TRAINING RADIAL BASIS FUNCTION NETWORKS BY GENETIC ALGORITHMS

Juliano F. da Mota1,3, Paulo H. Siqueira2,3, Luzia V. de Souza2,3 and Adriano Vitor1,3

1Department of Mathematics, Paraná State University, Com. Norberto Marcondes Avenue 733, Campo Mourão, Brazil
2Department of Graphical Expression, Paraná Federal University, Cel Francisco H. dos Santos Avenue, Curitiba, Brazil
3Graduate Program in Numerical Methods in Engineering, Paraná Federal University, Curitiba, Brazil

Keywords: Radial basis function neural networks, Evolutionary computation, Pattern classification.

Abstract: One of the issues of modeling a RBFNN - Radial Basis Function Neural Network consists of determining the weights of the output layer, usually represented by a rectangular matrix. The inconvenient characteristic at this stage it’s the calculation of the pseudo-inverse of the activation values matrix. This operation may become computationally expensive and cause rounding errors when the amount of variables is large or the activation values form an ill-conditioned matrix so that the model can misclassify the patterns. In our research, Genetic Algorithms for continuous variables determines the weights of the output layer of a RBNN and we’ve made a comparison with the traditional method of pseudo-inversion. The proposed approach generates matrices of random normally distributed weights which are individuals of the population and applies the Michalewicz’s genetic operators until some stopping criteria is reached. We’ve tested four classification patterns databases and an overall mean accuracy lies in the range 91–98%, in the best case and 58–63%, in the worse case.

1 INTRODUCTION

For a long time scientists have been trying to develop methods for pattern classification problems which may help a decision taker in a uncertain scenario. Several mathematical and statistical methods had been developed and, for this reason, improvements in existents methods and the building up of new methods which may reduce the computational effort, offer better results or both are required nowadays.

Every single existent method offer a different option relative to speed and quality of the prediction or classification. The most difficult task, which every researcher yearns, is to develop a method capable of get a high accuracy in a minimal time given the need for speed of the on-line era. By “high accuracy” we mean an error as small as possible and a correct classified percentual as big as possible, considering a pattern classification problem.

This study compares two training methods of a RBFNN, one of them is considered traditional, which is based in calculating the pseudo-inversion of a rectangular matrix and the other uses genetic algorithms for continuous data, changing this matrix into a genetic population individual, and the main objective is to find the optimal (or near-optimal) matrix through natural selection and genetic operators.

To reach this goal, the basic precepts of Radial Basis Function Neural Networks and Genetic Algorithms are presented and its main features are explained in order to form a conceptual basis for the experiments.

2 SOME RELATED RESEARCHES

Trying to solve the main problem of the classical approach of training a RBFNN, which is the need to calculate the pseudoinverse of a rectangular matrix, some authors have proposed alternative methodologies to change that problem into another of lower computational complexity.

The researchers (Li and Ling, 2011) applied the idea of getting the weights of the hidden layer of a RBFNN to develop a generalized model predictive control in a power generating unit that had two input and two output variables. They experiment was to compare the performance of the proposed algorithm (called GA-RBF) with the performance of a Multilayer Perceptron using the back-propagation training...
3 RADIAL BASIS FUNCTION NEURAL NETWORKS

A RBFNN is feed-forward and it has only two layers, one of them is a hidden layer and the other is the output layer. In the hidden layer the activation functions of neurons are radial basis functions. A RBF - Radial Basis Function is defined by (Haykin, 2001) as any function that its functional values are equal to the norm of its arguments.

3.1 Neural Networks which uses Radial Basis Functions

The learning process of this network has its foundations in the theory of nonlinear programming. The architecture of a RBFNN is quite simple, there are only two layers in addition to the input nodes, one hidden layer, which has radial basis functions as activation functions and an output layer which has linear functions as activation, as seen in Figure 1.

