A combinatorial property on angular orders of plane point sets

Ruy Fabila-Monroy, Clemens Huemer, Dolores Lara

Abstract

We study the following combinatorial property of point sets in the plane: For a set \(S \) of \(n \) points in general position and a point \(p \in S \) consider the points of \(S - p \) in their angular order around \(p \). This gives a star-shaped polygon (or a polygonal path) with \(p \) in its kernel. Define \(c(p) \) as the number of convex angles in this star-shaped polygon around \(p \), and \(c(S) \) as the sum of all \(c(p) \), for \(p \in S \). We show that for every point set \(S \), \(c(S) \) is always at least \(\frac{1}{\sqrt{2}} n^2 - O(n) \). This bound is shown to be almost tight. Consequently, every set of \(n \) points admits a star-shaped polygonization with at least \(\sqrt{n^2} - O(1) \) convex angles.

Keywords:
Combinatorial problems
Point set
Convex angle
Star-shaped polygon

1. Introduction

Let \(S \) be a set of \(n \) points in the plane in general position, that is, no three points lie on a common line. When connecting points of \(S \) with straight-line segments, one can form triangles, simple polygons or polygonizations (simple polygons using all points of \(S \)). These elementary constructions lead to difficult combinatorial problems on point sets, like to determine, among all sets \(S \) of \(n \) points, the minimum number of empty triangles [3], the minimum size of the largest convex polygon in \(S \) (the Erdős–Szekeres theorem) [5], or the maximum possible number of polygonizations [6]. Describing properties of point sets sheds light on this kind of problems. In this note we study the following combinatorial property of point sets: For a set \(S \) of \(n \) points in general position in the plane and a point \(p \in S \) consider the points of \(S - p \) in their angular order around \(p \). This gives a star-shaped polygon with \(p \) in its kernel. Define \(c(p) \) as the number of convex angles in this star-shaped polygon around \(p \). If \(p \) is an interior point of \(S \), then we obtain a star-shaped polygon with \(p \) in its kernel. If \(p \) is an extreme point of \(S \) then the ordered set \(S - p \) gives a polygonal path. An angle \(\angle q_{i-1}, q_i, q_{i+1} \) at \(q_i \) defined by three consecutive vertices of \(P \), or \(P' \) respectively, is convex with respect to \(p \) if the four points \(p, q_{i-1}, q_i, q_{i+1} \) form a convex quadrilateral. We also say that \(q_i \) is a convex vertex. See Fig. 1.

Fig. 1. The star-shaped polygon of \(S - p \). \(q_i \) is a convex vertex, and \(q_{i-1} \) is reflex.
In a polygonal path P' we do not consider the angle at the first and at the last vertex. Let $c_S(p)$ denote the number of convex angles of the polygon P, respectively the polygonal path P', obtained by the angular order of $S - p$ around p. We have $0 \leq c_S(p) \leq n - 1$, because for p an extreme point of S that only sees one reflex chain, clearly $c_S(p) = 0$. On the other hand if p lies inside a convex polygon with vertex set $S - p$ then all $n - 1$ consecutive angles around p are convex. We define $c(S) = \sum_{p \in S} c_S(p)$ and $c(n) = \min_S c(S)$, where the minimum is taken over all point sets S of n points in general position in the plane. We show that $c(n) \geq \frac{1}{\sqrt{2}}n^2 - O(n)$. In other words, for every point set S of n points in general position the sum of convex angles around all points $c(S) \geq \frac{1}{\sqrt{2}}n^2 - O(n)$. This bound is almost tight, since there exist point sets S such that $c(S) \leq \frac{n^2}{\sqrt{2}} - O(n)$.

This result also implies that every set of n points in general position in the plane admits a star-shaped polygonization with at least $\frac{n^2}{2} - O(1)$ convex angles.

The definition of $c(S)$ relates to the efficient algorithm of Dobkin et al. [4] to count the number of empty triangles in a point set S: For $p \in S$, consider the star-shaped polygon of $S - p$ around p. Then each interior diagonal of this polygon gives rise to an empty triangle of S incident to p. For counting the number of empty triangles of S it is sufficient to construct this star-shaped polygon for each point $p \in S$ and count the number of interior diagonals. Then every empty triangle is encountered exactly three times.

