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Introduction
Diabetes mellitus in early pregnancy is one of the maternal diseases 
that cause birth defects in infants, a diabetic complication known 
as diabetic embryopathy [1,2]. About 10% of newborn babies 
to diabetic mothers have at least one structural defect, much 
higher than the background birth defect rate (3%) [3,4]. With 
a rapid growth of diabetic population, the number of newborn 
babies having structural anomalies is projected to increase [5]. 
Therefore, it is urgent to develop therapeutic interventions to 
prevent birth defects in diabetic pregnancies.

Literature Review
Developmental malformations in the embryo of 
diabetic pregnancy
Clinical data show that structural defects in infants of diabetic 

mothers are seen in many organs, and most common in the 
central nervous and cardiovascular systems (CNS and CVS) [2,6,7]. 
In the CNS, anencephaly, excencephaly, and microcephaly in the 
brain and spinal bifida in the spinal cord are frequently seen in 
infants [2,7]. In the CVS, hypoplastic ventricles, ventricular septal 
defects, conotruncal anomalies, double outlet ventricles, and 
tetralogy of Fallot are common in human cases [8,9].

In order to investigate the mechanisms underlying the 
hyperglycemia-induced fetal abnormalities, animal models of 
diabetic pregnancy have been generated and used [7,10]. In the 
commonly used diabetic mouse and rat models, embryonic and 
fetal structural defects in the CNS and CVS have been observed, 
similar to those in human infants (Figures 1 and 2) [1,2].

Glucose as a teratogen in diabetic pregnancy
It has been shown that high glucose is the teratogenic factor, 
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whereas other factors associated with diabetes, such as ketone 
bodies, advanced glycation end products, and branched chain 
amino acids, may synergistically affect the action of glucose [11-
13]. Although maintenance of euglycemia in diabetic women 
before or during the first trimester can reduce the prevalence of 
fetal abnormalities, to prevent birth defects is still a tough task 
[14,15]. The reasons for this include that (1) euglycemia is difficult 
to achieve and maintain even with excellent compliance and 
clinical care; (2) short episodes of hyperglycemia during critical 
stages of embryogenesis can cause irreversible damages to the 
embryo; (3) many women do not know that they are diabetic 
before conception; and (4) many diabetic women do not plan 
pregnancies and do not seek prenatal care [16-18]. Therefore, 
therapeutic interventions are needed to protect embryos from 
hyperglycemic insult. 

Intracellular stresses in diabetic embryopathy 
Glucose influx into the embryonic cells disturbs normal 
intracellular glycolysis, and subsequent protein O-GlcNAcylation, 
via the as hexosamine biosynthetic pathway pathway, and 
perturbation of homeostasis in phospholipid metabolism [19,20]. 
The abnormal intracellular activities impact gene expression 
and organelle functions. Maternal hyperglycemia upregulates 
nitric oxide (NO) synthase 2 (Nos2), also known as inducible Nos 
(iNos), resulting in elevation of NO levels in the embryo [21,22]. 
High levels of reactive nitrogen species (RNS) lead to increases 
in protein nitrosylation and nitration and subsequent nitrosative 
stress [23,24].

Dysfunction of the rough endoplasmic reticulum (ER) causes 
defects in protein folding. Unfolded and misfolded proteins 
cannot be processed, packaged, and transported out of the ER, 
resulting in excessive accumulation of unfolded or misfolded 
polypeptides in its lumen, generating ER stress [25,26]. First, the 

UPR increases the expression of chaperone proteins to resolve the 
protein folding crisis [27,28]. Second, the UPR attenuates protein 
translation and eliminates the abnormally folded proteins via 
degradation. Third, if the crisis persists, the UPR arrests mitosis, 
and/or trigger apoptosis to eliminate the cells [27,29].

