Note

On monochromatic paths and monochromatic 4-cycles
in edge coloured bipartite tournaments

Hortensia Galeana-Sánchez, Rocío Rojas-Monroy

Instituto de Matemáticas, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad Universitaria,
Circuito Exterior, 04510 México, DF, Mexico

Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario No. 100,
Centro 50000, Toluca, Edo. de México, Mexico

Received 5 February 2003; received in revised form 18 February 2004; accepted 3 March 2004

Abstract

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.

A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the following two conditions:

(i) For every pair of different vertices $u, v \in N$, there is no monochromatic directed path between them.

(ii) For every vertex $x \in (V(D) - N)$, there is a vertex $y \in N$ such that there is an xy-monochromatic directed path.

In this paper it is proved that if D is an m-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic, then D has a kernel by monochromatic paths.

MSC: 05C20

Keywords: Kernel; Kernel by monochromatic paths; Bipartite tournament

1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D, respectively. An arc $(u_1,u_2) \in A(D)$ is called asymmetrical (resp. symmetrical) if $(u_2,u_1) \notin A(D)$ (resp. $(u_2,u_1) \in A(D)$). The asymmetrical part of D (resp. symmetrical part of D) which is denoted Asym(D) (resp. Sym(D)) is the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of D; D is called an asymmetrical digraph if Asym(D) = D. We recall that a subdigraph D_1 of D is a spanning subdigraph if $V(D_1) = V(D)$. If S is a nonempty set of $V(D)$ then the subdigraph $D[S]$ induced by S is the digraph having vertex set S, and whose arcs are all those arcs of D joining vertices of S. An arc (u_1,u_2) of D will be called an S_1S_2-arc whenever $u_1 \in S_1$ and $u_2 \in S_2$.

A set $I \subseteq V(D)$ is independent if $A(D[I]) = \emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D) - N$ there exists a zN-arc in D. A digraph D is called a kernel-perfect digraph or KP-digraph when every induced subdigraph of D has a kernel. A digraph D is called a bipartite tournament if its vertices can be partitioned into two sets V_1 and V_2 such that:

(i) Every arc of D has an endpoint in V_1 and the other endpoint in V_2.

(ii) For all $x_1 \in V_1$ and for all $x_2 \in V_2$, we have $|\{(x_1,x_2),(x_2,x_1)\} \cap A(D)| = 1$. We will write $D = (V_1,V_2)$ to indicate the partition.

E-mail address: hgaleana@matem.unam.mx (H. Galeana-Sánchez).

0012-365X/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2004.03.005
If \(T = (z_0, z_1, \ldots, z_n) \) is a directed path, we denote by \(\ell (T) = n \) its length and if \(z_i, z_j \in V (T) \) with \(i \leq j \), we denote \((z_i, T, z_j)\) the \(z_i, z_j \)-directed path contained in \(T \). For a directed cycle \(\gamma \), \(\ell (\gamma) \) will denote its length; a directed cycle is quasi-monochromatic if with at most one exception, all of its arcs are coloured alike.

If \(D \) is an \(m \)-coloured digraph then the closure of \(D \), denoted \(\mathcal{C}(D) \) is the \(m \)-coloured multidigraph defined as follows:

\[
V(\mathcal{C}(D)) = V(D),
\]

\[
A(\mathcal{C}(D)) = A(D) \cup \{(u,v) \text{ with colour } i \mid \text{there exists a } uv \text{-monochromatic directed path coloured } i \text{ contained in } D\}.
\]

Notice that for any digraph \(D \), \(C(\mathcal{C}(D)) \cong \mathcal{C}(D) \) and \(D \) has a kernel by monochromatic paths if and only if \(\mathcal{C}(D) \) has a kernel.

In [7] Sands et al. have proved that any 2-coloured digraph has a kernel by monochromatic paths. In particular they proved that any 2-coloured tournament has a kernel by monochromatic paths. They also raised the following problem: Let \(T \) be a 3-coloured tournament such that every directed cycle of length 3 is quasi-monochromatic; must \(\mathcal{C}(T) \) have a kernel? In [6] Shen Minggang proved that if in the problem we ask that every transitive tournament of order 3 be quasi-monochromatic, the answer will be yes. In [4] it was proved that if \(T \) is an \(m \)-coloured tournament such that every directed cycle of length at most 4 is quasi-monochromatic then \(\mathcal{C}(T) \) is kernel-perfect and hence \(T \) has a kernel by monochromatic paths. Results similar to those in [6] and [4] were proved for the digraph obtained from a tournament by the deletion of a single arc, in [5] and [3], respectively. The known sufficient conditions for the existence of a kernel by monochromatic paths in \(m \)-coloured \((m \geq 3)\) tournaments (or nearly tournaments), ask for the monochromaticity or quasi-monochromaticity of small subdigraphs as directed cycles of length at most 4 or transitive tournaments of order 3.

In this paper it is proved that if \(D \) is an \(m \)-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic then \(D \) has a kernel by monochromatic paths and the result is best possible.

We will need the following result.

Theorem 1.1 (Duchet [2]). If \(D \) is a digraph such that every directed cycle has at least one symmetrical arc, then \(D \) is a kernel-perfect digraph.