The definition of $c(S)$ also is related to the reflexivity [1,2] of a point set S, that is, the smallest number of reflex vertices in a polygonization of S. Here, we focus on star-shaped polygonizations.

We finally remark that star-shaped polygonizations also have important applications in computational geometry, see for example [7], due to their simplicity and the facility of triangulating them. In this sense, finding the simplest polygonization of a point set is a useful issue. Star-shaped polygonizations with the maximum number of convex angles might be among the simplest ones.

2. Proofs

Lemma 2.1. Let a point set S of n points in general position in the plane be given, let $S' \subset S$ and $p \in S'$. Then $c_{S'}(p) \geq k$ implies $c_S(p) \geq \frac{k^2}{2}$.

Proof. Let $Q = \{q_1, \ldots, q_k\}$ denote the ordered subset of convex vertices of the angular order of $S' - p$ around p. If p is an extreme point of S', then also include the first and last vertex q_0 and q_{k+1} of Q in Q. For three consecutive vertices q_{i-1}, q_i, q_{i+1} of Q let $S_{q_i} \subset S - p$ be the ordered subset of $S - p$ from q_{i-1} to q_{i+1}. We show that S_{q_i} contains at least one convex vertex around p in S, different from q_{i-1} and q_{i+1}. Assume the angle at q_i in S_{q_i} around p is not convex, and let $s_1, s_2 \in S'$ be the previous and next point to q_i in the angular order of $S' - p$ around p. Two rays from p through s_1 and q_i define a cone s_1, p, q_i with apex p. Also consider the cone q_i, p, s_2 with apex p. Then at least one of the two cones s_1, p, q_i and q_i, p, s_2 contains a point of S in its interior such that it lies outside the triangle s_1, p, q_i, or outside the triangle q_i, p, s_2, respectively. Assume S contains a point in the cone s_1, p, q_i outside the triangle s_1, p, q_i. Among all these points, consider the point z with maximal distance to the line s_1q_i. Consider z_2, the line through z parallel to the line through s_1 and q_i. All points of S_{q_i} inside the cone s_1, p, q_i lie on that side of z_2 that contains p. Hence, the angle at z is convex in S_{q_i}. It follows that S_{q_i} contains at least one convex angle, different from q_i-1 and q_{i+1}. For p an extreme point of S, we can divide the vertices of the polygonal path P' of $S - p$ into $\left\lceil \frac{k}{2} \right\rceil$ groups $S_{q_{2i-1}},$ for $i = 1, \ldots, \left\lfloor \frac{k}{2} \right\rfloor$. Each group contains at least one convex angle. For p an interior point of S, the following cases arise:

1. If p lies outside the convex hull of Q then again we can consider the polygonal path as in the previous case.

2. If p lies inside the convex hull of Q:
 (a) If k is even, we can divide the points of S into $\frac{k}{2}$ groups $S_{q_{2i-1}}$, each of them containing a convex angle.
 (b) If k is odd, then consider the cone q_k, p, q_1 with apex p:
 i. If it contains a convex angle of $S - p$ around p in its interior, then we divide the remaining points into $\frac{k+1}{2}$ groups $S_{q_{2i-1}}$, each of them containing a convex angle.
 ii. If the cone q_k, p, q_1 does not contain a convex angle in its interior, then there is a convex angle in the cone q_k, p, q_2, or possibly the convex angle is at q_1, and we can divide the remaining points into $\frac{k-1}{2}$ groups.

In each case, this gives at least $\left\lceil \frac{k}{2} \right\rceil$ convex angles. □

Theorem 2.2. $\frac{1}{\sqrt{2}}n^2 - O(n) \leq c(n) \leq 2n^2 - O(n)$.

