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Abstract: Unlike bolus insulin secretion mechanisms, basal insulin secretion is poorly understood. It
is essential to elucidate these mechanisms in non-hyperinsulinaemia healthy persons. This estab-
lishes a baseline for investigation into pathologies where these processes are dysregulated, such as
in type 2 diabetes (T2DM), cardiovascular disease (CVD), certain cancers and dementias. Chronic
hyperinsulinaemia enforces glucose fueling, depleting the NAD+ dependent antioxidant activity
that increases mitochondrial reactive oxygen species (mtROS). Consequently, beta-cell mitochondria
increase uncoupling protein expression, which decreases the mitochondrial ATP surge generation
capacity, impairing bolus mediated insulin exocytosis. Excessive ROS increases the Drp1:Mfn2 ratio,
increasing mitochondrial fission, which increases mtROS; endoplasmic reticulum-stress and im-
paired calcium homeostasis ensues. Healthy individuals in habitual ketosis have significantly lower
glucagon and insulin levels than T2DM individuals. As beta-hydroxybutyrate rises, hepatic gluco-
neogenesis and glycogenolysis supply extra-hepatic glucose needs, and osteocalcin synthesis/release
increases. We propose insulin’s primary role is regulating beta-hydroxybutyrate synthesis, while the
role of bone regulates glucose uptake sensitivity via osteocalcin. Osteocalcin regulates the alpha-cell
glucagon secretory profile via glucagon-like peptide-1 and serotonin, and beta-hydroxybutyrate
synthesis via regulating basal insulin levels. Establishing metabolic phenotypes aids in resolving
basal insulin secretion regulation, enabling elucidation of the pathological changes that occur and
progress into chronic diseases associated with ageing.

Keywords: hyperinsulinaemia; insulin resistance; osteocalcin; beta-hydroxybutyrate; phenotype;
stages; serotonin; glucagon-like peptide-1; glucagon; type 2 diabetes; hyperglycaemia

1. Introduction

The hormone insulin is synthesized and secreted by pancreatic beta cells [1,2]. The
commonly accepted principle is that insulin is secreted in a basal/bolus pattern, with
the latter predominately released upon rising blood glucose (most likely from a meal)
stimulus [3,4]. The mechanism by which bolus insulin is secreted from the pancreas is
well established [5]; however, little is known about the mechanisms by which basal insulin
is secreted.

Once we understand the processes by which insulin is secreted in both the basal and
bolus states in a healthy person, we can begin to unravel the pathologies whereby these
processes are dysregulated, such as in type 2 diabetes mellitus (T2DM), cardiovascular
disease (CVD), certain cancers and dementias [6].
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2. Bolus Insulin Secretion

The commonly accepted premise is that the primary function of insulin secretion is to
regulate glucose uptake into muscle cells [7,8]. To better understand basal versus bolus
insulin secretion regulation and physiological roles, a firm understanding of how glucose
drives rapid insulin exocytosis is warranted.

Glycaemic elevations, such as following an oral carbohydrate bolus, results in rapid
entry of glucose into the pancreatic beta cells via GLUT1 and/or GLUT3 glucose trans-
porters (Km = 6 mmol/L and Km = 1–1.4 mmol/L, respectively) (Figure 1) [9–11]. GLUT1
is the predominant glucose transporter in humans, its Km of 6 mmol/L indicates that this
transporter is only activated when significantly high levels (above the physiological con-
centration of 5 mmol/L) of glucose are detected in the blood stream [3]. However, the high
glucose affinity of GLUT3, suggests its role for metabolic fuel homeostasis during fasting
periods where there would be glucose/carbohydrate deprivation/restriction. Theoretically,
in this setting the GLUT3 receptor expression is upregulated.

