band snoring sounds. Biomed. Signal Process. Control 2018, 46, 201–211. [CrossRef]

25. Hara, H.; Tsutsumi, M.; Tarumoto, S.; Shiga, T.; Yamashita, H. Validation of a new snoring detection device
based on a hysteresis extraction algorithm. Auris Nasus Larynx 2017, 44, 576–582. [CrossRef] [PubMed]

26. Nonaka, R.; Emoto, T.; Abeyratne, U.R.; Jinnouchi, O.; Kawata, I.; Ohnishi, H.; Akutagawa, M.; Konaka, S.;
Kinouchi, Y. Automatic snore sound extraction from sleep sound recordings via auditory image modeling.
Biomed. Signal Process. Control 2016, 27, 7–14. [CrossRef]

27. Snoring Sounds. Available online: https://www.soundsnap.com/tags/snoring (accessed on 6 August 2019).
28. Breathing and Snoring Sound Effects. Available online: https://www.zapsplat.com/sound-effect-category/

breathing-and-snoring (accessed on 6 August 2019).
29. People Snoring Sound Effects. Available online: https://www.fesliyanstudios.com/royalty-free-sound-effects-

download/people-snoring-189 (accessed on 6 August 2019).
30. 10 Minutes Snoring Sound. Available online: https://www.youtube.com/watch?v=1deTKPX1j8c (accessed

on 6 August 2019).
31. Actual Sound of a Man Snoring. Available online: https://www.youtube.com/watch?v=SOxwffK0xUc

(accessed on 6 August 2019).
32. WavePad Audio Editing Software. Available online: https://www.nch.com.au/wavepad/index.html (accessed

on 6 August 2019).
33. Davis, S.; Mermelstein, P. Comparison of parametric representations for monosyllabic word recognition in

continuously spoken sentences. IEEE Trans. Acoust. Speech Signal Process. 1980, 28, 357–366. [CrossRef]
34. Fayek, H. Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients

(MFCCs) and What’s In-Between. Available online: https://haythamfayek.com/2016/04/21/speech-processing-
for-machine-learning.html (accessed on 6 August 2019).

35. Mohamed, A. Deep Neural Network Acoustic Models for ASR. Ph.D. Thesis, University of Toronto, Toronto,
ON, Canada, 2014. Available online: https://tspace.library.utoronto.ca/bitstream/1807/44123/1/Mohamed_
Abdel-rahman_201406_PhD_thesis.pdf (accessed on 6 August 2019).

36. SpeechPy. Available online: https://speechpy.readthedocs.io/en/latest/intro/introductions.html (accessed on 6
August 2019).

37. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
38. Vinod, N.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.
39. Nagi, J.; Ducatelle, F.; di Caro, G.A.; Ciresan, D.; Meier, U.; Giusti, A.; Nagi, F.; Schmidhuber, J.;

Gambardella, L.M. Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture Recognition.
In Proceedings of the IEEE International Conference on Signal and Image Processing Applications
(ICSIPA2011), Kuala Lumpur, Malaysia, 16–18 November 2011.

40. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

41. Xavier, G.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15
May 2010; pp. 249–256.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on
ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 13–16 December 2015; pp. 1026–1034.

43. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
44. A Look at Gradient Descent and RMSprop Optimizers. Available online: https://towardsdatascience.com/a-

look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b (accessed on 6 August 2019).
45. Raspberry, Pi. Available online: https://www.raspberrypi.org (accessed on 6 August 2019).
46. USB Lavalier Lapel Microphon. Available online: https://www.amazon.com/Lavalier-Microphone-Cardioid-

Condenser-K053/dp/B077VNGVL2 (accessed on 6 August 2019).
47. DC Power Supply. Available online: https://www.sparkfun.com/products/13831 (accessed on 6 August 2019).
48. How to Give Your Raspberry Pi a Static IP Address. Available online: https://thepihut.com/blogs/raspberry-

pi-tutorials/how-to-give-your-raspberry-pi-a-static-ip-address-update (accessed on 6 August 2019).

