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Abstract
This review discusses current bottlenecks in making
CRISPR-Cas9-mediated genome editing a therapeutic reality and it outlines
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of current clinical trials that pioneer the medical translation of
CRISPR-Cas9. Additionally, this review outlines the specifics of
disease-modifying gene editing in recessive versus dominant genetic
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Duchenne muscular dystrophy and myotonic dystrophies.
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Successes and remaining bottlenecks in the clinical 
translation of CRISPR-Cas9
The treatment of genetic diseases remains one of the central 
challenges in medicine, where most genetic diseases—such as  
Duchenne muscular dystrophy (DMD), congenital heart  
disease, liver alpha 1 antitrypsin deficiency, familial partial  
lipodystrophy, and cystic fibrosis, to name a few—can be 
cured only if the disease-causing mutation is corrected to the 
wild-type sequence. Advances in genetics have revealed the  
molecular mechanisms that underlie these and many other  
genetic diseases, and CRISPR-Cas9 approaches have emerged 
as widely understood means to halt or even cure genetic  
pathologies. Additionally, CRISPR-Cas9 is being explored 
for treating acquired diseases, such as HIV, cancer, and  
hepatitis B1–3.

CRISPR-Cas9-based therapeutics have the potential to revo-
lutionize medicine; however, developing these therapeutics  
requires delivering Cas9 protein and guide RNA simultaneously 
in vivo, which is challenging, since multiple components are  
involved. For example, all of these components are difficult to  
clone into a single conventional vector, thereby typically requir-
ing multiple adenoviral-associated viruses (AAVs), to deliver  
one functional CRISPR-Cas9.

Importantly, even though a number of therapeutic vectors infect 
non-dividing cells, both the precise homology directed DNA 
repair (HDR) and the error-prone non-homologous end joining  
(NHEJ) rely on cell division: HDR is active when daughter 
chromatids are available (for example, in late S phase and in  
G

2
 phases), and NHEJ is most active in the G

1
 phase, although 

it can operate throughout the cell cycle4,5. For CRISPR-Cas9- 
mediated HDR, a donor DNA template must be provided in 
many cases, which further increases the number of functional  
components that need to be cloned into AAVs for in vitro and  
in vivo delivery.

CRISPR-Cas9 creates DNA double-strand breaks (DSBs) and 
thereby CRISPR-Cas9 therapies depend on DNA repair (ideally 
by HDR but in some cases NHEJ is permissive)6, and since most  
adult tissues are composed of non-dividing differentiated and  
quiescent stem cells, current CRISPR-Cas9 strategies may be 
insufficient for correcting the mutated genes with high-enough  
efficiency—in enough cells to meaningfully attenuate the  
progression of the disease.

Additionally, regardless of the method of gene editing, in vivo 
delivery of CRISPR-Cas9 machinery remains a challenge owing 
to toxicity as well as immunogenicity of viral vectors: most 
people have or will develop antibodies against AAV, and the  
therapeutic CRISPR-Cas9 cargo will be fought against by the 
immune system and will likely be destroyed7–9. Consequentially, 
as of now, AAV-CRISPR-Cas9 can be introduced into patients 
only once in order to avoid the amplification of the adaptive  
immune response, thus limiting efficiency to a single dose of 
the treatment, which might be insufficient, particularly for 
large tissues such as skeletal muscle or bone. Of note, the low  

efficiency and low tissue selectivity of CRISPR-Cas9 hinder 
not only gene editing approaches but also CRISPR-Cas9a and  
CRISPR-Cas9i (where enzymatically inactive Cas9 is targeted 
to promoter/enhancer regions of specific genes by the gRNAs in 
order to induce the activation-a or inhibition-i of expression)10. 
The non-viral vectors might provide a better alternative for the  
genome editing or the regulation of gene expression by enabling 
multiple administrations of CRISPR-Cas9, which is discussed  
in the “Future directions” section.