Figure 1. Schematic representation of beta-cell intracellular mechanisms involved in insulin secretion. Adenosine diphos-
phate (ADP), adenosine triphosphate (ATP), calcium (Ca2+), glucagon-like peptide-1 (GLP-1), glucose transporter 1 (GLUT1),
G-protein coupled receptor 6A (GPRC6A), inositol-1,4,5-trisphosphate (IP3), plasma membrane (PM), osteocalcin (OCN),
oxidative phosphorylation (OxPhos), phospholipase C (PLC), potassium (K+).
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Upon entry into beta cells, glucose is phosphorylated to glucose-6-phosphate by glu-
cokinase (GK), an isozyme of hexokinase [12]. GK has a high Km value = 10 mmol/L,
indicating a low affinity for glucose [13,14]. GK is predominantly only expressed in hepa-
tocytes and pancreatic beta cells [13,15,16], and also found to be expressed by cells in the
hypothalamus [17]. Glucose is catabolised through the glycolytic pathway to pyruvate,
in the process generating reducing equivalents NADH. These enter the mitochondria to
undergo a series of redox reactions to yield adenosine triphosphate (ATP) via the electron
transport chain (ETC) oxidative phosphorylation (OxPhos) machinery coupled to ATPase.
The ETC-OxPhos complexes are situated on the cristae of the inner mitochondrial mem-
brane (IMM) [3]. Beta cells express low levels of lactate dehydrogenase, indicating a “pref-
erence” to fully oxidise glucose via OxPhos generating maximal ATP (~36 ATP/glucose
molecule), as opposed to via the fermentation pathway (~2 ATP/glucose molecule) [18,19].

As glucose is fully oxidised through OxPhos, a surge of ATP is generated via the
mitochondrial high electrochemical-potential gradient inner membrane (∆Ψm) [20]. As
a result, there is a steep increase in the ATP concentration relative to adenosine diphos-
phate (ADP) [21]. The mitochondria are situated close to the beta cell plasma membrane
(PM) [22]. The surge in ATP affects ATP-sensitive potassium channels (KATP), causing
them to close [23,24]. This depolarises the PM, causing PM voltage gated calcium channels
(VGCC) to open [23,25]. The subsequent rapid influx of calcium divalent cations, through
P/Q-type Ca2+ channels [26], activates the calcium sensitive SNAP/SNARE complexes that
hold vesicles containing insulin granules in a “ready” docking position on the cytosolic side
of the PM [27]. This induces the rapid exocytosis of insulin, which is referred to as the first
phase response [28]. Further insulin is stored in “reserve pool” vesicles and released only
in response to fuel secretagogues [27], known as the “second-phase”. This second phase
of insulin release has an observed delay and insulin nadir after the first phase, and has a
lower amplitude and longer direction, but only lasts while the beta cells are stimulated [20].

A whole host of aspects of the glucose-mediated insulin first phase response needs to
be closely coordinated in-order to promote exocytosis of a high concentration of insulin
granules, outside of the beta-cells basal pulsatile release. These include the expression
of GK, nicotinamide adenine dinucleotide (NAD+) availability, and maintaining a high
capacity to perform OxPhos that requires a high ∆Ψm, in-order to generate the necessary
surge in ATP concentration to affect the (KATP) channels. Finally, calcium homeostasis must
also be well regulated, as a PM concentration gradient and consequent signal:response ratio
are required to elicit the exocytosis response. Therefore, calcium relocation mechanisms
must also be effective [29].

3. Basal Insulin

In contrast to the above-described regulation of bolus insulin secretion, the regulation
of insulin secretion in the basal phase is not well understood. It could be hypothesised that
the same mechanism is used for insulin secretion in the basal state. It is recognised that
GLUT3 has a lower Km for glucose (Km = 1–1.4 mmol/L) and in the fasted state GLUT3
may become upregulated, thereby increasing the role of glucose in basal insulin secretion
regulation. However, if this were the case, increased insulin release would down regulate
beta-hydroxybutyrate (BHB) synthesis. This is not corroborated by the observation of
individuals in the fasted state, where a lower basal state of insulin and glucagon, with
the presence of BHB, has been observed in people in habitual ketosis [30–32]. Another
argument for it not being GLUT3 dominant stimulated in the basal state, is that glucose in
the fasted state is at a relatively steady state with low degrees of magnitude in the blood,
which, therefore, would not correspond to basal insulin oscillatory patterns.

Basal insulin is recognised to be released from pancreatic beta cells in a pulsatile rhyth-
mic pattern, approximately every 4 min, in addition to circadian and ultradian periodicities
(Figure 2A) [20]. Five-to-fifteen-minute fast oscillations modulate the ultradian periodic-
ity, which has a range of 40 to 180 min [7,20,33]. It is believed that the modulatory fast
oscillations are influenced by the degree of insulin resistance (IR) within an individual [34].
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The bone derived hormone osteocalcin (OCN) activates beta cell calcium signalling via the
GPRC6A receptor (Figure 1) and we hypothesise it is the OCN that regulates the oscillatory
insulin secretion pattern (Figure 2B) [35].

