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1. Statement

Let us us remind the definition of moving least-squares approximation and some
basic results.

Let:

1. {x1, . . . ,xm} be a set of points in bounded domain D ⊂ R
d; and let

xi 6= xj , if i 6= j.

2. f : D → R be a continuous map.

3. {p1(x), . . . , pl(x)} be a set of fundamental functions in D (i.e. continuous
and linearly independent) and let Pl be their linear span.
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4. W : Rd × R
d → R be a smooth function.

Following [6], we will use the following definition. The moving least-squares

approximation of order l at a point x is the value of p∗(x), where p∗ ∈ Pl is
minimizing the least-squares error

m
∑

i=1

W (x,xi) (p(x)− f(xi))
2

among all p ∈ Pl.
The equivalent statement is the following constrained problem:

Find the minimum of Q =

m
∑

i=1

w(x,xi)a
2
i , (1)

subject to

m
∑

i=1

aipj(xi) = pj(x), j = 1, . . . l. (2)

Here we assumed:

H1.1. W (xi,x) > 0 if xi 6= x; w(xi,x) = W−1(xi,x), i = 1, . . . ,m.

H1.2. rank(Et) = l.

H1.3. 1 ≤ l < m.

We introduce the notations:

E =











p1(x1) p2(x1) · · · pl(x1)
p1(x2) p2(x2) · · · pl(x2)

...
...

...
p1(xm) p2(xm) · · · pl(xm)











, a =











a1
a2
...
am











,

D =2











w(x1,x) 0 · · · 0
0 w(x2,x) · · · 0
...

...
...

0 0 · · · w(xm,x)











, c =











p1(x)
p2(x)

...
pl(x)











.

Theorem 1.1 (see [6]). Let the conditions (H1) hold true.
Then:

1. The matrix

A =

(

D E
Et 0

)

(3)

is non-singular.
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2. The approximation defined by the moving least-squares method is

L̂(f) =
m
∑

i=1

aif(xi), (4)

where

a = A0c and A0 = D−1E
(

EtD−1E
)−1

. (5)

3. If w(xi,xi) = 0 for all i = 1, . . . ,m then the approximation is interpola-
tory.

For the approximation order of moving least-squares approximation (see [6]
and [2]) it is not difficult to receive (for convenience we suppose P is the span
of standard monomial basis, see [2]):

∣

∣

∣f(x)− L̂(f)(x)
∣

∣

∣ ≤ ‖f(x)− p∗(x)‖∞
[

1 +

m
∑

i=1

|ai|
]

, (6)

and (C1=const.)

‖f(x)− p∗(x)‖∞ ≤ C1h
l+1max

{∣

∣

∣
f (l+1)(x)

∣

∣

∣
: x ∈ D

}

. (7)

Of course, if D is a bounded domain in R
d and the function f is (l + 1)-

continuously differentiable in D, then there exists a constant C2 such that
max

{∣

∣f (l+1)(x)
∣

∣ : x ∈ D
}

≤ C2. Therefore, (6) and (7) yield

∣

∣

∣f(x)− L̂(f)(x)
∣

∣

∣ ≤C1C2h
l+1

[

1 +

m
∑

i=1

|ai|
]

≤C1C2h
l+1 [1 + ‖ai‖1]

≤
√
mC1C2h

l+1 [1 + ‖ai‖2] .

(8)

It follows from (8) that the error of moving least-squares approximation is
upper-bounded of the 2-norm of coefficients of approximation a(x).

In the article, we will consider two families of weight-functions (α, β ≥ 0):

w1(α,x,y) = exp
(

α‖x− y‖2
)

and
w2(α, β,x,y) = exp

(

α‖x− y‖2
)

− β.
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Usually the moving least-squares approximation generated by weight-function
w1 is called exp-moving least-squares approximation.

Our goal in this short note is to compare the upper bounds generated by
the use of wi, i = 1, 2.

