International Journal of Pure and Applied Mathematics

Volume 109 No. 1 2016, 141-152 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v109i1.11

SOME COMPARISON RESULTS FOR MOVING LEAST-SQUARE APPROXIMATIONS

Svetoslav Nenov¹, Tsvetelin Tsvetkov² ^{1,2}Department of Mathematics University of Chemical Technology and Metallurgy Sofia, 1756, BULGARIA ¹e-mail: nenov@uctm.edu

Abstract: Some properties of moving least-square approximations for two concrete weight functions are investigated.

The used the cnique is based on some properties of differential equations and applications of the theory of Lyapunov functions.

AMS Subject Classification: 93E24

Key Words: moving least-squares approximation, ODE, Lyapunov functions

Dedicated to the memory of our teacher and friend Prof. Drumi Bainov

1. Statement

Let us us remind the definition of moving least-squares approximation and some basic results.

Let:

- 1. $\{x_1, \ldots, x_m\}$ be a set of points in bounded domain $\mathcal{D} \subset \mathbb{R}^d$; and let $x_i \neq x_j$, if $i \neq j$.
- 2. $f: \mathcal{D} \to \mathbb{R}$ be a continuous map.
- 3. $\{p_1(\boldsymbol{x}), \ldots, p_l(\boldsymbol{x})\}\$ be a set of fundamental functions in \mathcal{D} (i.e. continuous and linearly independent) and let \mathcal{P}_l be their linear span.

© 2016 Academic Publications, Ltd. url: www.acadpubl.eu 4. $W : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a smooth function.

Following [6], we will use the following definition. The moving least-squares approximation of order l at a point \boldsymbol{x} is the value of $p^*(\boldsymbol{x})$, where $p^* \in \mathcal{P}_l$ is minimizing the least-squares error

$$\sum_{i=1}^{m} W(\boldsymbol{x}, \boldsymbol{x}_i) \left(p(\boldsymbol{x}) - f(\boldsymbol{x}_i) \right)^2$$

among all $p \in \mathcal{P}_l$.

The equivalent statement is the following constrained problem:

Find the minimum of
$$Q = \sum_{i=1}^{m} w(\boldsymbol{x}, \boldsymbol{x}_i) a_i^2,$$
 (1)

subject to
$$\sum_{i=1}^{m} a_i p_j(\boldsymbol{x}_i) = p_j(\boldsymbol{x}), \ j = 1, \dots l.$$
(2)

Here we assumed:

- H1.1. $W(\boldsymbol{x}_i, \boldsymbol{x}) > 0$ if $\boldsymbol{x}_i \neq \boldsymbol{x}$; $w(\boldsymbol{x}_i, \boldsymbol{x}) = W^{-1}(\boldsymbol{x}_i, \boldsymbol{x}), i = 1, \dots, m$. H1.2. rank $(E^t) = l$.
- H1.3. $1 \le l < m$.

We introduce the notations:

$$E = \begin{pmatrix} p_{1}(\boldsymbol{x}_{1}) & p_{2}(\boldsymbol{x}_{1}) & \cdots & p_{l}(\boldsymbol{x}_{1}) \\ p_{1}(\boldsymbol{x}_{2}) & p_{2}(\boldsymbol{x}_{2}) & \cdots & p_{l}(\boldsymbol{x}_{2}) \\ \vdots & \vdots & & \vdots \\ p_{1}(\boldsymbol{x}_{m}) & p_{2}(\boldsymbol{x}_{m}) & \cdots & p_{l}(\boldsymbol{x}_{m}) \end{pmatrix}, \ \boldsymbol{a} = \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{m} \end{pmatrix}, \\ D = 2 \begin{pmatrix} w(\boldsymbol{x}_{1}, \boldsymbol{x}) & 0 & \cdots & 0 \\ 0 & w(\boldsymbol{x}_{2}, \boldsymbol{x}) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & w(\boldsymbol{x}_{m}, \boldsymbol{x}) \end{pmatrix}, \ \boldsymbol{c} = \begin{pmatrix} p_{1}(\boldsymbol{x}) \\ p_{2}(\boldsymbol{x}) \\ \vdots \\ p_{l}(\boldsymbol{x}) \end{pmatrix}$$

Theorem 1.1 (see [6]). Let the conditions (H1) hold true. Then:

1. The matrix

$$A = \begin{pmatrix} D & E \\ E^t & 0 \end{pmatrix} \tag{3}$$

is non-singular.