Figure 2. Schematic representations of basal and bolus insulin secretory patterns (A) and secretion regulation (B). (A) The
red line conceptually models glucose bolus mediated insulin secretory response pattern (Kraft I) [36], and the blue line
conceptually models basal insulin pulsatile secretory pattern, in metabolically healthy individuals [34]. (B) Schematic
representation of the regulatory cycles of basal and bolus insulin secretion in metabolically healthy, habitually fasted
individuals. Beta-hydroxybutyrate (BHB), blood glucose (BG), glucagon-like peptide-1 (GLP-1), osteocalcin (OCN).
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The pulsatility pattern likely reduces the risk of negative consequences from poten-
tially downregulating insulin receptors (INSR), which would result in further insulin
resistance. Therefore, a pulsatile secretory pattern plausibly is more effective in regulating
blood glucose levels [7]. In addition to contributing to sympathovagal balance, there is
a tight coupling between the pancreatic ultradian periodicity and the neuroendocrine,
cardiovascular and autonomic nervous systems [37].

Additional challenges in the understanding of pancreatic beta cell insulin secretion,
include changes to the IMM. Mitochondria are the largest intracellular source of reactive
oxygen species (ROS) [38–40], specifically from the activities of the ETC, as electrons “leak”
and react with oxygen, forming superoxide [41,42]. Cellular mechanisms to counter ROS
are facilitated by anti-oxidant enzymes such as mitochondrial superoxide dismutase (SOD2)
and reduced glutathione (GSH) [43]. Both SOD2 and GSH require NAD+ [44]. Glucose
oxidation has a greater NAD+ depletion effect over beta-oxidation or ketolysis; as a result,
this increases ROS levels via a reduced ability to counter ROS [43,45–47]. Furthermore,
excessive insulin signalling increases ROS levels via ceramide synthesis [48], which, in
turn, leads to cellular apoptosis. Without sufficient anti-oxidative enzymes to manage the
excessive ROS levels, the mitochondrial strategy is to increase the expression of uncoupling
proteins (UCP2) in the IMM [20,49]. This causes the uncoupling of proton flow from
the higher concentration within the inner membrane space of the mitochondrial double
membrane lipid bilayer, into the mitochondrial matrix, without generating ATP. This
results in a less hyperpolarised IMM, and thus resultant inability to generate the surge in
ATP, leading to a lower ability to trigger rapid insulin release via the calcium dependent
route [50].

Careful regulation of calcium is key for mitochondrial activity. Mitochondria are
organelles that store calcium, however, not at a significant concentration to effect cytoso-
lic concentrations [51]. The relationship of mitochondria with calcium is two-fold: ATP
production and calcium-trafficking or redistribution. Calcium uptake by mitochondria en-
hances their ATP production potential; however, a fine balance must be struck, as calcium
is required, but too much calcium induces apoptosis. In-order to manage this, calcium
efflux must be effective to avoid overload [52]. Mitochondrial calcium uptake is medi-
ated by the calcium uniporter channel complexes (MCUC), while mitochondrial calcium
extrusion is facilitated by the sodium/calcium exchanger (NCLX). Both the MCUC and
NCLX are electrogenically driven by the high ∆Ψm [52,53]. Hyperinsulinaemia (HI) in-
creases mtROS production via ceramide synthesis, and NAD+ depletion from concomitant
elevated glucose-metabolism, leading to decreased counter-ROS management. Excess
ROS generation increases UCP2 in beta cell mitochondria, resulting in a decrease in the
∆Ψm [54]. This impairs the mitochondrial MCUC and NCLX dependent uptake and the
redistribution of calcium that is required for maximal ATP synthesis [51,55]. The second
role of mitochondrial calcium homeostasis is focused on redistribution efforts [53,56].