http://dx.doi.org/10.1016/j.bspc.2018.07.013
http://dx.doi.org/10.1016/j.anl.2016.12.009
http://www.ncbi.nlm.nih.gov/pubmed/28161244
http://dx.doi.org/10.1016/j.bspc.2015.12.009
https://www.soundsnap.com/tags/snoring
https://www.zapsplat.com/sound-effect-category/breathing-and-snoring
https://www.zapsplat.com/sound-effect-category/breathing-and-snoring
https://www.fesliyanstudios.com/royalty-free-sound-effects-download/people-snoring-189
https://www.fesliyanstudios.com/royalty-free-sound-effects-download/people-snoring-189
https://www.youtube.com/watch?v=1deTKPX1j8c
https://www.youtube.com/watch?v=SOxwffK0xUc
https://www.nch.com.au/wavepad/index.html
http://dx.doi.org/10.1109/TASSP.1980.1163420
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://tspace.library.utoronto.ca/bitstream/1807/44123/1/Mohamed_Abdel-rahman_201406_PhD_thesis.pdf
https://tspace.library.utoronto.ca/bitstream/1807/44123/1/Mohamed_Abdel-rahman_201406_PhD_thesis.pdf
https://speechpy.readthedocs.io/en/latest/intro/introductions.html
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b
https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b
https://www.raspberrypi.org
https://www.amazon.com/Lavalier-Microphone-Cardioid-Condenser-K053/dp/B077VNGVL2
https://www.amazon.com/Lavalier-Microphone-Cardioid-Condenser-K053/dp/B077VNGVL2
https://www.sparkfun.com/products/13831
https://thepihut.com/blogs/raspberry-pi-tutorials/how-to-give-your-raspberry-pi-a-static-ip-address-update
https://thepihut.com/blogs/raspberry-pi-tutorials/how-to-give-your-raspberry-pi-a-static-ip-address-update


Electronics 2019, 8, 987 19 of 19

49. Dafna, E.; Tarasiuk, A.; Zigel, Y. Automatic Detection of Whole Night Snoring Events Using Non-Contact
Microphone. PLoS ONE 2013, 8, e84139. [CrossRef] [PubMed]

50. Mesquita, J.; Solà-Soler, J.; Fiz, J.A.; Morera, J.; Jané, R. All night analysis of time interval between snores
in subjects with sleep apnea hypopnea syndrome. Med. Biol. Eng. Comput. 2012, 50, 373–381. [CrossRef]
[PubMed]

51. nRF52832 SoC. Available online: https://www.nordicsemi.com/Products/Low-power-short-range-wireless/
nRF52832 (accessed on 6 August 2019).

52. Adafruit Feather nRF52 Bluefruit LE—nRF52832. Available online: https://www.adafruit.com/product/3406
(accessed on 6 August 2019).

53. Lithium Ion Polymer Battery—3.7v 500mAh. Available online: https://www.adafruit.com/product/1578
(accessed on 6 August 2019).

54. Tilt Sensor. Available online: https://www.sparkfun.com/products/10289 (accessed on 6 August 2019).
55. Vibration Motor. Available online: https://www.amazon.com/tatoko-12000RPM-Wired-Phone-Vibration/dp/

B07L5V5GYG (accessed on 6 August 2019).
56. MOSFET N-CH 30V 24A. Available online: https://www.digikey.com/product-detail/en/infineon-

technologies/IRL2703PBF/IRL2703PBF-ND/811700 (accessed on 6 August 2019).
57. Davidson, R.; Townsend, K.; Wang, C.; Cufí, C. Getting Started with Bluetooth Low Energy Tools and Techniques

for Low-Power Networking; O’Reilly Media: Sevastopol, CA, USA, 2014.
58. S132 SoftDevice. Available online: https://www.nordicsemi.com/Software-and-Tools/Software/S132 (accessed

on 6 August 2019).
59. Free RTOS Customization. Available online: https://www.freertos.org/a00110.html (accessed on 6 August 2019).
60. Floating Point Unit (FPU) of nrf52. Available online: https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.