2. The approximation defined by the moving least-squares method is

$$\hat{L}(f) = \sum_{i=1}^{m} a_i f(\boldsymbol{x}_i), \qquad (4)$$

where

$$a = A_0 c$$
 and $A_0 = D^{-1} E \left(E^t D^{-1} E \right)^{-1}$. (5)

3. If $w(\boldsymbol{x}_i, \boldsymbol{x}_i) = 0$ for all i = 1, ..., m then the approximation is interpolatory.

For the approximation order of moving least-squares approximation (see [6] and [2]) it is not difficult to receive (for convenience we suppose \mathcal{P} is the span of standard monomial basis, see [2]):

$$\left|f(\boldsymbol{x}) - \hat{L}(f)(\boldsymbol{x})\right| \le \|f(\boldsymbol{x}) - p^*(\boldsymbol{x})\|_{\infty} \left[1 + \sum_{i=1}^m |a_i|\right],\tag{6}$$

and $(C_1 = \text{const.})$

$$\|f(\boldsymbol{x}) - p^*(\boldsymbol{x})\|_{\infty} \le C_1 h^{l+1} \max\left\{ \left| f^{(l+1)}(\boldsymbol{x}) \right| : \boldsymbol{x} \in \mathcal{D} \right\}.$$
(7)

Of course, if \mathcal{D} is a bounded domain in \mathbb{R}^d and the function f is (l+1)continuously differentiable in \mathcal{D} , then there exists a constant C_2 such that $\max\{|f^{(l+1)}(x)|: x \in \overline{\mathcal{D}}\} \leq C_2$. Therefore, (6) and (7) yield

$$\left| f(\boldsymbol{x}) - \hat{L}(f)(\boldsymbol{x}) \right| \leq C_1 C_2 h^{l+1} \left[1 + \sum_{i=1}^m |a_i| \right]$$

$$\leq C_1 C_2 h^{l+1} \left[1 + \|\boldsymbol{a}_i\|_1 \right]$$

$$\leq \sqrt{m} C_1 C_2 h^{l+1} \left[1 + \|\boldsymbol{a}_i\|_2 \right].$$
(8)

It follows from (8) that the error of moving least-squares approximation is upper-bounded of the 2-norm of coefficients of approximation a(x).

In the article, we will consider two families of weight-functions $(\alpha, \beta \ge 0)$:

$$w_1(\alpha, \boldsymbol{x}, \boldsymbol{y}) = \exp\left(lpha \|\boldsymbol{x} - \boldsymbol{y}\|^2\right)$$

and

$$w_2(\alpha, \beta, \boldsymbol{x}, \boldsymbol{y}) = \exp\left(lpha \| \boldsymbol{x} - \boldsymbol{y} \|^2\right) - eta.$$

Usually the moving least-squares approximation generated by weight-function w_1 is called exp-moving least-squares approximation.

Our goal in this short note is to compare the upper bounds generated by the use of w_i , i = 1, 2.

Let us note the following facts:

1. If $\alpha = 0$ in w_1 , then we receive classical least-squares approximation.

2.
$$w_1(\alpha, x, y) = w_2(\alpha, 0, x, y)$$

3. The moving least-squares approximation generated by weight function $w_2(\alpha, 1, \boldsymbol{x}, \boldsymbol{y})$ is studied in Levin's works, and we will call it *Levin approach*, see for example [6]. In this case the approximation in interpolatory.

For some application of moving least-squares approximation to predict chemical properties of oils see [15], [16], [17], and [18].

2. The Weight Family w_1 Generates "Decreasing Bounds" with Respect to α

Through this section, we will suppose that conditions (H1) hold true and $w(\boldsymbol{x}, \boldsymbol{y}) = w_1(\alpha, \boldsymbol{x}, \boldsymbol{y}).$

Obviously $A_0 = A_0(\alpha, \boldsymbol{x})$ and moreover

$$\boldsymbol{a}(\alpha, \boldsymbol{x}) = D^{-1} E \left(E^t D^{-1} E \right)^{-1} \boldsymbol{c}(\boldsymbol{x}).$$
(9)

Here, in the right-hand side, only the matrix D depends on α and \boldsymbol{x} .