Mitochondria facilitate the trafficking of cytosolic calcium uptake into the endoplasmic
and sarcoplasmic reticulae via Ca2+ ATPase (SERCA) pumps [57,58]. The beta cell endoplas-
mic reticulum (ER) regulates cytosolic calcium partitioning, while ATP dependent SERCA
pumps dominate in mediating calcium exocytosis, in-order to “re-set” PM calcium levels.
These mechanisms enable the cycle of the calcium-mediated exocytosis of insulin granules
packaged in vesicles, docked along the inner PM, to repeat [59]. Roughly 20% of the beta
cell sub-plasma membrane is in close proximity with mitochondria, exerting a strong
calcium buffering effect [22]. Mitochondrial calcium uptake facilitates the signal:response
ratio sensitivity in PM depolarisation and increases the cytosolic calcium concentration [60].
A reduction in the mitochondrial calcium uptake via reduced MCUC activity, leads to an in-
crease in calcium within the PM sub-membrane compartment upon depolarisation [29,55].
This attenuates any increase in cytoplasmic calcium and results in a net reduction in rapid
insulin exocytosis. An increase in ROS increases UCP2 expression, which lowers the ∆Ψm,
consequently reducing calcium uptake and efflux [20,49,50,52]. As a result, this not only
decreases rapid ATP synthesis potential, but also impairs calcium trafficking to the ER [61].
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As a consequence, dysregulated cytosolic calcium levels may reduce/impair the docking
“ready–set–go” positions of the exocytosis mediating SNAP/SNARE proteins [62–64]. This
impairment results in the disabling of a rapid response from the exocytosis machinery to
the required extracellular calcium influx along the PM, of the much-needed steep calcium
concentration gradient that is sensitive to the signal:response ratio to elicit rapid insulin
release. In short, when the concentration gradient is not steep, the signal is not strong,
resulting in a poor response.

Excessive ROS levels, along with chronic insulin signalling, increases the ratio of
dynamin-related protein 1 (Drp1) to mitofusin-2 proteins (Mfn2) [65,66]. Drp1 mediates
mitochondria fission, while Mfn2 mediates mitochondrial fusion and is required for ER
association [51]. When there is an increase in Drp1 relative to Mfn2, there is a net increase
in mitochondrial fission [51,66]. This results in a decrease in ER association and OxPhos
capacity, and an increase in mtROS production [66,67]. Consequently there is an increase
in ER stress, a reduction in ER mediated calcium homeostasis, and a reduction in mitochon-
drial (mt) OxPhos that is required in order to generate the ATP surge needed for first phase
insulin exocytosis [58,68]. It is, therefore, clear that the health of beta cell mitochondria are
essential for a functional first phase response to a glucose bolus [54,69,70].

4. Insulin Secretion in the Insulin Resistant/Hyperinsulinaemic State

Having established the processes in the healthy state, the hyperinsulinaemic individ-
ual can be considered. However, a number of factors first need to be addressed in the
research literature on T2DM and pancreatic beta cells. A large majority of the literature
states that in T2DM, there is a significant loss of beta cell mass, and this, consequently,
results in insulin insufficiency [71,72]. However, this stage of T2DM is the far end of
the condition, where the pathology is entering into the final stages of T2DM-induced
pseudo-T1DM, as a result of beta cell “exhaustion”, failure and/or increased apopto-
sis [72]. However, in many people, this is a relative deficiency [73], not an absolute, as
examination of the Kraft dataset shows they still produce more insulin than the normogly-
caemic/normoinsulinaemia population [36].

A large phase of the pathogenesis of T2DM is the silent normo-glycaemia hyperinsuli-
naemia phase, often termed (pre-)pre-diabetes. In reality, this phase would be best termed
stage-1 T2DM and mildly elevated glycaemia, currently termed pre-diabetes, stage-2 T2DM
(Figure 3). Waiting to see hyperglycaemia (HG) (stage-2/3), in-order to diagnose T2DM, is
already deep into pathology progression, where chronic excess insulin levels are no longer
able to mask the problem. Obese individuals are more likely to have stage-1/2 T2 diabetes
and have a higher risk of developing HG-T2DM (phenotype-3 stage 3) than non-obese
individuals. An abnormally high percentage of islet tissue, and increased beta cell mass
has been found in the pancreas of obese individuals in comparison to lean subjects [74,75].
Given the scale and changes in phenotype along the trajectory pathogenesis of T2DM, it
is vital that distinctions are made between the stages. Furthermore, that investigations
in biological samples and participants belonging to different pathology stage categories,
are not pooled. This is to avoid cancelling out effects/observations between two or more
stages. For example, stage-1/2 normo-glycaemia HI T2DM with increased beta cell mass,
pooled with stage-3/4 HG-HI T2DM with decreased beta cell mass [73]. In this example,
the net pooling results in a cancelling out of any signal. This can lead to the forming of
incorrect premises that would contribute to a misinterpretation of results and, in addition,
potentially cause the development of in vitro and animal models that do not truly represent
the full scope of the disease. Again, this, consequently, increases the risk of producing
results that are correct for the experiment only, which is based on a flawed premise, in turn,
sending the researcher on a merry-go-round.
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Figure 3. Classification of metabolic phenotypes. Beta-Hydroxybutyrate (BHB), haemoglobin A1c (HbA1c), oral glucose
tolerance test (OGTT), osteocalcin (OCN), type 2 diabetes mellitus (T2DM).