The limitation of this method lies in the need of a large training set to achieve a satisfactory performance. Possibly, the standard most commonly used training 60–20–20, meaning 60% for the training set and 20% validation and testing, would probably have to be modified and hence the model could lose the ability to generalize.
3.2.2 Self-organized Selection of Centers

Also described in (Haykin, 2001) and (Silva et al., 2010), this method consists of the main idea of the SOM - Self Organizing Map Algorithm proposed by Kohonen \textit{apud} (Haykin, 2001), which is described below:

1. Choose distinct random values as initial centers, in most cases elements of the training set;
2. During the \(n \)-th iteration, take a sample of training set;
3. Find the center with the minimal euclidian distance to each entering vector;
4. Update the winner center position according to the equation:
 \[c^{(\text{new})} = c^{(\text{old})} + \eta (x - c) \] (2)
 where \(\eta \in (0, 1) \) is a learning rate, \(x \) is the entering vector and \(c \) is the winner center.
5. Back to Step 2 until no noticeable changes in the centers matrix can be perceived.

The main difference between this algorithm and the classical SOM algorithm is precisely the absence of a neurons map, i.e., no neighborhood is considered to update the neurons. That means to say a SOM with the "Winner Takes All" principle (Siqueira et al., 2005), where only the winner neuron is updated.

3.2.3 Supervisioned Selection of Centers

This is the most generic form to make the selection of centers. The idea is to fit the centers by error correction and thus RBFNN resembles the classical Perceptron.

4 CONTINUOUS DATA GENETIC ALGORITHMS

The GA - Genetic Algorithm as described in (Holland, 1975) \textit{apud} (Man et al., 1996) are basically a set of algorithms based on the principles of evolutionary biology stated by Charles Darwin in his book known worldwide \textit{The Evolution of Species}. The main objective of the GAs is to optimize functions.

The considered principles in a GA preparation are natural selection, heredity, mutation and recombination (crossing-over). When translating into a mathematical language, these principles become genetic operators of crossover and mutation, such a way that heritability and natural selection becomes a decision rule.

The basic algorithm, systematized by (Holland, 1975) \textit{apud} (Man et al., 1996), has low implementation complexity and this is one of the great advantages of this technique. The steps of the algorithm are described in the algorithm in Figure 2.

It is noteworthy that, initially, the binary number base (binary representation) is considered for implementation and application of GAs. Today, however, is quite common to find applications where the decimal number base is used. Possibly, this change has been due to real representation allow greater range of operators, as will be shown in section 4.1.

Let \(g = 0 \) the generation counter;
Create and initialize a presized population;
while no stop criteria is reached do
evaluate the fitness of each individual in population;
perform reproduction to generate offspring;
select the new population;
advance to the new generation, i.e., \(g = g + 1 \);
end while

Figure 2: The GA Algorithm.

4.1 Real Representation and Michalewicz Operators

One of the studies using the real representation can be found in (Michalewicz et al., 1994), were there are three crossover operators and three mutation operators described and mathematically justified. Additionally to those descriptions, we describe also an extra mutation operator. In all operators, \(p_j \) are the parents and \(c_j \) are the offspring.

The ordinary crossover is a variation of a conventional one point crossover, which is used in the binary representation, adapted to the real representation, as we can see in Figure 3.

Given two individuals, the arithmetical crossover generates,
\[c_1 = \beta p_1 + (1 - \beta) p_2 \]
and
\[c_2 = \beta p_2 + (1 - \beta) p_1 \] with \(\beta \sim U(0, 1) \).

For another two individuals such that the fitness of \(p_1 \) is greater than the fitness of \(p_2 \), the heuristic crossover
generates,
\[c = p_1 + \beta (p_2 - p_1) \] where \(\beta \sim U(0, 1) \).

Given an individual \(p \), the \textit{uniform mutation} operator replaces one gene by a random number coming from a uniform distribution, i.e.,
\[c_i = \begin{cases} U(a_i, b_i), & \text{if } i = j \\ p_i, & \text{otherwise}. \end{cases} \]

The values \(a_i \) and \(b_i \) represents the interval limits to the individual \(c_i \), just in case of a factibility restriction.