Let us set

$$H = 2 \begin{pmatrix} \|\boldsymbol{x} - \boldsymbol{x}_1\|^2 & 0 & \cdots & 0 \\ 0 & \|\boldsymbol{x} - \boldsymbol{x}_2\|^2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \|\boldsymbol{x} - \boldsymbol{x}_m\|^2 \end{pmatrix}$$

Then

$$\frac{dD}{d\alpha} = 2 \begin{pmatrix} \frac{dw_1(\alpha, \boldsymbol{x}, \boldsymbol{x}_1)}{d\alpha} & 0 & \cdots & 0\\ 0 & \frac{dw_1(\alpha, \boldsymbol{x}, \boldsymbol{x}_2)}{d\alpha} & \cdots & 0\\ \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & \frac{dw_1(\alpha, \boldsymbol{x}, \boldsymbol{x}_m)}{d\alpha} \end{pmatrix}$$

$$=2 \begin{pmatrix} \|\boldsymbol{x} - \boldsymbol{x}_1\|^2 & 0 & \cdots & 0 \\ 0 & \|\boldsymbol{x} - \boldsymbol{x}_2\|^2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \|\boldsymbol{x} - \boldsymbol{x}_m\|^2 \end{pmatrix} \\ \times \begin{pmatrix} e^{\alpha \|\boldsymbol{x} - \boldsymbol{x}_i\|^2} & 0 & \cdots & 0 \\ 0 & e^{\alpha \|\boldsymbol{x} - \boldsymbol{x}_i\|^2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e^{\alpha \|\boldsymbol{x} - \boldsymbol{x}_i\|^2} \end{pmatrix} \\ =HD, \\ \frac{dD^{-1}}{d\alpha} = -D^{-1} \frac{dD}{d\alpha} D^{-1} \\ = -D^{-1} (HD) D^{-1} = -HD^{-1}. \end{cases}$$

Theorem 2.1. Let the conditions (H1) hold true.

Then for any fixed point $\boldsymbol{x} \in \mathcal{D} \setminus \{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m\}$ there exists a constant $\mu > 0$ such that for any two non-negative numbers α_1, α_2 ($\alpha_1 \leq \alpha_2$), we have

$$\|\boldsymbol{a}(lpha_2, \boldsymbol{x})\| \leq \mu \|\boldsymbol{a}(lpha_1, \boldsymbol{x})\|.$$

Proof. Let $\boldsymbol{x} \in \mathcal{D} \setminus \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_m\}$ be a fixed point. Let

$$A_1(\alpha, \mathbf{x}) = A_0 E^t = D^{-1} E \left(E^t D^{-1} E \right)^{-1} E^t, \quad A_2(\alpha, \mathbf{x}) = A_1(\alpha, \mathbf{x}) - I,$$

where I is the identity $(m \times m)$ -matrix.

To simplify notations, we will write $A_1 = A_1(\alpha, \boldsymbol{x}), A_2 = A_2(\alpha, \boldsymbol{x})$, etc. From equality

$$\boldsymbol{a}(\alpha, \boldsymbol{x}) = A_0 \boldsymbol{c} = D^{-1} E \left(E^t D^{-1} E \right)^{-1} \boldsymbol{c}$$

we obtain (differentiation with respect to α ; only the matrix D depends from α):

$$\frac{d\boldsymbol{a}(\alpha,\boldsymbol{x})}{d\alpha} = \left(\frac{d}{d\alpha}D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}\right)\boldsymbol{c}$$
$$= \left(\frac{d}{d\alpha}D^{-1}\right)E\left(E^{t}D^{-1}E\right)^{-1}\boldsymbol{c} + D^{-1}E\left(\frac{d}{d\alpha}\left(E^{t}D^{-1}E\right)^{-1}\right)\boldsymbol{c}$$
$$= -HD^{-1}E\left(E^{t}D^{-1}E\right)^{-1}\boldsymbol{c}$$
$$+ D^{-1}E\left(-\left(E^{t}D^{-1}E\right)^{-1}\left(\frac{d}{d\alpha}E^{t}D^{-1}E\right)\left(E^{t}D^{-1}E\right)^{-1}\right)\boldsymbol{c}$$

$$= -Ha + D^{-1}E (E^{t}D^{-1}E)^{-1} (E^{t}HD^{-1}E) (E^{t}D^{-1}E)^{-1} c = -Ha + D^{-1}E (E^{t}D^{-1}E)^{-1} (E^{t}H) (D^{-1}E (E^{t}D^{-1}E)^{-1}) c = -Ha + D^{-1}E (E^{t}D^{-1}E)^{-1} (E^{t}H) a = (D^{-1}E (E^{t}D^{-1}E)^{-1}E^{t} - I) Ha = A_{2}Ha.$$