5. An Alternative Hypothesis: Insulin’s Main Role Is to Regulate
Beta-Hydroxybutyrate Synthesis

Let us assume the natural human state is to be in a hunter–gatherer pattern, the
equivalent is hypothesised to be found in the early European exploration of the traditional
Inuit and the Hadza examples. These societies are characterised by predominantly fasted—
metabolic phenotype 1 (Figure 3), often only consuming one meal a day, potentially not
having food every day, and most meals are low in digestible carbohydrates [76–78]. In
this context, blood glucose levels infrequently rise above 6 mmol/L, only with occasional
access to honey or fruit, or a meal containing a high glycogen content, such as liver.
Alternatively, blood glucose may surge in response to an acute stress response. Aside
from these contexts, blood glucose levels remain relatively constant and may even dip
to levels that conventional medical wisdom considers puts the individual at risk of a
hypoglycaemic coma [79]. However, it has been demonstrated that humans in nutritional
ketosis are able to function comparably, even optimally, when plasma glucose levels are
below the standard reference ranges, due to the elevated presence of the ketone body
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beta-hydroxybutyrate (BHB) [80]. The fasted state, or carbohydrate restriction, induces
the metabolic phenotype of ketosis, where plasma insulin is low, glucose is normal to
low, and BHB is detectable above 0.5 mmol/L [43]. Just as hyperglycaemia may become
pathological, hyperketonaemia may also become pathological, especially when BHB levels
exceed 25 mmol/L. Within humans, diabetic ketoacidosis (DKA) pathology is when there
are elevated ketones, with hyperglycaemia and decreased bicarbonate levels, resulting
in a decrease in blood pH [81–83]. Other common symptoms experienced with DKA
include nausea, vomiting, and gastrointestinal symptoms including abdominal pain [84].
Insulin regulates hepatocyte BHB synthesis, therefore hyperinsulinaemic individuals are
at a very low risk of developing DKA, unless they are on sodium-glucose co-transporter-
2 (SGLT2) inhibitors and simultaneously embark on carbohydrate restriction without
adjusting medications [43,85].

If the natural state of humans is to spend more time in the metabolically fasted
phenotype of ketosis (phenotype 1), it is plausible that the role of basal pulsatile insulin
secretion is to regulate BHB synthesis. Cells that are wholly or substantially glucose
dependent do not require insulin to take up glucose [86,87]. In the fasted state, blood
glucose is provided from the liver, either from the glycogen stored from a rare glucose
loaded meal or, more likely, from gluconeogenesis that both replenishes hepatic glycogen
stores as well as providing extra-hepatic tissue needs [88,89]. In this context, hepatocytes
are metabolising fatty acids for their own energy provision and in the process synthesise
BHB [90]. Hepatocytes are unable to use BHB for fuel [91], instead the BHB is released
into the bloodstream, to provide energy and act as a signalling molecule to extra-hepatic
tissues, such as the brain, heart, and muscular-skeletal system [46,92]. In the absence of
insulin production, BHB synthesis would continue unabated, as seen in type 1 diabetes
mellitus (T1DM). However, a small amount of insulin is able to inhibit ketogenesis [93].
The signal for insulin release is required though, this then begs the question, what provides
the signal?

It is first important to understand that when humans are in ketosis as their de-facto
state, the body’s supply of glucose is dependent on hepatic synthesis and provision [30,89].
It is essential that the liver does not respond to insulin’s effects on glucose output, even
for one meal. This is because, hypothetically, one high carbohydrate meal that would
induce a high insulin output, could shut-down hepatic glycogenolysis and gluconeogenesis.
This insulin signalling effect may overshoot in duration, resulting in depriving glucose
dependent cells of hepatic glucose, fatty acids, and BHB, which are also regulated by
insulin [89]. The liver becomes physiologically “IR”, which is really a state of adaptive
homeostasis. In reality, the liver is not uniformly IR, as it can be seen, a glucose bolus
in keto-adapted individuals rapidly curtails BHB synthesis, whilst not inhibiting hepatic
glucose output. The hepatic “IR” is selective [94,95].