Let us note the following facts:

1. If α = 0 in w1, then we receive classical least-squares approximation.

2. w1(α,x,y) = w2(α, 0,x,y).

3. The moving least-squares approximation generated by weight function
w2(α, 1,x,y) is studied in Levin’s works, and we will call it Levin ap-

proach, see for example [6]. In this case the approximation in interpola-
tory.

For some application of moving least-squares approximation to predict chem-
ical properties of oils see [15], [16], [17], and [18].

2. The Weight Family w1 Generates “Decreasing Bounds”
with Respect to α

Through this section, we will suppose that conditions (H1) hold true and
w(x,y) = w1(α,x,y).

Obviously A0 = A0 (α,x) and moreover

a(α,x) = D−1E
(

EtD−1E
)−1

c(x). (9)

Here, in the right-hand side, only the matrix D depends on α and x.
Let us set

H = 2











‖x− x1‖2 0 · · · 0
0 ‖x− x2‖2 · · · 0
...

...
...

0 0 · · · ‖x− xm‖2











.

Then

dD

dα
=2













dw1(α,x,x1)
dα 0 · · · 0

0 dw1(α,x,x2)
dα · · · 0

...
...

...

0 0 · · · dw1(α,x,xm)
dα












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=2











‖x− x1‖2 0 · · · 0
0 ‖x− x2‖2 · · · 0
...

...
...

0 0 · · · ‖x− xm‖2











×











eα‖x−xi‖
2

0 · · · 0

0 eα‖x−xi‖2 · · · 0
...

...
...

0 0 · · · eα‖x−xi‖2











=HD,

dD−1

dα
=−D−1dD

dα
D−1

=−D−1 (HD)D−1 = −HD−1.

Theorem 2.1. Let the conditions (H1) hold true.
Then for any fixed point x ∈ D\{x1, . . . ,xm} there exists a constant µ > 0

such that for any two non-negative numbers α1, α2 (α1 ≤ α2), we have

‖a(α2,x)‖ ≤ µ‖a(α1,x)‖.

Proof. Let x ∈ D \ {x1, . . . ,xm} be a fixed point. Let

A1(α,x) = A0E
t = D−1E

(

EtD−1E
)−1

Et, A2(α,x) = A1(α,x)− I,

where I is the identity (m×m)-matrix.
To simplify notations, we will write A1 = A1(α,x), A2 = A2(α,x), etc.
From equality

a(α,x) = A0c = D−1E
(

EtD−1E
)−1

c

we obtain (differentiation with respect to α; only the matrix D depends from
α):

da(α,x)

dα
=

(

d

dα
D−1E

(

EtD−1E
)−1

)

c

=

(

d

dα
D−1

)

E
(

EtD−1E
)−1

c+D−1E

(

d

dα

(

EtD−1E
)−1

)

c

=−HD−1E
(

EtD−1E
)−1

c

+D−1E

(

−
(

EtD−1E
)−1

(

d

dα
EtD−1E

)

(

EtD−1E
)−1

)

c
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=−Ha

+D−1E
(

EtD−1E
)−1 (

EtHD−1E
) (

EtD−1E
)−1

c

=−Ha

+D−1E
(

EtD−1E
)−1 (

EtH
)

(

D−1E
(

EtD−1E
)−1

)

c

=−Ha

+D−1E
(

EtD−1E
)−1 (

EtH
)

a

=
(

D−1E
(

EtD−1E
)−1

Et − I
)

Ha

=A2Ha.

Therefore a(α) is a solution of the equation

da(α)

dα
= A2(α)Ha(α). (10)

Let us set:
L(a) = 〈a,Ha〉 , a ∈ R

m.

Our goal is to prove that L is a Lyapunov function for (10).
Indeed:

1. L(0) = 0.

2. Let µ∗ (resp. µ∗) be the smallest (resp. largest) eigenvalue of H, or
equivalently smallest (resp. largest) entry of H, because H is a diagonal
matrix. Then

µ∗‖a‖2 ≤ L(a) = 〈a,Ha〉 ≤ µ∗‖a‖2, (11)

for any a ∈ R
m.