Therefore $\boldsymbol{a}(\alpha)$ is a solution of the equation

$$\frac{d\boldsymbol{a}(\alpha)}{d\alpha} = A_2(\alpha)H\boldsymbol{a}(\alpha). \tag{10}$$

Let us set:

$$L(\boldsymbol{a}) = \langle \boldsymbol{a}, H\boldsymbol{a} \rangle, \quad \boldsymbol{a} \in \mathbb{R}^m.$$

Our goal is to prove that L is a Lyapunov function for (10). Indeed:

- 1. $L(\mathbf{0}) = 0.$
- 2. Let μ_* (resp. μ^*) be the smallest (resp. largest) eigenvalue of H, or equivalently smallest (resp. largest) entry of H, because H is a diagonal matrix. Then

$$\mu_* \|\boldsymbol{a}\|^2 \le L(\boldsymbol{a}) = \langle \boldsymbol{a}, H\boldsymbol{a} \rangle \le \mu^* \|\boldsymbol{a}\|^2, \tag{11}$$

for any $\boldsymbol{a} \in \mathbb{R}^m$.

- 3. For any $a \in \mathbb{R}^m$, we have $L(a) = \langle a, Ha \rangle \ge 0$, because the matrix H is positive definite.
- 4. The derivatives:

$$\frac{\partial L(\boldsymbol{a})}{\partial \boldsymbol{a}} = 2H\boldsymbol{a} \qquad (\text{because } H \text{ is symmetric}),$$
$$\dot{L}(\boldsymbol{a}) = \frac{dL(\boldsymbol{a}(\alpha))}{d\alpha} = \left\langle \frac{\partial L(\boldsymbol{a})}{\partial \boldsymbol{a}}, \dot{\boldsymbol{a}}(\alpha) \right\rangle$$
$$= 2 \left\langle H\boldsymbol{a}, A_2(\alpha) H\boldsymbol{a} \right\rangle$$

$$=2 \langle \boldsymbol{a}_{1}, A_{2}(\alpha) \boldsymbol{a}_{1} \rangle \quad (\text{here } \boldsymbol{a}_{1} = H\boldsymbol{a}) \\ =2 \langle \boldsymbol{a}_{1}, \left(A_{2}(\alpha) D^{-1}\right) D^{1/2} D^{1/2} \boldsymbol{a}_{1} \rangle \\ =2 \langle D^{-1/2} \boldsymbol{a}_{2}, \left(A_{2}(\alpha) D^{-1}\right) D^{1/2} \boldsymbol{a}_{2} \rangle \quad (\text{here } \boldsymbol{a}_{2} = D^{1/2} \boldsymbol{a}_{1}) \\ =2 \langle \boldsymbol{a}_{2}, D^{-1/2} \left(A_{2}(\alpha) D^{-1}\right) D^{1/2} \boldsymbol{a}_{2} \rangle.$$

The matrix $A_2(\alpha)D^{-1}$ is symmetric with eigenvalues -1 and 0, see [11]. The matrix $D^{-1/2}(A_2(\alpha)D^{-1})D^{1/2}$ is symmetric too:

$$\left(D^{-1/2} \left(A_2(\alpha) D^{-1} \right) D^{1/2} \right)^t = D^{t/2} \left(A_2(\alpha) D^{-1} \right)^t D^{-t/2} = D^{1/2} \left(A_2(\alpha) D^{-1} \right)^t D^{-1/2} = D^{-1/2} D \left(A_2(\alpha) D^{-1} \right)^t D^{-1/2} = D^{-1/2} \left(A_2(\alpha) D^{-1} \right) D D^{-1/2} = D^{-1/2} \left(A_2(\alpha) D^{-1} \right) D^{1/2}.$$

Here, we used

$$D(A_{2}(\alpha)D^{-1})^{t} = (A_{2}(\alpha)D^{-1}D)^{t} = A_{2}(\alpha) = (A_{2}(\alpha)D^{-1})D.$$

Moreover the matrices $A_2(\alpha)D^{-1}$ and $D^{-1/2}(A_2(\alpha)D^{-1})D^{1/2}$ share one and the same characteristic polynomial $\det(A_2(\alpha)D^{-1} - \lambda I) = 0$. Therefore the eigenvalues of $D^{-1/2}(A_2(\alpha)D^{-1})D^{1/2}$ are -1 and 0.