Maternal hyperglycemia also alters morphogenesis and function 
of mitochondria and elevates levels of reactive oxygen species 
(ROS) in the embryo [30,31]. In addition, it diminishes endogenous 
antioxidative buffering, including depletion of antioxidants, such 
as glutathione, and reduction of the expression and activity of 
antioxidative enzymes, including superoxide dismutases (SODs) 
and glutathione peroxidases (GPXes), resulting in oxidative stress 
[32,33].

Interventional studies in animal models
The hyperglycemia-induced intracellular stress conditions have 
been targets for interventional studies to reduce embryonic 
malformations in diabetic animal models [1,7]. During the past 
decades, efforts have been focused on oxidative stress [1,33]. 
Folate (vitamin B12), a single carbon donor, is involved in DNA 
synthesis, DNA methylation, and redox regulation [34,35]. 
Supplementation of folic acid has long been used in perinatal 
care to reduce fetal abnormalities and other adverse pregnancy 
outcomes [34,35]. With respect to diabetic embryopathy, 
addition of folic acid can reduce NTDs in animal embryos cultured 
in high glucose [36]. Treatment with folic acid in diabetic pregnant 
animals has also shown to decrease embryonic malformations 
[36-38]. However, in humans, nearly 30% of pregnancies 
complicated with diabetes are resistant to folic acid treatment 
[39]. The underlying mechanisms are still unknown. 

A large number of antioxidants, including vitamin C, vitamin 
E, lipoic acid, ergothioneine, and N-acetylcysteine, have been 
tested in diabetic animals and all shown to reduce embryonic 
malformations [40-49]. Arachidonic acid and myo-inositol 
have been used to restore the deficiency caused by maternal 
hyperglycemia and to inhibit ROS-mediated lipid peroxidation 
[40,50,51]. However, the enthusiasm of using antioxidants to 
prevent birth defects is dampened by the failure of clinical trials 
to treat similar diseases, such as preeclampsia and cardiovascular 
diseases [52-54].

Strategies to target other stress conditions are warranted for 
exploration. Facilitating protein folding to alleviate ER stress is a 
candidate approach. A number of chemical chaperones, such as 
phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) 
have been shown to ameliorate diseases in animal models and 
humans, such as cystic fibrosis and diabetes [55-58]. PBA has 
been shown to reduce NTDs in mouse embryos in vitro and 
rescue endocardial cell migration in heart tissues cultured in high 
glucose [59,60]. More significantly, it has been demonstrated to 
reduce NTDs in embryos of diabetic mice in vivo [61].

Alleviation of nitrosative stress can be achieved by inhibiting 
NOS2 activity. Such approach has been demonstrated to be 
feasible. Oral treatment of diabetic pregnant mice with an NOS2 
inhibitor, L-N6-(1-iminoethyl)-lysine, has shown to decrease 
embryonic malformation rate [62].

Figure 1 NTDs in the fetuses of diabetic mice. (A) Non-diabetic 
control; (B) Diabetes, excencephyly; (C) Diabetes, 
anencephaly. Scale bar=2 mm (apply to all images).

 

Figure 2 Heart defects in fetuses of diabetic mice. Frontal 
sections of the heart. (A) Non-diabetic control; (B) 
Diabetes. The arrow and arrow head indicate septal 
defects and myocardial hypoplasia, respectively. 
AO: Aorta, IVS: Interventricular Septum; LV: Left 
Ventricle; RA: Right Atrium. Scale bar=200 µm.
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Common name Molecular structure and another name

Quercetin

 
Quercetin aglycone

Quercetrin

Quercetin-3-L-rhamnoside

Rutin

Quercetin-3-O-rutinoside

Isoquercetin

Quercetin-3-O-glucoside     

Spiraeoside

Quercetin-4'-O-glucoside

Table 1 Major naturally occurring flavonols.

Phytochemicals for potential applications in 
human pregnancies
Because of the unique characteristics of diabetic embryopathy, 
interventions should be non-invasive, easy to obtain and use 
before conception, and safe to the embryo and mother. Thus, 
oral treatment and dietary supplementation are the practical 
routes of administration. However, the identification of safe and 
effective therapeutic agents becomes the major obstacle in birth 
defect prevention. 