Given an individual \(p \), the \textit{limit mutation} operator replaces one gene by one of the interval limits \([a_i, b_i] \), avoiding the arithmetical crossover to take the genes to the interval center, here we consider \(r \sim U(0, 1) \),
\[c_i = \begin{cases} a_i, & \text{if } r < 0.5 \text{ and } i = j \\ b_i, & \text{if } r \geq 0.5 \text{ and } i = j \\ c_i, & \text{otherwise}. \end{cases} \]

Finally, an individual \(p \), the \textit{non-uniform mutation} operator replaces one gene by a random number coming from a non-uniform distribution, i.e.,
\[c_i = \begin{cases} p_i + (b_i - p_i)f(G), & \text{if } r_1 < 0.5 \text{ and } i = j \\ p_i - (p_i - a_i)f(G), & \text{if } r_1 \geq 0.5 \text{ and } i = j \\ p_i, & \text{otherwise}. \end{cases} \]

considering,
\[f(G) = \left[r_2 \left(1 - \frac{G}{G_{\text{max}}} \right)\right]^b, \]
where \(G \) is the current generation, \(G_{\text{max}} \) is the maximum number of generations and \(r_1, r_2 \sim U(0, 1) \). The application of non-uniform mutation in all genes of this individual is called multiple \textit{non-uniform mutation}.

5 EXPERIMENTS AND RESULTS

ANALYSIS

In our experiments, the performance of a RBFNN using the traditional method of training, the pseudo-inversion of the matrix that contains the activation values of the intermediate layer, was compared with alternative training pathway GA, considering Michalewicz operators (Michalewicz et al., 1994). We’ve used the already well-known classification problems - Iris, Contraceptive Method Choice (CMC), Cancer and Blood Transfusion (BT) - data sets that are found in (Frank and Asuncion, 2010). The characteristics of the sets used in the tests are shown in Table 1, the number of variables in standard input, output and the number of patterns in each set.

For all data sets, we performed an experiment that consisted of five steps:

1. Separate the database into three sets:
 - Training set, with 60% of the examples;
 - Validation set, with 20% of the examples and;
 - Set of tests, with 20% of the examples.

2. Train a RBFNN 100 epochs with each approach (pseudo-inversion and GA) and obtain CCP - Correct Classified Percentage in each set of item 1, especially set of tests;

3. Record the results of the statistical percentages of correct classifications of the two training methods;

4. Considering a significance level of 5% to test the hypothesis of equality of variances in order to determine which test comparing the means used, writing \(H = 0 \) if variances are equal and \(H = 1 \) otherwise;

5. Considering a significance level of 5%, perform two comparison tests medium with the following assumptions:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Entries</th>
<th>Outputs</th>
<th>Training</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>4</td>
<td>3</td>
<td>90</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>CMC</td>
<td>9</td>
<td>3</td>
<td>884</td>
<td>295</td>
<td>294</td>
</tr>
<tr>
<td>Cancer</td>
<td>9</td>
<td>2</td>
<td>420</td>
<td>140</td>
<td>139</td>
</tr>
<tr>
<td>BT</td>
<td>4</td>
<td>2</td>
<td>449</td>
<td>150</td>
<td>149</td>
</tr>
</tbody>
</table>

considering \(h_1 = 0 \) if \(h_0 \) is not rejected in the first test and \(h_1 = 1 \), otherwise. Considering yet \(h_2 = 0 \) if \(h_0 \) is not rejected in the second test and \(h_2 = 1 \), otherwise.

According to the literature, one of the most important parameters for a neural network, including the RBFNN, is the number of neurons in its layers, in the specific case of this research, the amount of intermediate layer neurons. The limit here is set to test from two to 10 neurons, increasing of two at each experiment.

Two other major issues, when talking about the parameters of a RBFNN, are the method of centers selection and the definition of the spread of the Gaussian activation functions in the hidden layer. The method of centers selection used in this study was the self-organized selection of centers, described in Section 3.2.2 and the method for setting the spread of each RBF is described in (Silva et al., 2010) and basically
consists into calculating the radius of each function based on the mean square distance between the inputs and the centers of the neurons that received an update during the self-organized selection of centers.