Using Rayleigh-Ritz theorem, we obtain

$$\dot{L}(\boldsymbol{a}) = 2 \left\langle \boldsymbol{a}_{2}, D^{-1/2} \left(A_{2}(\alpha) D^{-1} \right) D^{1/2} \boldsymbol{a}_{2} \right\rangle \\
\leq 2 \max\{-1, 0\} \|\boldsymbol{a}_{2}\|^{2} \\
\leq 0.$$
(12)

Therefore L is positive definite decrescent (and of course radially unbounded) Lyapunov function for (10).

Let $\alpha_1 > 0$ and $\alpha_2 > \alpha_1$. It follows from inequalities (12) that

$$L(\boldsymbol{a}(\alpha_1)) \ge L(\boldsymbol{a}(\alpha_2)). \tag{13}$$

Now, using (11), we obtain

$$\mu_* \| \boldsymbol{a}(\alpha_2) \|^2 \le L(\boldsymbol{a}(\alpha_2)) \le L(\boldsymbol{a}(\alpha_1)) \le \mu^* \| \boldsymbol{a}(\alpha_1) \|^2$$

S. Nenov, T. Tsvetkov

or, if we set $\mu = \sqrt{\frac{\mu^*}{\mu_*}}$, then

$$\|\boldsymbol{a}(\alpha_2)\| \leq \mu \|\boldsymbol{a}(\alpha_1)\|.$$

Corollary 2.1. Let the conditions (H1) hold true. Let x be a fixed point in \mathcal{D} .

Let $\hat{L}_i(f)$, i = 1, 2 be two moving least-squares approximation of order l at a point \boldsymbol{x} , generated by the weight functions $w(\alpha_i, \boldsymbol{x}, \boldsymbol{y})$, respectively.

Then if $\alpha_1 \leq \alpha_2$ and

$$\left|f(\boldsymbol{x}) - \hat{L}_1(f)(\boldsymbol{x})\right| \leq C, \ C = \text{const.}$$

then

$$\left|f(\boldsymbol{x}) - \hat{L}_2(f)(\boldsymbol{x})\right| \leq \mu C,$$

where the constant μ is defined in the proof of Theorem 2.1.

The proof of Corollary 2.1 follows from (8) and Theorem 2.1.

3. The Weight Family w_2 Generates "Increasing Bounds" with Respect to $\beta \in [0, 1]$

Through this section, we will suppose that conditions (H1) hold true, $w(\boldsymbol{x}, \boldsymbol{y}) = w_2(\alpha, \beta, \boldsymbol{x}, \boldsymbol{y})$, and α is a fixed non-negative number.

Obviously $A_0 = A_0(\beta, \boldsymbol{x})$ and moreover

$$\boldsymbol{a}(\boldsymbol{\beta}, \boldsymbol{x}) = D^{-1} E \left(E^t D^{-1} E \right)^{-1} \boldsymbol{c}(\boldsymbol{x}).$$
(14)

Here, in the right-hand side of the equality, only the matrix D depends on β and \boldsymbol{x} .

Obviously

$$\frac{dD}{d\beta} = 2 \begin{pmatrix} \frac{dw_2(\alpha,\beta,x_1,x)}{d\beta} & 0 & \cdots & 0\\ 0 & \frac{dw_2(\alpha,\beta,x_2,x)}{d\beta} & \cdots & 0\\ \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & \frac{dw_2(\alpha,\beta,x_m,x)}{d\beta} \end{pmatrix}$$
$$= -2I,$$
$$\frac{dD^{-1}}{d\beta} = -D^{-1}\frac{dD}{d\beta}D^{-1}$$
$$= 2D^{-1}D^{-1} = 2D^{-2}.$$

148

Theorem 3.1. Let the conditions (H1) hold true. Then for any two numbers β_1 , β_2 , we have

$$\|a(\beta_1, x)\| \ge \|a(\beta_2, x)\|, \text{ if } 0 \le \beta_1 \le \beta_2 \le 1.$$

Proof. Let

$$A_1 = A_0 E^t = D^{-1} E \left(E^t D^{-1} E \right)^{-1} E^t, \quad A_2 = A_1 - I.$$

