
Proofs of Ownership in

Remote Storage Systems

Shai Halevi (IBM)

Danny Harnik (IBM)

Benny Pinkas (Bar Ilan)

Alexandra Shulman-Peleg (IBM)

Cloud backup services

 Online file backup and synchronization is huge

 Mozy

Over one million customers and 50,000 business

customers. Over 75 PetaByte stored.

 Dropbox

Over three million customers.

 And many more… many services geared

towards enterprises

2

Screen shot of a backup process

 You can examine your backup history

File already on MozyHome servers Copy of my presentation

 But sometimes strange things happen…

30.Rock.S03E20.HDTV.Xvid-LOL.avi 175MB
4

Deduplication

 Deduplication = storing and uploading only

a single copy of redundant data

Applied at the file or block level

 Major savings in backup environments

(>90% savings in common scenarios)

“most impactful storage technology”

 July 2009: EMC acquires DataDomain for $2.1B

 April 2008: IBM acquires Dilligent for $200M

 July 2010: DELL acquires Ocarina for ???

 5

Deduplication

 Cross-user deduplication

 If two or more users store the same file, only a

single copy is stored

 Source-based deduplication

Deduplication is performed at the client side

 If the server has the file, no need to upload

Saves bandwidth as well as storage

Known also as “Client-side deduplication” or

“WAN deduplication”

Deduplication and security

 Server state is a “joint resource” across

different users

 Answer to “does-file-exist-on-server” leaks

one bit of information about other users

 [Harnik/Pinkas/Shulman-Peleg 2010] use

this channel to leak “interesting” information

 Opens the door to stealing files

This work

7

Talk Outline

 A file-stealing attack

Attack description, some details

Discussion of real-life significance

 Our solution: proofs of ownership

Definition(s)

Relation to similar notions (PORs/PDPs)

Constructions

A File-Stealing Attack

Use of Hash Values

 Hash of file serves as identifier for content

 During upload

Client computes and sends hash of file

 If hash value found (dedup), skip upload

Else (hash not fount) ask to upload the data

Either way, remember that client “owns” file

 Client is then allowed to download the file back,

e.g. when performing a Restore

The Attack

 Attacker obtains hash for victim’s file

More on how to do it later

 Connects to server, tries to upload the file

Server asks for hash, attacker complies

Server skips upload, remembers that attacker

owns the file

 Attacker asks to restore the file,

downloads it from the server

The Attack

 Attacker obtains hash for victim’s file

More on how to do it later

 Connects to server, tries to upload the file

Server asks for hash, attacker complies

Server skips upload, remembers that attacker

owns the file

 Attacker asks to restore the file,

downloads it from the server

If you can get the

hash of the file, you

can get the file

Getting the hash value

 Hash is not meant to be secret

The dedup procedure may use a common hash

function (e.g., SHA1, MD5)

 May be used for other purposes:

“Shouldn’t not reveal anything about the file”

Fingerprint software/media, timestamp

contributions, …

 E.g., I publish a fingerprint of my software, one user

backs it up, now everyone can get it from server

13

Getting the hash value (2)

 Malicious software

A malicious software on Bob’s machine wants

to stealthily leak all his files to Alice

 Instead of sending huge files, can send the

short hash values of the files

 Much harder to detect and prevent

 Also true for server break-in

Dump all hashes in memory and run…

Even if detected, only remedy is to turn off

dedup for affected files (essentially forever)

Getting the hash value (3)

 Content distribution network (CDN)

Alice wants to share a huge file with her friends

Uploads file to server, sends hash to friends

Friends use backup service to download file

 Server used as a CDN, unknowingly

Might break its cost structure

 If it planned on serving only a few restore ops

Might break the law

 If huge file was copyrighted

Is This a Real Problem?

 How hard it is to implement the attack?

Leo Dorrendorf & Benny Pinkas Implemented

the attacks against two major storage servers

Not quite straightforward, not very hard either

 In some cases the standard client software

keeps a control-file with all hash values

 Makes the attack a lot easier

Is This a Real Problem? (2)

 Emerging open protocols for cloud storage

E.g. CDMI from SNIA (storage standards body)

 Support for client-side dedup is coming

 Standardization makes the CDN attack

trivial, simplifies also other attacks

 Practical solutions to these attacks are

needed as an enabler for this technology

Is This a Real Problem? (3)

“Overall, I liked the paper but felt that it is a

solution searching for a problem”
Anonymous reviewer, USENIX Security 2011

Is This a Real Problem? (4)

 Dropship, a new open-source project by

Wladimir van der Laan (April 2011)
 “written in Python. Allow you to download to your Dropbox any

file, which description we got in JSON format (similar as

description propagated in .torrent files).”