With respect to the gene delivery aspects of CRISPR-Cas9,  
continuous expression of Cas9 cDNA, which causes cumulative 
off-target DNA DSBs and creates insertions/deletions (indels), 
has inherent danger of not only gene inactivation or ectopic  
activation but also of oncogenic cell transformations due to the 
ongoing long-term genomic DNA damage. Indeed, rapid and  
significant genome damage, including extensive deletions and 
rearrangements, has recently been attributed to the effects of  
CRISPR-Cas911. The danger of oncogenic transformations might 
be particularly high in approaches in which CRISPR-Cas9-AAV is 
delivered through blood circulation and is distributed to a number 
of tissues, including the bone marrow, gut, and liver, with their  
plentiful proliferating cells12. Additionally, because DNA DSBs 
activate the guardian of the genome p53, a typical response to 
CRISPR-Cas9 activity is cell death by apoptosis13. Approaches 
to inactivate p53 might improve the efficiency of CRISPR-Cas9 
by preventing apoptosis14, but these might also attenuate p53- 
dependent DNA repair, thereby increasing the probability of 
genomic instability.

In the past, many promising approaches—such as gene therapy 
(in vivo gene delivery or RNA interference [RNAi] in vivo gene 
attenuation) or cell transplantation for in vivo treatment of  
tissue degeneration—have not been widely realized to clinic, 
not because of a theoretical fault but because of the lack of  
technologies that enable their medical feasibility. It is important 
to fully consider the roadblocks to the clinical translation of  
CRISPR-Cas9 (Figure 1) in order to overcome them and make 
CRISPR-Cas9 a therapeutic reality.

Even with all of the abovementioned hurdles, the disease- 
modifying capacity of already-developed CIRSPR-Cas9  
approaches cannot be underestimated, and many research teams 
and biotech firms (Caribou Biosciences, CRISPR Therapeutics,  
Vertex Pharmaceuticals, Genedit, Editas Medicine, Intellia  
Therapeutics, and so on) are justly focusing on clinical trials.

There are a number of applications where patients’ bone  
marrow cells are removed, are CRISPR-Cas9-edited in vitro, 
are expanded in culture, and are introduced back into the patient 
in order to provide novel treatments for blood diseases, such as  
sickle cell anemia and beta thalassemia, or to engineer immune 
cells to resist HIV or to overcome the immune evasion of  
cancers15–18. It is worth mentioning that the idea to proceed 
with CRISPR-Cas9-based clinical trials is not without  
controversy19; recently, the sickle cell anemia trial was put on  
hold by the US Food and Drug Administration (FDA)20,21.
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In all of these “derive and re-transplant” approaches, the low  
efficiency, reliance on cell division, and tissue targeting are not a  
problem because proliferative hematopoietic cells are expanded 
and selected in culture, and even though other methods of  
molecular biology would achieve similar results, CRISPR-Cas9 
makes genetic engineering easier. Similarly, it is much easier 
to create gene knockouts in cells and in experimental animals  
using CRISPR-Cas9, which is moving biomedicine forward at a 
new speed22.

Significance of CRISPR-Cas9 approaches for 
different classes of genetic myopathies: dominant 
versus recessive
In recent years, CRISPR-Cas9 approaches have been repeat-
edly reported in a mouse model of DMD: DMD-MDX mice23–25.  
DMD is an X-linked genetic myopathy that is caused by a vari-
ety of inactivating dystrophin gene mutations. The search for a 
disease-modifying cure for DMD is very important: it afflicts  
children and young adults, is currently incurable, and has  
devastating consequences (progressive paralysis and morbidity 
in the early 20s). In the reported DMD-MDX studies, the in vivo  
efficiency of dystrophin gene editing by CRISPR-Cas9 (as  
defined by deep sequencing of treated tissues) is about 1% to 2% 

with indels at about 1% of the CRISPR-Cas9 targeted sequence 
levels. In other words, in a mouse cell where CRISPR-Cas9 
was 100% effective, 1% of indels occurred; typically, CRISPR-
Cas9 is effective in about 1% to 2% of the targeted tissue in  
experimental MDX animals23–25. At the same time, there is an 
impression that CRISPR-Cas9 is massively effective because of 
the images that depict robust dystrophin protein in the muscles 
of MDX mice after CRISPR-Cas9 administrations, which are 
aimed at restoring the dystrophin reading frame through exon  
skipping23–25.