Individuals in habitual ketosis have significantly lower glucagon and insulin levels
than hyperinsulinaemia T2DM patients [31,43,80,96]. Hepatic glucose output is both regu-
lated by glucagon and is likely due to the continual “draw-down” of plasma glucose by
extra-hepatic tissues [31,97]. As BHB rises and glucose levels are restricted, this stimulates
an increase in osteocalcin (OCN) synthesis and release from the bone by osteoblasts, osteo-
cytes, and osteoclasts [98–100]. OCN significantly increases glucose uptake independent
of insulin and, in the fasted state, likely functions as the glucose uptake regulator, rather
than insulin [101,102]. However, OCN potentiates insulin’s glucose uptake effect, therefore
requiring less insulin, which effectively improves insulin sensitivity with regard to glucose
uptake [103]. OCN also induces glucagon-like peptide 1 (GLP-1) synthesis. Both OCN and
GLP1 signal beta cells to increase insulin synthesis and release [101,104,105]. The resulting
effect is that elevated BHB and glucose restriction drives OCN synthesis and release, and
OCN increases GLP-1 [105]. Together, OCN and GLP-1 increase insulin secretion [106,107],
resulting in downregulating BHB synthesis, which, in turn, down regulates OCN release
from the bone, which removes the signal for insulin secretion, and, therefore, insulin levels
decrease. This feedback loop effectively regulates BHB synthesis and glucose homeostasis
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(Figure 4). It is also intriguing that the half-life of OCN and GLP-1 are both 5 min, and
the pulsatile pattern of insulin secretion is 4 to 15 min [20,108,109]. The combined effects
of OCN and GLP-1 may enhance the signal for insulin secretion to potentially match
or synergise in generating the following feedback cycle: BHB increase → OCN increase
(+GLP-1) → insulin release → BHB decrease → OCN decrease → insulin decrease → BHB
increase. Furthermore, BHB, together with lactate or low levels of glucose, potentiates
the strength of the signal for insulin release, indicating that BHB directly, although not
independently, stimulates an insulin response [110].

Figure 4. Proposed basal insulin, beta-hydroxybutyrate, osteocalcin feedback cycle in phenotype-1 individuals. Beta-
hydroxybutyrate (BHB), central nervous system (CNS), glucagon-like peptide-1 (GLP-1), insulin resistance (IR), glucose-
insulin resistance (IR-G), osteocalcin (OCN), red blood cells (RBC), tryptophan hydroxylase (Tph).

It would be remiss to not indicate the significant role of the pancreatic alpha cells in
glucose and insulin homeostasis. A higher insulin level should predict a lower fasting
plasma glucose. However, as we see, fasting glucose is elevated in T2DM, as well as higher
glucagon and insulin [36,96]. The question is why would the alpha cells be secreting more
glucagon in a higher glucose background? An explanation maybe found in OCNs role in
regulating tryptophan hydroxylase (Tph) gene expression, the rate limiting enzyme for
serotonin (5-hydroxytryptamine, 5-HT) synthesis, an alpha cell glucagon secretory profile
modulator [111,112].

Through a series of elegant experiments, Almaça et al.,(2017) demonstrated in vivo
and ex vivo that alpha cell secretion of glucagon is modulated by serotonin signalling via
the 5-HT1F receptor, causing rapid inhibition of adenylate cyclase, resulting in a decrease
in intracellular second messenger cyclic adenosine monophosphate (cAMP). Furthermore,
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beta cells from people with normal glucose tolerance, phenotypes 1 and 2, produce and
secrete serotonin, and alpha cells respond to this serotonin, leading to the modulation of
glucagon secretion under different plasma glucose conditions. Almaça et al. showed that
when islet serotonin levels are manipulated (serotonin is depleted or inhibited), alpha cells
lose their ability to respond in concordance to surrounding glucose levels. This affects
glucose homeostasis, and likely plays a negative role in propagating pernicious increases
in fasting basal insulin levels, a pattern seen in the progression toward hyperinsulinaemia
phenotype-3 stages 1 and 2, and overt T2DM phenotype-3 stage 3.

Serotonin is a strong paracrine regulator of the secretory profile of alpha cells [112].
Higher levels of serotonin decrease alpha cell glucagon secretion when plasma glucose
levels are high and also reduces the amount of glucagon secretion at very low glucose
levels [112]. This may explain why phenotype-1 (longstanding metabolically flexible
habitual ketosis) and phenotype-2 individuals would have lower glucagon and insulin
levels, while maintaining lower glucose levels than found in those with hyperinsulinaemia
phenotype-3 [30,96].