 “Have you ever dreamt about the ability to download new

movies in a super fast, safe way from distributed network? Are

you interested … in downloading with maximum bandwidth

wherever you are, 24/7, with super safe connection and being

extremely anonymous”

 Implemented the CDN attack over Dropbox

Is This a Real Problem? (4)

 Dropbox’s CTO contacted the creator of

Dropship, requested “in a really civil way”

that he takes the project off of github

Project reveals Dropbox’es protocol

Can support piracy

 van der Laan complied

 Follow-up discussion on slashdot (mostly

about “censorship”)

Is This a Real Problem? (5)

 Concurrent work:

“Dark Clouds on the Horizon: Using Cloud Storage

as Attack Vector and Online Slack Space”

 Mulazzani, Schrittwieser, Leithner, Huber, and Weippl

(SBA Research)

 Implemented the same attacks against

Dropbox
To appear in USENIX Security 2011

Our Solution:

Proofs-of-Ownership

A Naïve Solution

 Use application-specific hash, salt

e.g. SHA(“service name” | salt | file)

Other applications won’t use the same hash

Solves fingerprinting/timestamping scenarios

 But hash is still not secret

 All clients must know hash function

 Does not address root cause of problem

Large file is still represented by a short string, if
you can get the short string then you get the file

 Many attack scenarios remain (CDN, break-
in, etc.)

23

A Better Naïve Solution

 Use a challenge-response mechanism

 E.g., for every upload server picks a

random nonce, asks client to compute

SHA(nonce | file)

This “proves” that client knows the file

But server must retrieve the whole file from

secondary storage to check the answer

 We want a better proof mechanism

24

Proofs of Ownership (PoWs)

 Protocol for client (prover) and server (verifier)

Client has the file

Server stores only short verification information

 Verification information computed from the file

The proof itself is bandwidth-efficient

 Much shorter than sending the whole file

 Adversary may have partial info about the file

E.g., its hash value, maybe more

 Want proof to succeed only if client has the

whole file
25

Security Definition

 In the spirit of the bounded-retrieval model

Also reminiscent of [GJM’02]

 Roughly follows the CDN attack scenario

 The requirement (informally):

As long as the file has sufficient entropy

left (from the adversary’s perspective),

the proof will fail whp

Security Definition

1. File chosen from adversarial distribution

2. Verifier computes verification information

3. Adversary has accomplices that get file,

interact with verifier, leak to adversary

 But leakage is limited

4. Then adversary interacts with verifier

 No communication with accomplices now

(we do not protect against man-in-middle)

Security Definition

 Strict definition:

As long as leakage is less bits than

 initial-min-entrpoy – security-parameter

adversary only has negligible probability

of convincing the verifier

 Later we relax this requirement

Practical Considerations

 Low bandwidth

 Very short verification information

Only a few bytes per file

 Efficient processing by client, server

File itself may be very large, perhaps does not

even fit in main memory

Would be nice to have a steaming solution,

(e.g., similar to just computing SHA(file))

29

Relation to Proofs of Retrievability

 In PORs [JK07,ABC+07], server proves

to client that it actually stores its file

Role-reversal from PoW’s

 In most PORs, client (verifier) has secret

state, file is pre-processed using this state

before uploading to server

E.g., client embeds many authentication tags,

then verifies a random subset of them

 [NR05],[JK07],[SW08],[DVW09]

Cannot be done in our setting 30

Relation to Proofs of Retrievability

 Security definition of POR is strictly

stronger than our definition of PoW

Requires an extractor a-la-POK

 Any POR without preprocessing is a PoW

But not every PoW is a POR

One of our constructions is a POR, others are

not

Background: Merkle Hash Trees

 Committing to n values, x1,…,xn, such that

The commitment is short (a single hash value)

Can “open any xi” with a de-commitment

message of length O(log n)

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

Background: Merkle Hash Trees

 The commitment is the root value v

 To open a leaf, send the sibling path from that

leaf to the root

 E.g., opening leaf a by providing b, v01, and v1

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

Solution – first attempt

34

File

Merkle Tree

Solution – first attempt

35

File

Merkle Tree

Preprocessing:
server stores root
of tree

Solution – first attempt

36

File

Merkle Tree

Proof: server asks
client to present
paths to L random
leaves

A client which knows only a p fraction
of the file, succeeds with prob < pL.