It is important to note that MDX mice that model DMD and  
have been widely used to test CRISPR-Cas9 editing of dystrophin 
have much milder disease as compared with people: MDX mice 
live until they are old adults and do not significantly lose their  
mobility. One possible reason is that the physiological workload 
in small mice is not comparable to that in humans; hence, the 
“wear-and-tear” rate and the rate of replenishment/renewal of  
tissue by differentiating stem (satellite) cells differ between mice 
and humans. Additionally, there is high telomerase activity in  
mice as compared with the very low activity of this enzyme and 
much shorter telomere lengths in people. Indeed, an experimen-
tal reduction of the telomerase activity in MDX mice resulted in  

Figure 1. Roadblocks for clinical translation of CRISPR-Cas9. (1) Circulating anti-AAV antibodies will cause an immune response and 
eliminate AAV nanoparticles carrying Cas9 gRNA. (2) Owing to the imprecision of current delivery systems, there is dilution of the therapeutic 
CRISPR-Cas9 by less relevant cells and tissues in the body. (3) Many cells in the body, including quiescent stem cells and post-mitotic 
differentiated cells, have poor DNA repair, thus making CRISPR-Cas9 therapies insufficient for correcting mutated genes with high-enough 
efficiency. (4) CRISPR-Cas9 causes unintended off-target DNA damage which not only can lead to gene inactivation or ectopic activation but 
also activates p53, thus promoting cell apoptosis, particularly when DNA repair is intrinsically inefficient. (5) Proliferative cells with CRISPR-
Cas9-induced damage might undergo oncogenic transformations. Despite these obstacles, CRISPR-Cas9 is moving forward in clinical trials. 
Several ways to overcome the bottlenecks in clinical translation of CRISPR-Cas9 are being pursued and are described in this perspective. 
AAV, adenoviral-associated virus; CRISPR, clustered regularly interspaced short palindromic repeats.
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more severe disease that was more similar to human DMD26. Of 
note, the robust dystrophin protein re-expression was observed 
in newborn mice with their plentiful proliferative muscle precur-
sors or young MDX mice that were injected with cardiotoxin23,  
causing myofiber death and proliferation of myogenic cells, which 
are capable of effective CRISPR-Cas9. At the same time, there is 
a possibility that, in patients with DMD, these proliferative cells 
have been altered or exhausted (or both) by the disease and are  
not available to perform CRISPR-Cas927.

It is important to realize that, through the typical process of cell 
fusion, each rare dystrophin-edited myoblast can contribute 
to the myofibers’ myonuclei, which would produce thousands 
of copies of dystrophin mRNA; if translated into protein, this  
truncated dystrophin will appear in the entire muscle fiber.  

Moreover, before fusion into myofibers, each rare dystrophin-
edited myoblast is capable of proliferation and migration, thus 
having the capacity to contribute myonuclei to multiple myofib-
ers in the treated tissue (Figure 2). It is yet to be determined 
whether and to what degree CRISPR-Cas9 gene editing is effective 
in quiescent muscle stem cells (satellite cells) as opposed to the 
more differentiated proliferating progenitors (myoblasts), which 
typically exit the cell cycle to form myotubes and are unlikely 
to massively contribute to the stem cell pool that maintains and  
repairs muscle throughout the lifespan.

DMD and other X-linked genetic diseases do not have the  
second allele for natural HDR, hence there is no physiologic 
possibility to restore dystrophin (and X-linked mutations that  
cause genetic diseases in males, generally speaking) to the  