nordic.infocenter.sdk5.v12.0.0%2Fhardware_driver_fpu.html&cp=4_0_9_2_4 (accessed on 6 August 2019).
61. Optimizing Power on nRF52 Designs. Available online: https://devzone.nordicsemi.com/nordic/nordic-blog/

b/blog/posts/optimizing-power-on-nrf52-designs (accessed on 6 August 2019).
62. Raspberry Pi IP Address. Available online: https://www.raspberrypi.org/documentation/remote-access/ip-

address.md (accessed on 6 August 2019).
63. Keras: The Python Deep Learning library. Available online: https://keras.io (accessed on 6 August 2019).
64. Romero, H.E.; Ma, N.; Brown, G.J.; Beeston, A.V.; Hasan, M. Deep Learning Features for Robust Detection of

Acoustic Events in Sleep-disordered Breathing. In Proceedings of the ICASSP 2019—2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 810–814.

65. Emoto, T.; Abeyratne, U.R.; Kawano, K.; Okada, T.; Jinnouchi, O.; Kawata, I. Detection of sleep breathing
sound based on artificial neural network analysis. Biomed. Signal Process. Control 2018, 41, 81–89. [CrossRef]

66. Arsenali, B.; van Dijk, J.; Ouweltjes, O.; den Brinker, B.; Pevernagie, D.; Krijn, R.; van Gilst, M.; Overeem, S.
Recurrent Neural Network for Classification of Snoring and Non-Snoring Sound Events. In Proceedings of
the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 328–331.

67. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.;
Awwal, A.A.S.; Asari, V.K. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics
2019, 8, 292. [CrossRef]

68. Rosebrock, A. ImageNet: VGGNet, ResNet, Inception, and Xception with Keras. Available online: https:
//www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/ (accessed on 20
August 2019).

69. Chollet, F. Deep Learning with Python, 1st ed.; Manning Publications: Shelter Airland, NY, USA, 2017; p. 60.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0084139
http://www.ncbi.nlm.nih.gov/pubmed/24391903
http://dx.doi.org/10.1007/s11517-012-0885-9
http://www.ncbi.nlm.nih.gov/pubmed/22407477
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52832
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52832
https://www.adafruit.com/product/3406
https://www.adafruit.com/product/1578
https://www.sparkfun.com/products/10289
https://www.amazon.com/tatoko-12000RPM-Wired-Phone-Vibration/dp/B07L5V5GYG
https://www.amazon.com/tatoko-12000RPM-Wired-Phone-Vibration/dp/B07L5V5GYG
https://www.digikey.com/product-detail/en/infineon-technologies/IRL2703PBF/IRL2703PBF-ND/811700
https://www.digikey.com/product-detail/en/infineon-technologies/IRL2703PBF/IRL2703PBF-ND/811700
https://www.nordicsemi.com/Software-and-Tools/Software/S132
https://www.freertos.org/a00110.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.0.0%2Fhardware_driver_fpu.html&cp=4_0_9_2_4
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.0.0%2Fhardware_driver_fpu.html&cp=4_0_9_2_4
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/optimizing-power-on-nrf52-designs
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/optimizing-power-on-nrf52-designs
https://www.raspberrypi.org/documentation/remote-access/ip-address.md
https://www.raspberrypi.org/documentation/remote-access/ip-address.md
https://keras.io
http://dx.doi.org/10.1016/j.bspc.2017.11.005
http://dx.doi.org/10.3390/electronics8030292
https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Deep Learning Model for Snoring Detection 
	Dataset Generation 
	Feature Extraction 
	Convolutional Neural Network Architecture 

	Prototype System Architecture 
	Listener Module 
	Wearable Gadget 
	Smartphone App 


	Results 
	Snoring Detection Deep Learning Model Results 
	Prototype System Results 
	Experimental Setup and Results 
	Comparison with Other Works 

	Discussion 
	Conclusions 
	References