Proof. Let S be any set of n points in general position in the plane. If for each point p of S, $c_S(p) \geq \frac{1}{\sqrt{2}}\sqrt{n}$, then clearly $c(S) = \sum_{p \in S} c_S(p) \geq \frac{1}{\sqrt{2}}n^2$. Thus, assume that S contains a point p with $c_S(p) < \frac{1}{\sqrt{2}}\sqrt{n}$. Let Q denote the ordered subset of convex vertices from the points of $S - p$ in their angular order around p. Q partitions $S - p - Q$ into $k \leq \frac{1}{\sqrt{2}}\sqrt{n}$ chains of reflex vertices. We also include the two points of Q that bound a reflex chain to that chain. It might be the case that a chain only consists of two vertices of Q. Note that $k = \lvert Q \rvert + 1$ if p is an extreme point of S, and $k = \lvert Q \rvert$ otherwise. Denote these chains as R_1, \ldots, R_k. We have $\sum_{j=1}^k \lvert R_j \rvert = n - \lvert Q \rvert - 1$. Each set R_j with $\lvert R_j \rvert > 2$ forms an empty convex polygon. Hence, for each point q of $R_j, j = 1, \ldots, k$, we have $c_{R_j}(q) = \lvert R_j \rvert - 3$, or $c_{R_j}(q) = 0$ if $\lvert R_j \rvert = 2$. By Lemma 2.1, each point of R_j sees at least $\left\lceil \frac{\lvert R_j \rvert - 3}{2} \right\rceil$ convex angles in S. Summing up at all points of $S - p$ we get at least $\sum_{j=1}^k \lvert R_j \rvert \left\lceil \frac{\lvert R_j \rvert - 3}{2} \right\rceil \geq \sum_{j=1}^k \left\lceil \frac{\lvert R_j \rvert - 3}{2} \right\rceil \geq \frac{2n^2}{\sqrt{2}} - \frac{3n\sqrt{n}}{2}$ convex angles in total. Elementary calculations show that this sum is
minimized if all $|R_j|$ are equal, given that $\sum_{j=1}^{k} |R_j|$ is a fixed number. We thus can assume $|R_j| = \frac{\sqrt{n}}{k} + O(1)$ for all j.

We get

$$c(S) \geq \sum_{j=1}^{k} \frac{|R_j|^2}{2} - \sum_{j=1}^{k} 3|R_j| \geq k \left(\frac{n^2}{2k^2} - \frac{n}{k}O(1) + O(1) \right) - \frac{3}{2}(n+k-1)$$

$$\geq \frac{n^2}{2k} - O(n)$$

$$\geq \frac{1}{\sqrt{2}}n^{\frac{3}{2}} - O(n).$$

A set S of n points with $c(S) \leq 2n^{\frac{3}{2}}$ is shown in Figs. 2 and 3, where also star-shaped polygons and a polygonal path are drawn. Here $n = m^2$ for $m \in \mathbb{N}$. The same construction can be adapted for other values of n as well. There are \sqrt{n} points that form a regular polygon. For each edge of the polygon, a chain of $\sqrt{n} - 1$ points is placed inside the polygon very close to the midpoint of the edge in such a way that these points together with the two endpoints of the corresponding edge of the regular polygon form a convex polygon.

To count $c(S)$ we distinguish whether a point p is an extreme point of S (1), see Fig. 2; p is an interior point of S that is neither the first nor the last point of a chain (2), see Fig. 3(left); or p is an interior point of S that is the first or the last point of a chain (3), see Fig. 3(right). For each point p of type (1) we count $c_S(p) = 3\sqrt{n} - 5$. Since there are \sqrt{n} points of type (1), this gives $3n - 5\sqrt{n}$ convex angles. For each point p of type (2) we count $c_S(p) = 2\sqrt{n} - 2$. Also for each point p of type (3) we count $c_S(p) = 2\sqrt{n} - 2$. S has $\sqrt{n}(\sqrt{n} - 1)$ interior points, this gives $2n^2 - 4n + 2\sqrt{n} - 2\sqrt{n}$ convex angles. We obtain $c(S) = \sum_{p \in S} c_S(p) = 2n^2 - 4n + 2\sqrt{n} - 2\sqrt{n} - 3\sqrt{n}$. □

Corollary 2.3. Every set S of n points in general position in the plane admits a star-shaped polygonization of S with at least $\sqrt{\frac{n}{2}} - O(1)$ convex angles.

Proof. By Theorem 2.2, for at least one point $p \in S$, $c_S(p)$ is at least $\sqrt{\frac{n}{2}} - O(1)$. If p is an interior point, replace an edge uv (where preferably u or v is a reflex vertex) of the star-shaped polygon of $S - p$ by the edges up and vp. If p is an extreme point, connect p to the first and last vertex of the polygonal path of $S - p$. In each case, a star-shaped polygonization is obtained. □

Acknowledgement

The authors would like to thank an anonymous referee for his valuable comments and suggestions.

References