Figure 2. Specifics of CRISPR-Cas9 NHEJ approach to DMD. Dystrophin-negative myofibers have inactivating dystrophin gene mutation(s), 
resulting in the absence of dystrophin protein. Delivery of CRISPR-Cas9 (AAV-Cas9 and AAV-gRNAs) (1) leads to editing of the mutated 
exon (that is, removing a premature stop codon, red box) in rare muscle precursor cells, myoblasts, which can divide, migrate, and fuse 
with a number of myofibers (2). Many non-dividing cells in the muscle, including the quiescent MuSCs (muscle stem cells) and myofibers, 
are not efficiently edited by CRISPR-Cas9, and other muscle-resident cells, such as fibroblasts, might be edited. Truncated but partially 
functional dystrophin protein is delivered to clusters of myofibers (green outlines) through fusion events with the rare CRISPR-Cas9-edited 
myoblasts, where 1,000s copies of dystrophin mRNAs might be produced by a single corrected myonucleus (3). AAV, adenoviral-associated 
virus; CRISPR, clustered regularly interspaced short palindromic repeats; DMD, Duchenne muscular dystrophy; NHEJ, non-homologous end 
joining.
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wild-type sequence. However, via the nanoparticle approach, the  
donor DNA template was successfully delivered in complex  
with the Cas9 and gRNA to the skeletal muscle of MDX mice, 
which produced in vivo HDR-based editing of mutant dys-
trophin to its wild-type sequence28. Of note, in individual DMD  
patients, there are various mutations of many classes—missense, 
nonsense, small and large deletions, and so on—which might 
require patient-specific gRNA and donor DNA designs for the  
best treatment. At the same time, even truncated NHEJ- 
produced dystrophin that is expressed at partial levels might 
restore the viability of the muscle fibers, converting DMD to 
milder Becker’s muscular dystrophy where partial dystrophin  
protein is present in muscles of afflicted individuals29. Improve-
ment in cell viability by partial dystrophin is due to normali-
zation of the membrane-associated dystrophin glycoprotein  
complex that normalizes Ca2+ signaling and enhances the resil-
ience of myofibers to contractile stress30–33. These observations  
underlie the strategy of using NHEJ to cut out the STOP codon 
in mutated dystrophin, targeting the 5′ to 3′ of the mutated  
sequences of dystrophin, and producing truncated exon-skipped, 
returned-to-frame genes. However, the in vivo method to treat 
DMD through exon skipping (without CRISPR-Cas9), which was 
approved by the FDA and was conducted by Sarepta (Exondys  
51/eteplirsen) in 2016, resulted in only a marginal presence of 
dystrophin protein and could be applied only to patients with a  
specific mutation in the dystrophin gene34. So the company 
switched to an older approach: gene therapy through delivery of  
dystrophin mini-gene cDNA, which recently yielded much better 
results35. Of note, in the search for a broad gene editing therapy 
that can be applied to diverse DMD-causing mutations, a novel 
CRISPR-Cas9 NHEJ strategy was recently put forward36.

Summarily, DMD is a recessive disease, in which any induction 
of dystrophin protein expression might be significant, particu-
larly if it is above the percentage of revertant fibers, which are  
infrequently generated by rare cells with spontaneous somatic 
mutation(s) that result in dystrophin protein re-expression37.

Although this review is focused on genetic myopathies, there  
are, of course, other genetic diseases in which, as in DMD, some 
disease-modifying activity might be expected, even with 1% 
to 2% of actual genomic DNA gene correction. For example, in  
autosomal recessive alpha 1 antitrypsin deficiency (A1AT), the 
Glu342Lys causative point mutation is in the SERPINA1 gene 
that is located on chromosome 14q and encodes liver-secreted  
serine protease inhibitor38,39. Any increase in the protease inhibi-
tor might be helpful for attenuating the disease; moreover, 
the wild-type allele of SERPINA1 is available for HDR and  
physiologic correction of the mutation to the wild-type sequence. 
On the other side of this coin, there is a possibility of inadvert-
ently altering the wild-type non-affected allele, which should 
be avoided at all costs; for example, the gRNA design becomes 
vitally stringent. Another detail of A1AT and liver diseases in  
general is that hepatocytes are polyploid, introducing the  
potential for interaction between edited and non-edited genomic 
DNA in sister chromatids and between identical chromosomes, 
complicating the gene editing/altering outcomes. PiZ transgenic 
mice that model this disease have high levels of human mutated 
SERPINA1 protein, and these animals manifest liver fibrosis and 

hepatocellular carcinoma40. Very promising pre-clinical data were 
recently obtained by using two AAVs to deliver CRISPR-Cas9 
components to mice that model A1AT in vivo: one with Cas9 and 
the second with a gRNA and donor DNA41.