A differentiation of (14) with respect to β yields:

$$\begin{aligned} \frac{da(\beta, x)}{d\beta} &= \left(\frac{d}{d\beta}D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}\right)c\\ &= \left(\frac{d}{d\beta}D^{-1}\right)E\left(E^{t}D^{-1}E\right)^{-1}c + D^{-1}E\left(\frac{d}{d\beta}\left(E^{t}D^{-1}E\right)^{-1}\right)c\\ &= 2D^{-2}E\left(E^{t}D^{-1}E\right)^{-1}c\\ &+ D^{-1}E\left(-\left(E^{t}D^{-1}E\right)^{-1}\left(\frac{d}{d\beta}E^{t}D^{-1}E\right)\left(E^{t}D^{-1}E\right)^{-1}\right)c\\ &= 2D^{-1}a\\ &- D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}\left(E^{t}2D^{-2}E\right)\left(E^{t}D^{-1}E\right)^{-1}c\\ &= 2D^{-1}a\\ &- 2D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}\left(E^{t}D^{-1}\right)\left(D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}\right)c\\ &= 2D^{-1}a\\ &- 2D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}\left(E^{t}D^{-1}\right)a\\ &= 2\left(I - D^{-1}E\left(E^{t}D^{-1}E\right)^{-1}E^{t}\right)D^{-1}a\\ &= -2A_{2}D^{-1}a.\end{aligned}$$

Therefore $\boldsymbol{a}(\beta)$ is a solution of

$$\frac{d\boldsymbol{a}(\beta)}{d\beta} = -2A_2 D^{-1} \boldsymbol{a}(\beta). \tag{15}$$

The matrix $-A_2D^{-1}$ is symmetric and positive semi-definite (see [11]). Therefore,

$$L(\boldsymbol{a}) = \langle \boldsymbol{a}, \boldsymbol{a} \rangle, \quad \boldsymbol{a} \in \mathbb{R}^m$$

is a Lyapunov function for (15). Indeed

$$L(\boldsymbol{a}) = \|\boldsymbol{a}\|^2 \ge 0, \quad \boldsymbol{a} \in \mathbb{R}^m,$$
(16)

S. Nenov, T. Tsvetkov

$$\frac{\partial L(a)}{\partial a} = 2a,\tag{17}$$

$$\dot{L}(\boldsymbol{a}) = 2 \langle \boldsymbol{a}, \left(-A_2 D^{-1}\right) \boldsymbol{a} \rangle \ge 0 \quad \boldsymbol{a} \in \mathbb{R}^m.$$
 (18)

Let \boldsymbol{x} be a fixed point in \mathcal{D} . Let $\beta_1, \beta_2 \in [0, 1]$ and $\beta_1 < \beta_2$. Then it follows from (18) that

$$L(\boldsymbol{a}(\beta_1, \boldsymbol{x})) \leq L(\boldsymbol{a}(\beta_2, \boldsymbol{x})),$$

and from (16), we receive

$$\|\boldsymbol{a}(\beta_1, \boldsymbol{x})\| \leq \|\boldsymbol{a}(\beta_2, \boldsymbol{x})\|.$$

Therefore the function $||a(\beta, x)||$ is not decreasing with respect to $\beta \in [0, 1]$.

Example 3.1. It is not difficult to see that the errors are increasing function of β — a little bit "strange fact", because $\beta = 1$ is interpolatory approximation.

Let m = 4, l = 1, the given data

$$\{(i, 2i) : i = 1, 3, 5, 7\}, \quad f(x) = 2x.$$

Let $\hat{L}_{\beta}(f)$ be the moving least-squares approximation of order l = 1 at a fixed point $x \in [0,7]$ with weight function $w_2(1,\beta,x,y)$.

Then

$$E = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}, \ c = (1),$$
$$D_{\beta}(x) = 2 \begin{pmatrix} w_2(1, \beta, x_1, x) & 0 & 0 & 0 \\ 0 & w(1, \beta, x_2, x) & 0 & 0 \\ 0 & 0 & w(1, \beta, x_3, x) & 0 \\ 0 & 0 & 0 & w(1, \beta, x_4, x) \end{pmatrix}.$$

Then $A_0 = D_{\beta}^{-1}(x) E\left(E^t D_{\beta}^{-1}(x) E\right)^{-1}$ and

$$\hat{L}_{\beta}(f) = 2\sum_{i=1}^{m} a_i(x)x_i.$$

Using Maple 18, it is not hard to display the plots of $\hat{L}_{\beta}(f)$, $\beta = 0, \frac{1}{2}, 1$, see Figure 1.