3. For any a ∈ R
m, we have L(a) = 〈a,Ha〉 ≥ 0, because the matrix H is

positive definite.

4. The derivatives:

∂L(a)

∂a
=2Ha (because H is symmetric) ,

L̇(a) =
dL(a(α))

dα
=

〈

∂L(a)

∂a
, ȧ(α)

〉

=2 〈Ha, A2(α)Ha〉
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=2 〈a1, A2(α)a1〉 (here a1 = Ha)

=2
〈

a1,
(

A2(α)D
−1

)

D1/2D1/2a1

〉

=2
〈

D−1/2a2,
(

A2(α)D
−1

)

D1/2a2

〉

(here a2 = D1/2a1)

=2
〈

a2,D
−1/2

(

A2(α)D
−1

)

D1/2a2

〉

.

The matrix A2(α)D
−1 is symmetric with eigenvalues −1 and 0, see [11].

The matrix D−1/2
(

A2(α)D
−1

)

D1/2 is symmetric too:

(

D−1/2
(

A2(α)D
−1

)

D1/2
)t

=Dt/2
(

A2(α)D
−1

)t
D−t/2

=D1/2
(

A2(α)D
−1

)t
D−1/2

=D−1/2D
(

A2(α)D
−1

)t
D−1/2

=D−1/2
(

A2(α)D
−1

)

DD−1/2

=D−1/2
(

A2(α)D
−1

)

D1/2.

Here, we used

D
(

A2(α)D
−1

)t
=

(

A2(α)D
−1D

)t
= A2(α) =

(

A2(α)D
−1

)

D.

Moreover the matrices A2(α)D
−1 and D−1/2

(

A2(α)D
−1

)

D1/2 share one
and the same characteristic polynomial det(A2(α)D

−1 − λI) = 0. There-
fore the eigenvalues of D−1/2

(

A2(α)D
−1

)

D1/2 are −1 and 0.

Using Rayleigh-Ritz theorem, we obtain

L̇(a) =2
〈

a2,D
−1/2

(

A2(α)D
−1

)

D1/2a2

〉

≤2max{−1, 0}‖a2‖2

≤0.

(12)

Therefore L is positive definite decrescent (and of course radially unbounded)
Lyapunov function for (10).

Let α1 > 0 and α2 > α1. It follows from inequalities (12) that

L(a(α1)) ≥ L(a(α2)). (13)

Now, using (11), we obtain

µ∗‖a(α2)‖2 ≤ L(a(α2)) ≤ L(a(α1)) ≤ µ∗‖a(α1)‖2
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or, if we set µ =
√

µ∗

µ∗

, then

‖a(α2)‖ ≤ µ‖a(α1)‖.

Corollary 2.1. Let the conditions (H1) hold true. Let x be a fixed point
in D.

Let L̂i(f), i = 1, 2 be two moving least-squares approximation of order l at
a point x, generated by the weight functions w(αi,x,y), respectively.

Then if α1 ≤ α2 and
∣

∣

∣
f(x)− L̂1(f)(x)

∣

∣

∣
≤ C, C = const.

then
∣

∣

∣f(x)− L̂2(f)(x)
∣

∣

∣ ≤ µC,

where the constant µ is defined in the proof of Theorem 2.1.

The proof of Corollary 2.1 follows from (8) and Theorem 2.1.

3. The Weight Family w2 Generates “Increasing Bounds”
with Respect to β ∈ [0, 1]

Through this section, we will suppose that conditions (H1) hold true, w(x,y) =
w2(α, β,x,y), and α is a fixed non-negative number.

Obviously A0 = A0 (β,x) and moreover

a(β,x) = D−1E
(

EtD−1E
)−1

c(x). (14)

Here, in the right-hand side of the equality, only the matrix D depends on β
and x.