In contrast to DMD, A1AT, and so on, genetic disease in which 
even minimal in vivo effectiveness in gene correction might  
produce gradual cumulative attenuation of pathology, there 
are dominant negative diseases, exemplified by the myotonic  
dystrophies, in which meaningful intervention would require  
gene editing in a large volume of tissue.

Myotonic dystrophies (DM1 and DM2) are autosomal dominant 
neuromuscular genetic diseases42. These disorders are systemic, 
they cause skeletal and heart muscle problems, and in DM1 but 
not DM2 pathology there are also brain problems and congenital 
manifestation.

Molecularly, in DM1, there is expansion of several hundreds 
or even thousands of a (CTG•CAG)n repeat sequence in the 3′  
untranslated region of the myotonic dystrophy protein 
kinase (DMPK) gene; in DM2, long expansions occur in a  
(CCTG•CAGG)n repeat sequence in the first intron of the gene 
for cellular nucleic acid binding protein (CNBP)43. Resulting 
intranuclear accumulation of toxic RNA transcripts with these  
repetitive elements causes abnormal binding and affects the 
expression level and intracellular distribution of RNA binding  
proteins, notably of MBNL1 (which becomes diminished) and 
CUGBP1 (which becomes increased). Changes in the levels of 
CUGBP1 and MBNL1 percolate through altered RNA process-
ing (RNA splicing, polyadenylation, and nucleocytoplasmic 
transport) of other gene products, which is regulated by these  
proteins42,43.

On one hand, CRISPR-Cas9-based approaches for treating  
myotonic dystrophies are facilitated, since NHEJ is applicable to  
promote the cleavage to sites 5′ and 3′ of the repeat. This is  
relatively easier than the HDR approach. But, on the other 
hand, the disease-causing repeats and resulting toxic RNAs are  
dominant negative inhibitors of cell function and are present 
in large tissues; thus, removing only a small percentage of them 
might not be sufficient for disease-modifying activity. Because  
DM1 and DM2 are mostly late-onset, genome editing of muscle 
stem cells (or even a small fraction of those cells) might help to 
halt disease progression and contribute to improvement in the 
long term. The numbers of true self-renewing stem cells and the  
regenerative capacity of such cells generally decline in skeletal 
muscle and other tissues with a person’s age, pointing toward the 
idea to target DMD, myotonic dystrophies, and genetic diseases in 
general as early as is practical.

Interestingly, even in myotonic dystrophy DM1, in which seem-
ingly any reduction in the number of excessive repeats is thera-
peutic, only the removal of the entire expanded DNA sequence  
through precise CRISPR-Cas9 cuts on both sides was productive, 
whereas single cuts and less controlled NHEJ only increased 
genomic instability and pathology44. Such findings point toward 
the idea that CRISPR-Cas9 machinery that contains multiple  
gRNAs and, in some cases, donor DNA template in addition to 
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Cas9 might be needed for meaningful therapies as compared  
with the simpler single-target DNA DSB producing CRISPR-
Cas9.

Future directions
Moving forward, the field of CRISPR-Cas9 editing is working 
in a number of scientific directions. In particular, there is great  
interest in developing non-viral delivery strategies for delivering 
the CRISPR-Cas9 components into cells and in vivo. Delivery  
vehicles composed of solid lipid nanoparticles45, lipofectamine46, 
gold nanoparticles47, and cationic polymers48 have all been  
investigated for non-viral delivery of Cas9 and gRNA and have 
been able to efficiently inactivate genes in vivo in a variety of 
tissues. In addition, gold nanoparticles complexed to Cas9,  
gRNA(s), and dDNA (termed CRISPR-Cas9-Gold) have been 
developed and were able to generate HDR in vivo, in the muscle 
tissue, with an HDR efficiency of 5%28. CRISPR-Cas9-Gold was  
also able to mitigate immune recognition (no AAV) and had  
lower off-target effects (no continuous Cas9 gene expression) as 
compared with the viral vectors28.