√ very efficient

Problem and solution

 Adversary that knows a large fraction of

the blocks (say, 95%), can pass the test

with reasonable probability (0.9510=0.6).

 Solution:

37

File
Erasure
code(File)

Merkle Tree

Apply Merkle tree
to encoded
file Merkle Tree

Construction 1:

Erasure code & Merkle tree

 Erasure code property: knowledge of, say,

50% of the encoding suffices to recover

original file

attacker who misses even a single block of

the file, does not know > 50% of the encoding

Fails in each Merkle tree query w.p. 50%.

Cheating probability is 2-L

Merkle Tree

Proof of Security

 Merkle-tree lemma: Given a prover that

succeeds with probability eL, can extracts

~ e-fraction of the base of the tree whp

A simple “hardness amplification” result

 Proof uses extractor to extract the file from

the adversary (whp)

Must be “the right file”, or else a hash collision

Contradicts the fact that file has high

min-entropy from adversary’s perspective

 This is actually a POR, not just a PoW

Efficiency?

 Computing an erasure code for a large file

No streaming solution (that we know of)

Need random-access to either input or output

of the encoding procedure

 Very expensive if file doesn’t fit in memory

Many many disk-seeks

40

Small Space Protocols

 Seems hard for the strict security definition

Small space at client is “small representation”

of file, leaking it lets one complete the proof

(Of course, this is not an impossibility proof)

 Relax the requirement

 Introduce a threshold t, adversary may

succeed if it gets t leakage bits of the file

 Set t large, not huge (e.g., t = 1GB)

Protocol works in space O(t)

41

Construction 2: Hash & Merkle Tree

 Universal hashing to reduce file to an

T-byte buffer, Merkle-tree over the buffer

 Security: Adversary fails whp if leakage

amount is less than min(t, T/2)-s

 t=initial-min-entropy, s=security-param

42

File

Reduced buffer

Merkle

Tree

Hashing

Proof of Security

 Similar to before

 Main lemma: no leakage function leak(F)

lets the adversary learn a large fraction of

the hashed buffer h(F)

Assuming that leak has short output

Even if leak can depend on h

With high probability over the choice of h

 Use pairwise-independence + union-bound

Proof of Security, Main Lemma

 D is distribution on {0,1}M, min-entropy ≥k

 h is pairwise independent h : {0,1}M
{0,1}bT

b is size of Merkle-tree leaves (b≥2 bits)

We assume that k < T/3

 Then whp over the choice of h, for every

large subset of blocks S {1,2,…,T}, |S|>
2𝑇

3

the projection h(D)S has min-entropy ≥ k-1

Proof: roughly, no collisions so min-entropy is

not reduced (and then union bound)

Efficient Enough?

 Hashing output fits in memory, can

compute it in “streaming fashion”

 Still not as efficient as we would want

File size M, buffer size T, hashing takes

Ω(M·T) time

 Can we do better?

45

Construction 3: Reduce, Mix & Merkle

 Want to use a simpler length-reduction

than universal hashing

Goal: If adversary is missing even a small part

of the file (after leakage), it will miss a large

fraction of the reduced-length buffer

 We design an efficient ad-hoc procedure,

“hope that it works”

We prove security against a certain class of

input distributions, under a coding assumption

Construction 3: Reduce, Mix & Merkle

 Reducer: XOR each block to a constant

number of random locations

Runs in O(M+T) time

 Add a Feistel-like mixing phase

Hope that Reduce+Mix

make a “good code”

Details in the paper

47
File

 Reduced file

Merkle

Tree

Reducer

 Reduced &
mixed file

Mixer

Performance of streaming PoW

48

Running PoW vs. Sending the File

49

When is it Worth the Effort?

Conclusions

 Deduplication offers huge savings and yet

might leak information about other users

 Most vendors just now becoming aware of

this

 The challenge: offer meaningful privacy

guarantees with a limited effect on cost

 Major challenge in making it practical….

51