150

Figure 1: Plots of $\hat{L}_{\beta}(f), x \in [0, 7]$.

References

- Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, Claudio T. Silva, Point-Set Surfaces, http://www.math.tau.ac.il/~levin/
- [2] G. Fasshauer, Multivariate Meshfree Approximation, http://www.math.iit.edu/~fass/603_ch7.pdf
- [3] Philip Hartman, Ordinary Differential Equations, Second Edition, Classics in Applied Mathematics, 38, SIAM (2002).
- [4] Faryar Jabbari, Linear System Theory II, Chapter 3: Eigenvalue, singular values, pseudo-

inverse, The Henry Samueli School of Engineering, University of California, Irvine (2015), http://gram.eng.uci.edu/~fjabbari/me270b/me270b.html.

- [5] Krešimir Josić, Robert Rosenbaum, Unstable solutions of non-autonomous linear differential equations, http://citeseerx.ist.psu.edu/viewdoc/download
 ?doi=10.1.1.138.5594&rep=rep1&type=pdf.
- [6] D. Levin, The approximation power of mooving least-squares, http://www.math.tau.ac.il/~levin/
- [7] D. Levin, Mesh-independent surface interpolation, http://www.math.tau.ac.il/~levin/
- [8] D. Levin, Stable integration rules with scattered integration points, Journal of Computational and Applied Mathematics, 112 (1999), 181-187, http://www.math.tau.ac.il/~levin/
- [9] L. Markus, H. Yamabe, Global stability criteria for differential systems, Osaka Math. J., 12 (1960), 305-317.
- [10] A.R. Meenakshi, C. Rajian, On a product of positive semidefinite matrices, *Linear Algebra and its Applications*, 295, No-s: 13 (1 July 1999), 36.
- [11] Svetoslav Nenov, Tsvetelin Tsvetkov, Matrices associated with moving least-squares approximation and corresponding inequalities, Advances in Pure Mathematics, 5 (2015), 856-864, doi: 10.4236/apm.2015.514080.
- [12] Svetoslav Nenov, b-spline curves and surfaces as a minimization of quadratic operators, Submitted, 2016.
- Kaare Brandt Petersen, Michael Syskind Pedersen, The Matrix Cookbook, Version: February 16, 2006, http://www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf
- [14] Siegfried M. Rump, Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse, *BIT*, **51**, No. 2 (2011).
- [15] D.S. Stratiev, R.K. Dinkov, I.K. Shishkova, A.D. Nedelchev, T. Tasaneva, E Nikolaychuk, I.M. Sharafutdinov, N. Rudney, S. Nenov, M. Mitkova, M. Skunov, D. Yordanov, An investigation on the feasibility of simulating the distribution of the boiling point and molecular Weight of heavy oils, *Petroleum Science and Technology*, **33**, No. 5 (2015), 527-541, doi: 10.1080/10916466.2014.999945.
- [16] D. Stratiev, R. Dinkov, I. Shishkova, E. Nikolaychuk, T. Tsaneva, M. Mitkova, Investigation on feasibility to simulate distribution of physicochemical properties and aromatics content of heavy oils employing probability distribution functions, *Erdöl Erdgas Kohle*, 131, No. 10 (2015), 352-357.
- [17] Dicho Stratiev et all, Investigation of relationships between petroleum properties and their impact on crude oil compatibility, *American Chemical Society*, **29**, No. 12 (2015), 7836-7854, doi: 10.1021/acs.energyfuels.5b01822.
- [18] Dicho Stratiev, Ivaylo Marinov, Rosen Dinkov, Ivelina Shishkova, Ilian Velkov, Ilshat Sharafutdinov, Svetoslav Nenov, Tsvetelin Tsvetkov, Sotir Sotirov, Magdalena Mitkova, Nikolay Rudnev, Opportunity to Improve Diesel-Fuel Cetane-Number Prediction from Easily Available Physical Properties and Application of the Least-Squares Method and Artificial Neural Networks, *American Chemical Society*, **29**, No. 3 (2015), doi: 10.1021/ef502638c.