Nanoparticles enable repetitive cumulative treatments, so even 
with a small percentage of gene editing in each, the overall  
positive effects would increase with the number of administra-
tions (without expanding the DNA DSBs and immune reactions). 
The Cas9RNP that is delivered by nanoparticle will, of course, 
be degraded in the cell, but published work shows that effective 
gene editing takes place through this approach using the limited  
half-life of Cas9RNP28. And while continuous expression of  
Cas9 cDNA and gRNA logically increases the change of gene 
editing in a given cell, there is a concomitant increase in genomic  
instability over time. Another positive of CRISPR-Cas9 nano-
particles is that there is no component’s size limitation in  
contrast to such limitation in cloning CRISPR-Cas9 into viral 
vectors. Though promising, nanoparticle delivery vehicles for 
CRISPR-Cas9 need to be optimized with respect to biodegrad-
ability and tissue targeting-homing from the bloodstream to  
tissues in need of repair.

As already mentioned, it would be important to target CRISPR-
Cas9 to tissue stem and progenitor cells: the regenerative  
subset that is capable of effective DNA repair and thus  
CRISPR-Cas9-based gene editing. Importantly, because stem 
cells self-renew and differentiate, each gene correction would 
not only produce healthy functional tissue but also propagate in 
time and space through stem cell self-renewal and proliferation 
of tissue-resident progenitor cells. Finally, more knowledge is  
needed on the abilities of specific cell types and of cells at  
different stages of their lineage progression to function as  
targets for CRISPR-Cas9 editing and to mediate dsDNA break  
repair49,50.

Taking into account the limitations of NHEJ and the abilities of 
HDR to correct genes to their wild-type sequences by CRISPR-
Cas9, several approaches are being developed to inhibit NHEJ 
and promote HDR51–53. To increase the effectiveness of HDR,  
which typically is a slow, inefficient process, ectopic expression 
of Rad52, linear DNA templates, and small-molecule approaches 
were successfully tried52,54,55.

In attempts to minimize the off-target effects of CRISPR-Cas9 
and limit the undesired genome damage, deliberate inhibitors of  
Cas9 have been developed56, and computational platforms for 
predicting the on-target versus off-target sites for CRISPR-Cas9 
gRNAs have been proposed54,57,58.

Finally, the progress of CRISPR-Cas9 toward the clinic now  
relies heavily on two-dimensional cell cultures and rodent  
models (both significantly different from human tissues). More 
advances are needed in testing and optimizing CRISPR-Cas9 
for both NHEJ and HDR in human cells and tissues, and organ  
chips present a great opportunity in this regard. Namely, 
the recent development of three-dimensional human micro- 
tissues59–63 allows one to examine CRISPR-Cas9 applications 
in disease-relevant cells and also when different cell types are  
present in an environment that emulated the afflicted organ, 
at least with respect to the “vasculature” and possibly the  
“innervation”. In a similar vein, the work with mouse models of 
human genetic diseases is to progress toward large animals; on 
this path, work in a canine DMD model that is phenotypically  
more similar to human disease than the MDX mice was suc-
cessful in 2% to 3% of dystrophin editing by CRISPR-Cas9  
(as determined by genomic DNA sequencing). Such genome 
editing in two studied animals produced re-expression of  
dystrophin protein throughout the body musculature after  
infusions of AAV-Cas9 and AAV-gRNA cassettes into immuno-
compromised 1-month-old pups with their growing muscles and  
hence proliferative myogenic cells64.

Summarily, the field of CRISPR-Cas9 is blossoming, and this 
scientific method has immense potential to become therapeutic;  
to realize this potential, CRISPR-Cas9 has to be improved with 
respect to delivery to regenerative dividing cells, enabled tissue 
targeting, enhanced HDR or other forms of precision gene  
editing, and reduction-elimination of the CRSIPR-caused genomic  
damage.
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