GLP-1 receptor activation, in vivo, increases serotonin synthesis [113]. Furthermore,
serotonin has been found to be synthesised and stored with insulin inside the beta cell
insulin secretory beta-granules, and co-released upon glucose stimulation [114]. Beta cell
serotonin secretion shares similarity to the secretory pattern of insulin, having a glucose-
dependent and pulsatile pattern [112]. GLP-1 is also able to directly suppress glucagon
secretion via inhibiting alpha cell P/Q-type-voltage-gated Ca2+ channels [26,115].

OCN increases serotonin and GLP-1 synthesis, both of which modulate the alpha
cell glucagon secretory profile. OCN levels are significantly lower in insulin resistant
and T2DM individuals [99,116–118]. Glucose restriction and lower insulin levels enhance
osteoblastogenesis and osteocytogenesis, and OCN synthesis and release. This provides
a plausible metabolic and endocrine regulatory feedback cycle (Figure 4), in maintain-
ing glucose homeostasis, whilst also maintaining lower glucagon and insulin levels in
phenotype-1 and -2 individuals relative to phenotype-3 [100,119].

Consider an alternative basic premise; humans evolutionarily spent more time in a
metabolically fasted state of ketosis than current modern-day humans (phenotype 2 and 3).
Then, plausibly, the role of insulin is to regulate BHB synthesis, while the role of bone
regulates glucose uptake sensitivity via OCN. OCN then regulates fasting glucose levels
via regulating the alpha cell glucagon secretory profile and BHB synthesis via regulating
insulin release. An acute “fight or flight” stress response, such as running from danger
or running for hunting, would induce a rapid glucocorticoid stimulated hepatic release
of glucose that would then signal for a rapid insulin secretion response [120]. The liver
is “IR” toward glucose output, to ensure that the glucose may be provided for increased
muscle uptake, increased red blood cell (RBC) use for oxygen transport, and to increase the
clotting ability in the case of potential physical harm that could cause haemorrhage and
subsequent life-threatening hypovolemia.

The acute hyperinsulinaemia that accompanies the acute hyperglycaemia, inhibits
anti-coagulation processes via upregulating plasminogen activator type 1 (PAI-1), and
thus upregulates blood coagulability [121,122]. It, therefore, stands to reason that, in the
fasted state, hepatic glucose output mechanisms would adapt to not respond and, thus,
be inhibited by a rapid surge in insulin secretion, because if it did, then the “glucose
tap” would be turned off. This would result in sudden life-threatening deprivation of
glucose for the RBCs and certain parts of the central nervous system (CNS), which must
receive glucose.

It is equally “essential” that the liver becomes IR in the context of hyperinsulinaemia
as well. When a significant enough portion of time is spent in the fed state, which includes
carbohydrate consumption, rapid insulin secretion is induced; over time, this down reg-
ulates the expression of BHB synthesis enzymes [90,93,123,124]. As a result, the return
to ketogenesis does not occur within 3 to 5 hours post prandial. Furthermore, chronic
hyperinsulinaemia impairs hepatic and extra-hepatic beta-oxidation, driving a greater
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extra-hepatic reliance on glucose for fuel [125]. Consequently, glucose becomes the essen-
tial fuel for the system, a system that does not easily “switch gears” to using fatty acids nor
BHB, which is not readily available. Again, in this circumstance, the liver must continue
to release glucose even when there is an external influx of exogenous glucose causing a
rapid insulin release [94]. It may be the case that the down regulation of the rapid insulin
release may not be wholly pathological if one considers it as a means to reduce any excess
insulin signal on the liver to inhibit glycogenolysis. However, this is hypothetical and it is
more likely that mitochondrial damage results in the pathological changes that impair the
first phase rapid insulin response after a glucose bolus in T2DM patients, and this, in turn,
contributes to a pathological feedforward progression of increases in fasting basal insulin
levels [29,50,55,126].