The parameters selection of a GA also does not have a consolidated method, varying according to each application. Therefore, it is necessary to perform some initial tests to observe the influence of each parameter in the performance of the algorithm. In this research, we’ve made more than 50 preliminary tests and the best parameter setting is in Table 2.

Talking about the mutation operators which have restricted the range to the generated numbers, i.e., the Limit Mutation, Non-uniform Mutation and Non-uniform Multiple Mutation, the range adopted in all cases was to accept an increase of up to 100% of the highest absolute value of a gene in any individual.

This means that if the highest absolute value among the genes of all individuals is τ, then the possible range for the generation of a mutation gene would be $(-2 \cdot \tau, 2 \cdot \tau)$. This measure sought a balance between excessive extrapolation/restriction of the search space.

In addition, with respect to the size of the initial population we tested several initial population sizes and the best result was obtained by the size of 100. Although Genetic Algorithms are known for providing approximate solutions, here it’s being used as an optimal solution pursuing technique.

The statistical results of 100 rounds for each data set are in the Table 3–6, for Iris, CMC, Cancer and BT, respectively. In the tables you can see information about the mean and standard deviation of the performance of each algorithm for each data set. In the tables, the variable “NNeuro” represents the number of neurons in the hidden layer. For each number of neurons in the first line depicts the statistics using pseudo-inversion and the second statistics by the GA approach.

As shown in Table 3, the proposed model using GA to obtain the weight matrix showed a slightly greater variability than the approach via pseudo-inversion. The mean CCP by the GA approach was not superior to the pseudo-inversion in any case and according to the test t, for comparison between two means, there was a tie with two neurons and superiority of the approach via pseudo-inversion with other amounts of neurons tested, notice that in all tests the considered significance level is 5%.

The results in Table 4 shows that considering a significance level of 5%, the variance of the performances of both techniques is not statistically significant and there is superiority of the approach via pseudo-inversion in two cases: six and 10 neurons in the hidden layer, given the values of h_1. Even comparing the best performance in both cases, the approach via GA was inferior about two percentage points approximately.

For the Cancer dataset in Table 5, considering a significance level of 5%, there was no difference between the performance variances of both techniques, except with 10 neurons, and that the only case in which there was a statistically significant difference, with six neurons in the hidden layer, this case was favorable to the GA approach given the h_2 value. Finally, in Table 6 considering 5% of significance, there was no difference between the variances of the performance and the pseudo-inversion approach was better in three of five numbers of neurons tested: six, eight and 10 neurons. Once the volume of two four neurons there was a tie.
Considering the results obtained and previously discussed, we can say that:

- the genetic operators presented did not produce good populations, given that the GA approach did not overcome the traditional approach, except in one case that can be seen in Table 5;
- the GA approach performance did not reach the expectations when compared with the traditional approach, because even in the situation was better, this superiority was not unquestionable;
- there were two cases where none of the two approaches achieved a significant result: in the data set “Contraceptive Method Choice”, the best performances of both algorithms was below 70% on all executions and below 60% on average. In the case of the “Blood Transfusion”, despite the mean CCP was higher 70%, a possible application in reality would not be feasible because the model would not be reliable;
- the training via GA produced results lower than the pseudo-inversion in three of four sets tested, considering the significance defined in the tests.

Taking an overview of the results, considering a 5% level of significance, we can say that the GA approach even being able to produce results as good as the supposedly exact approach had a significantly lower performance in the databases we’ve tested. However, it is necessary to consider that the exact approach suffers with complexity and numerical rounding errors with the growth of the number of neurons in the hidden layer. Thus, taking into account the adaptability of GA, if new more robust genetic operators are developed will overcome this limitation.

6.1 Future Works

Noting the apparent failure of the considerations made in this study, below we’ve listed some possible suggestions for future works that may continue or refute this line of thinking:

- test other GA operators;
- compare other search algorithms (and GA) with the pseudo-inversion approach;
- compare other search algorithms with supervised learning approach;
- use statistical techniques such as Principal Component Analysis and Factor Analysis in the treatment of data in order to see if they can help improve performance in sets with similar characteristics o the “Contraceptive Method Choice”, in which both approaches had less than 70% performance.

REFERENCES

