The Game-Theoretic Approach to Machine Learning and Adaptation

Nicolò Cesa-Bianchi

Università degli Studi di Milano

Nicolò Cesa-Bianchi (Univ. di Milano)

A wide range of applications

- Categorization of documents, speech, images, genes
- Natural language processing
- Robot control
- Search engine quality
- Dynamic allocation of resources

Foundations of machine learning

- Under what conditions can a machine learn from examples?
- How much information (e.g., training examples) is needed to achieve a given predictive performance?
- How many computational resources (time and space)?
- What is the best mathematical framework to study these phenomena?

The statistical learning vision

- The training data are a statistical sample (i.i.d.)
- Relate the empirical error of a predictor to its true error rate
- A finite-sample estimation problem

Vladimir Vapnik

Overfitting

- The best predictor on the data is not guaranteed to have a small error rate if it is chosen from a large set
- Need enough data to guarantee that empirical error is close to true error for each predictor in the set
- This "enough" turns out to depend on a notion of combinatorial dimension of the set of (VC dimension)

The need for a different vision

- The statistical approach is at the basis of the most successful applications of machine learning in the past twenty years
- As the range of machine learning applications widens, new paradigms are needed

Some hard cases for statistical modelling

- Data source is highly nonstationary
- Environment reacts to the learner (e.g., spam)

On a more philosophical level

Is statistics the only language for describing the phenomenon of learning in machines?

Nicolò Cesa-Bianchi (Univ. di Milano)

Theory of repeated games

James Hannan

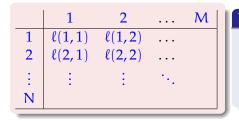
David Blackwell

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent

. BIST

Zero-sum 2-person games played more than once



$N \times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

For each game round t = 1, 2, ...

- $\bullet\,$ Player chooses action i_t and opponent chooses action y_t
- The player suffers loss $l(i_t, y_t)$

(= gain of opponent)

Player can learn from opponent's history of past choices y_1, \ldots, y_{t-1}

Prediction with expert advice

Volodya Vovk

Manfred Warmuth

Opponent's moves y_1, y_2, \ldots define a sequential prediction problem with loss function ℓ

- Play action I_t from 1,..., N
- Observe next value yt
- Incur loss $\ell(I_t, y_t)$

Exponentially weighted forecaster

At time t pick action i with probability proportional to

 $exp\bigl(-\eta\,Loss_{i,t}\bigr)$

where $Loss_{i,t}$ is total loss of action i up to now

Expert's theorem

The average per-round expected loss of the forecaster converges to that of the best action for the observed sequence at rate

 $\sqrt{\frac{\ln N}{\pi}}$

where N is number of actions and T is the number of time steps Note: no dependence on number of opponent's actions

The bandit problem: playing an unknown game

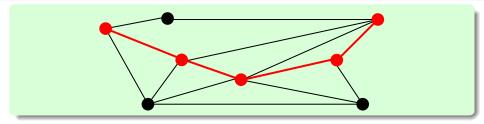
- In order to keep counts $Loss_{i,t}$ for each action, we need to know the losses $\ell(i, y_t)$ also for the actions i we did not play at round t
- What if we can only observe the loss of the played action I_t?

N slot machines

N ln N

- Dynamic content optimization
- Surprisingly, convergence rate to best action is

Structured actions: adversarial routing



- In certain problems, actions have a combinatorial structure (paths, trees, matchings)
- If loss is linear over the edges, then the bandit convergence rate to best action is

d ln N

where d is number of edges and N is the number of actions (typically superpolynomial in d)

Partial monitoring: not observing any loss

Dynamic pricing

- Post a T-shirt price
- Observe if next customer buys or not
- Adjust price

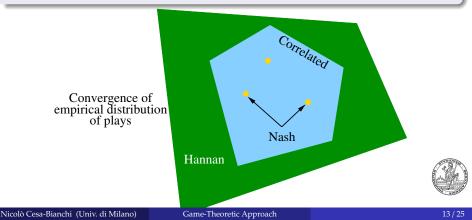
Note: feedback does not reveal the player's loss

Goal: converge to the average return of the best fixed price

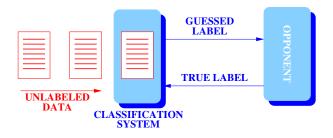
Convergence rate to best fixed price is $T^{-1/3}$ rather than $T^{-1/2}$ as in the bandit case

K-person games

- There are K players choosing actions $I_{1,t}, \ldots, I_{K,t}$
- Each player i has its own loss function $\ell_i(I_{1,t}, \ldots, I_{K,t})$
- What happens if all players use exponentially weighted forecasting, or similar algorithms?