The first phase rapid insulin response is impaired in hyperglycaemic T2DM patients [5,36],
and may be a significant T2DM risk marker for hyperinsulinaemic/normoglycaemic people
(phenotype 3, stage 1) [127]. There is a danger in thinking the solution is to find a way to
stimulate the rapid exocytosis of a high concentration of insulin to rapidly lower plasma
glucose levels. Although, that would result in what would appear to be, better glucose
homeostasis. However, it must be remembered that these patients are also insulin resistant
and have hyperinsulinaemia. Finding a way to help individuals with T2DM to activate the
rapid first phase response, i.e., increased insulin, would likely only potentiate the insulin
resistance and further increase their hyperinsulinaemia, which is present for a period of
time preceding hyperglycaemia. The better strategy is to understand what causes the
damage to the first phase response. Once this is understood, then the logical action is
to remove the detrimental upstream causal stimulus, shown successfully by a variety of
different carbohydrate and/or calorie restricted processes [78,128–131].

The current paradigm for insulin secretion regulation, for both basal and bolus, is
that glucose is the primary stimulus. Our hypothesis challenges this and proposes a new
paradigm: that bolus insulin secretion is regulated by glucose stimulus, but basal insulin
secretion is regulated by OCN. As people spend more time in a higher glycaemic state,
for example decreased fasting, constantly post prandial, this increases the frequency of
the requirements of the bolus secretion dominance, with plasma glucose being above
6 mmol/L, which suppresses the role of basal insulin secretion. As a result, reduced OCN-
regulated signalling diminishes serotonin regulation on glucagon output and, consequently,
fasting glucose rises again, potentiating bolus insulin release.

This proposal, regarding OCN regulating basal insulin release, needs to be thoroughly
tested, for example, in phenotype 1 people, who could be proxied by people in habitual
ketosis with no prior metabolic health dysregulation. Following an overnight fast, plasma
samples for glucose, insulin, BHB, OCN, GLP1, glucagon, and serotonin are collected at
least every 5 min for 60 min, to establish basal state insulin secretion. These people are
then given a glucose bolus, to establish a phenotype 1 OGTT metabolic profile.

Further investigations into insulin responses upon oral glucose tolerance tests (OGTT),
in individuals with phenotype 1, will likely demonstrate healthy first phase rapid insulin
secretion responses. These individuals have no prior metabolic health conditions and
maintain a longstanding habitual metabolic fasting-mimicking phenotype. In response to
an OGTT, their hepatic glucose output will not decrease; however, BHB synthesis will be
decreased/inhibited. The return of ketogenesis then marks the decrease in bolus stimulated
insulin signalling, while exogenous and endogenous glucose are both put away, out of
the bloodstream in a timely manner, somewhat akin to a healthy transient acute stress
response. While this may turn out to be true in acute infrequent trials, chronic glucose
tolerance tests, in the form of “three square meals a day”, likely induce the pathological
changes that evolve into the chronic diseases associated with ageing.

6. Clinical Implications

Clinically, this new paradigm suggests that there needs to be an expansion in the
concept of good metabolic health to include the presence of BHB. While ketone esters
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are available as health supplements, future research needs to consider whether there is a
difference in clinical outcomes between endogenous and exogenous BHB. Furthermore,
we need a better understanding of the metabolic profiles of people representative of the
phenotypes, as described above. For example, people with phenotype 1 are likely to have a
greater glucose sparing effect, they may have a heightened glycaemic response following
a glucose bolus, compared to people with phenotype 2 or 3. Using multiple metabolic
markers, especially the combination of glucose, insulin, BHB, and, ideally, OCN, may
provide a better understanding of metabolic or endocrine health. Understanding basal
insulin regulation enables earlier detection in changes that are associated with progression
in the pathological development of hyperinsulinaemia conditions. With this understand-
ing, it becomes clear that tight glycaemic control via medications that directly increase
insulin levels, especially the sulphonylureas or exogenous insulin, only further potentiates
hyperinsulinaemia and subsequent pathologies [132]. Lifestyle management, especially
carbohydrate restriction, [43,128,130] with adequate individualised support should be
considered first line treatment for hyperinsulinaemia, with or without hyperglycaemia, as
it offers a more effective method in improving glucose homeostasis whilst also decreasing
excess insulin exposure.

7. Conclusions

Once the metabolic phenotype is established, this would enable better selection criteria
and grouping for participant/tissue sampling/cell culture-media experimentation. Thus,
it would enable the avoidance of pooling participants/patients results that lead to signal
cancelling effects. This will then aid in the pursuit of resolving the regulation of basal
insulin secretion. Understanding the individual phenotype and stage allows for better
patient understanding and compliance with clinical nutritional management.
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