Attentions have been drawn to naturally occurring products, 

phytochemicals, in fruits, vegetables, and even traditional 
medicines [63]. The most common dietary phytochemicals include 
flavonoids, stilbenoids, and curcuminoids [64-67]. The common 
characteristic of these phytochemicals is that they possess phenyl 
rings in their backbone, thus, also known as polyphenols (Tables 
1-3). Multiple hydroxyl groups are attached to the phenyl rings, 
providing active sites for reaction with other molecules [68,69]. 
These hydroxyl groups can be replaced with other groups, such 
as methyl and glycoside, to generate a large variety of derivatives 
(Tables 1-3). Different derivatives have different physical and 
chemical characteristics and therapeutic properties. 
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Common name Molecular structure and modification

Resveratrol

Aglycone

Pterosilbene

Aglycone

Piceatannol

Aglycone

Astringin

Glycoside

Piceid

Glycoside

Table 2 Major naturally occurring stilbenoids.

Resveratrol, a stilbenoid antioxidant, has been shown to reduce 
apoptosis in the embryos of diabetic animals and restore the 
levels of proteins that are involved in regulation of apoptosis 
and development, including retinoic acid receptors and protein 
kinases [70,71]. Curcumin, rich in turmeric, and punicalagin, 
found in pomegranate juice, can also reduce NTDs in mouse 
embryos cultured in high glucose [72,73].

Discussion
Derivatives of flavonoid also possess antioxidative properties. 
Epigallocatechin-3-gallate (EGCG), abundant in green tea, has 
been shown to reduce NTDs in mouse embryos in vitro and in 
vivo [74,75]. In addition to antioxidative properties, some of 
polyphenols also inhibit NOS expression and activity and block 

ER stress-activated molecular pathways [76-78]. Among the 
flovonols, quercetin (QC) has been shown to reduce NTDs in 
the embryos of diabetic mice. Such effect is associated with 
alleviation of nitrosative stress, indicated by decreases in protein 
nitrosylation and nitration, and oxidative stress with reduced 
levels of lipoperoxation products [79]. QC upregulates genes 
that encode antioxidative enzymes to enhance endogenous 
antioxidative capacity for long-lasting protection against oxygen 
free radicals [79]. Moreover, QC also increases the expression of 
the genes involved in DNA damage repair [79]. These suggest that 
QC affects multiple molecular systems to enforce cellular defense 
against hyperglycemic insult. 

However, QC is an aglycone form of flavonoid. It has lower solubility 
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Common name Molecular structure

Curcumin

Bisdemethoxycurcumin

Demethoxycurcumin

Table 3 Major naturally occurring curcuminoids.

in water and lower rate of absorption in the gastrointestinal tract 
(GI) than its modified derivatives [80,81]. These characteristics 
may limit its applicability in clinical practice. 

Quercetin-3-glycoside (Q3G), also known as isoquercetin, is 
a glucoside derivative of QC. It has higher water solubility and 
higher GI absorption rate [80,82,83]. Q3G is relatively stable in 
circulation and thus, has higher bioavailability in organ systems. 
Unlike other QC derivatives, Q3G can be transported via glucose 
carriers, which increases its bioavailibility to cells [84]. Treatment 
with Q3G in vivo reduces NTDs in the embryos of diabetic 
mice [85]. While alleviating intracellular stress conditions, Q3G 
modulates the signaling of the NFκB system, which is involved in 
regulating the expression of NOSes and SODs [85].

Conclusion
Human pregnancy presents unique challenges for intervention to 
prevent birth defects. The safety and effectiveness are the key 
factors in development of intervention strategies. Searching for 
safe and effective agents from phytochemicals is an approach 
of worth taking. Vagarous studies are required to delineate the 
pharmacodynamics and pharmacokinetics of candidate agents in 
both maternal and embryonic systems. Complete understanding 
of the cellular and molecular mechanisms underlying their 
actions in diabetic embryopathy is also essential for ensure the 
feasibility in application in human pregnancies.
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