From game theory to machine learning



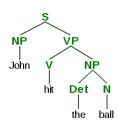
- Now opponent's moves y_t have side information $x_t \in \mathbb{R}^d$ (e.g., text on a document)
- A repeated game between the player choosing a classifier and the opponent choosing an action (x_t, y_t)
- Convergence to performance of **best classifier** in a given class (e.g., linear classifiers with bounded norm)

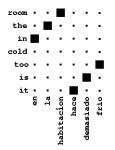
- Simple: easy to implement
- Scalable: local optimization vs. global optimization
- Robust: inherit game-theoretic performance guarantees
- Versatile: classification, regression, ranking, structured prediction

Structured Prediction

A combinatorial label space (sequences, trees)

- POS tagging: sentence → sequence of POS tags
- Parsing: sentence → parse tree
- Bilingual alignment: sentence pair → alignment (matching)
- Letter to phoneme: word → phoneme sequence
- Phrase-based translation: source sentence → target sentence





Online learning in general spaces

Some applications

- Reproducing kernel Hilbert spaces: efficiently embed data in high-dim space where linear classifiers can do well
 → Bioinformatics, vision, language
- Linear space of matrices
 - \rightarrow Integrating data sources, learning different tasks at once
- Banach spaces of models
 - \rightarrow Financial data

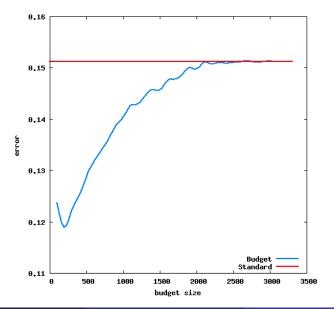
Tracking linear classifiers

- If data source is not fitted well by any linear model, then comparing to the best linear model f* is trivial
- We want instead compare to the best sequence f₁, f₂,... of linear models

Adversarial tracking

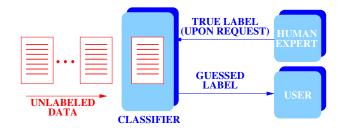
- Bound on predictive performance reflects the opponent's trade-off between fit of sequence and total shift $\sum_{t=1}^{t} ||f_t f_{t-1}||$
 - \rightarrow dynamic overfitting control
- This is achieved by enforcing sparsity of the learner's model (expressed as a linear combination of past x_t's)

Tracking a shifting topic



Nicolò Cesa-Bianchi (Univ. di Milano)

Online active learning



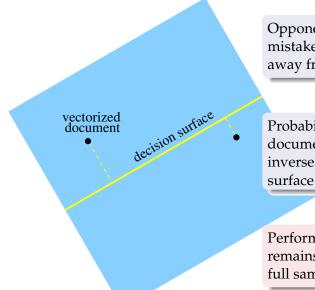
- Observing the data process is cheap
- Observing the label process is expensive
 - \rightarrow need to query the human expert

Question

How much better can we do by subsampling **adaptively** the label process?

Nicolò Cesa-Bianchi (Univ. di Milano)

A game with the opponent

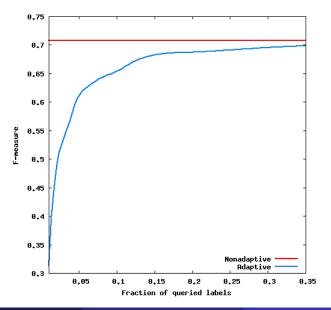


Opponent avoids causing mistakes on documents far away from decision surface

Probability of querying a document proportional to inverse distance to decision surface

Performance guarantee remains unchanged w.r.t. the full sampling case

Experiments on Reuters corpus



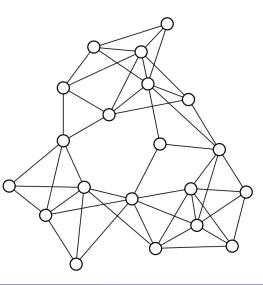
Nicolò Cesa-Bianchi (Univ. di Milano)

22 / 25

Prediction on graphs

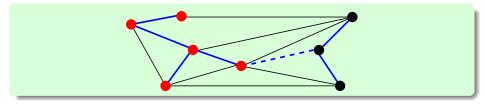
- Web, social networks, biological networks
- Predict labels on nodes (or links)

Game-theoretic framework allows to derive principled algorithms without statistical assumptions



Node prediction

What is the optimal number of mistakes when sequentially predicting the node labels of a given graph?



- This number is captured (to within log factors) by the cutsize of the graph's random spanning tree
- This is a density independent regularity measure of the graph labeling and there are efficient predictors that achieve this

V. SIER

- Online game-theoretic analysis provides nonstochastic foundations to machine learning good for nonstationary, adversarial sources
- Algorithms typically have good scaling properties due to local (rather than global) optimization
- Fruitful exchange of concepts between game theory and machine learning
- Interacting learners
 - Multitask learning: same side information, different objectives
 - Multiview learning: different side information, same objective