Obviously

dD

dβ
=2













dw2(α,β,x1,x)
dβ 0 · · · 0

0 dw2(α,β,x2,x)
dβ · · · 0

...
...

...

0 0 · · · dw2(α,β,xm,x)
dβ













=− 2I,

dD−1

dβ
=−D−1dD

dβ
D−1

=2D−1D−1 = 2D−2.
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Theorem 3.1. Let the conditions (H1) hold true.
Then for any two numbers β1, β2, we have

‖a(β1,x)‖ ≥ ‖a(β2,x)‖, if 0 ≤ β1 ≤ β2 ≤ 1.

Proof. Let

A1 = A0E
t = D−1E

(

EtD−1E
)−1

Et, A2 = A1 − I.

A differentiation of (14) with respect to β yields:

da(β,x)

dβ
=

(

d

dβ
D−1E

(

EtD−1E
)−1

)

c

=

(

d

dβ
D−1

)

E
(

EtD−1E
)−1

c+D−1E

(

d

dβ

(

EtD−1E
)−1

)

c

=2D−2E
(

EtD−1E
)−1

c

+D−1E

(

−
(

EtD−1E
)−1

(

d

dβ
EtD−1E

)

(

EtD−1E
)−1

)

c

=2D−1a

−D−1E
(

EtD−1E
)−1 (

Et2D−2E
) (

EtD−1E
)−1

c

=2D−1a

− 2D−1E
(

EtD−1E
)−1 (

EtD−1
)

(

D−1E
(

EtD−1E
)−1

)

c

=2D−1a

− 2D−1E
(

EtD−1E
)−1 (

EtD−1
)

a

=2
(

I −D−1E
(

EtD−1E
)−1

Et
)

D−1a

=− 2A2D
−1a.

Therefore a(β) is a solution of

da(β)

dβ
= −2A2D

−1a(β). (15)

The matrix −A2D
−1 is symmetric and positive semi-definite (see [11]).

Therefore,
L(a) = 〈a,a〉 , a ∈ R

m

is a Lyapunov function for (15). Indeed

L(a) = ‖a‖2 ≥ 0, a ∈ R
m, (16)
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∂L(a)

∂a
=2a, (17)

L̇(a) =2
〈

a,
(

−A2D
−1

)

a
〉

≥ 0 a ∈ R
m. (18)

Let x be a fixed point in D. Let β1, β2 ∈ [0, 1] and β1 < β2. Then it follows
from (18) that

L(a(β1,x)) ≤ L(a(β2,x)),

and from (16), we receive

‖a(β1,x)‖ ≤ ‖a(β2,x)‖ .

Therefore the function ‖a(β,x)‖ is not decreasing with respect to β ∈
[0, 1].

Example 3.1. It is not difficult to see that the errors are increasing

function of β — a little bit “strange fact”, because β = 1 is interpolatory

approximation.

Let m = 4, l = 1, the given data

{(i, 2i) : i = 1, 3, 5, 7} , f(x) = 2x.

Let L̂β(f) be the moving least-squares approximation of order l = 1 at a

fixed point x ∈ [0, 7] with weight function w2(1, β, x, y).
Then

E =









1
1
1
1









, a =









a1
a2
a3
a4









, c =
(

1
)

,

Dβ(x) =2









w2(1, β, x1, x) 0 0 0
0 w(1, β, x2, x) 0 0
0 0 w(1, β, x3, x) 0
0 0 0 w(1, β, x4, x)









.

Then A0 = D−1
β (x)E

(

EtD−1
β (x)E

)−1
and

L̂β(f) = 2

m
∑

i=1

ai(x)xi.

Using Maple 18, it is not hard to display the plots of L̂β(f), β = 0, 12 , 1, see
Figure 1.
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(a) β = 0 (b) β = 1/2

(c) β = 1

Figure 1: Plots of L̂β(f), x ∈ [0, 7].
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