2. The main result

First we prove the following lemmas which will be useful in the proof of the main result:

Lemma 2.1. Let \(D = (V_1, V_2) \) be a bipartite tournament and \(C = (u_0, u_1, \ldots, u_n) \) a directed walk in \(D \). For \(\{i, j\} \subseteq \{0, 1, \ldots, n\} \), \((u_i, u_j) \in A(D) \) or \((u_j, u_i) \in A(D) \) if and only if \(f - i \equiv 1 \text{ (mod 2)} \).

Proof. Without loss of generality we may assume \(u_0 \in V_1 \), then we clearly have \(u_i \in V_1 \) iff \(i \equiv 0 \text{ (mod 2)} \) and \(u_i \in V_2 \) iff \(i \equiv 1 \text{ (mod 2)} \).

Lemma 2.2. For a bipartite tournament \(D = (V_1, V_2) \), every closed directed walk of length at most 6 in \(D \) is a directed cycle of \(D \).

Proof. Let \(C \) be a closed directed walk with \(\ell (C) \leq 6 \). We will prove that \(C \) is a directed cycle. Since \(D \) is bipartite \(\ell (C) \) is even (as every closed odd directed walk contains an odd directed cycle); \(\ell (C) = 2 \) is impossible as a bipartite tournament is an asymmetrical digraph. Suppose \(\ell (C) = 4 \), and let \(C = (u_0, u_1, u_2, u_3, u_0) \) we may assume w.l.o.g. \(u_i \in V_1 \) for \(i \in \{0, 2\} \)

and \(u_i \in V_2 \) for \(j \in \{1, 3\} \) which implies \(u_i \neq u_j \) for \(i \in \{0, 2\}, j \in \{1, 3\} \). Since \((u_1, u_2) \in A(D) \) and \((u_2, u_3) \in A(D) \) we have \(u_1 \neq u_3 \) (as \(D \) is an asymmetrical digraph) and analogously \(u_0 \neq u_2 \); so \(C \) is a directed cycle. Finally suppose \(\ell (C) = 6 \) and let \(C = (u_0, u_1, u_2, u_3, u_4, u_5, u_0) \), clearly we may assume w.l.o.g. that \(u_i \in V_1 \) for \(i \in \{0, 2, 4\} \) and \(u_i \in V_2 \) for \(j \in \{1, 3, 5\} \) which implies \(u_i \neq u_j \) for \(i \in \{0, 2, 4\} \) and \(j \in \{1, 3, 5\} \).

Moreover, since \(\{(u_1, u_3), (u_3, u_5, u_2)\} \subseteq A(D) \) for \(i \in \{0, 1, \ldots, 5\} \) (notation (mod 6)) and \(D \) is asymmetrical, we have \(u_i \neq u_{i+2} \) for \(i \in \{0, 1, \ldots, 5\} \).

Lemma 2.3. Let \(D \) be an \(m \)-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic and \(u, v \in V(D) \). If there exists a \(uv \)-monochromatic directed path and there is no \(vu \)-monochromatic directed path
(in D), then at least one of the two following conditions holds:

(i) $(u, v) \in A(D);
(ii) there exists (in D) a w-directed path of length 2.

Proof. Let D, $u, v \in V(D)$ be as in the hypothesis. We proceed by induction on the length of a uv-monochromatic directed path. Clearly Lemma 2.3 holds when there exists a uv-monochromatic directed path of length at most 2. Suppose that Lemma 2.3 holds when there exists a uv-monochromatic directed path of length ℓ with $2 \leq \ell \leq n$. Now assume that there exists a uv-monochromatic directed path $T = (u = u_0, u_1, \ldots, u_{n+1} = v)$ with $\ell(T) = n + 1$; we may assume w.l.o.g. T is coloured 1.

Claim 1. If $(u_i, v) \in A(D)$ for some $i \in \{0, 1, \ldots, n-2\}$ then $(u, v) \in A(D)$ or there exists a w-directed path of length 2.

Assume $(u_i, v) \in A(D)$ for some $i \in \{0, 1, \ldots, n-2\}$ and let $i_0 = \min\{i \in \{0, 1, \ldots, n-2\} \mid (u_i, v) \in A(D)\}$. If $i_0 = 0$ then $(u, v) \in A(D)$ and if $i_0 = 1$ then (u, u_1, v) is a w-directed path of length 2, so we can assume $i_0 \in \{2, \ldots, n-2\}$.

Since $i_0 \equiv i_0 - 2 \pmod{2}$ and $i_0 \not\equiv n + 1 \pmod{2}$ (as $(u_{i_0}, v) \in A(D)$) we have $i_0 - 2 \not\equiv n + 1 \pmod{2}$ and it follows from Lemma 2.1 that $(u_{i_0 - 2}, v) \in A(D)$ or $(v, u_{i_0 - 2}) \in A(D)$. Now the choice of i_0 implies $(v, u_{i_0 - 2}) \in A(D)$ and hence $C_4 = (u_{i_0 - 2}, u_{i_0 - 1}, u_{i_0}, u_{i_0 - 2})$ is a directed cycle of length 4 which by hypothesis is monochromatic, moreover, since $(u_{i_0 - 1}, u_{i_0})$ is coloured 1 (as it is an arc of T), it follows that C_4 is coloured 1. Then we obtain that $T' = (u, T, u_{i_0}) \cup (u_{i_0}, v)$ is a w-monochromatic directed path with $\ell(T') < n + 1$; and the inductive hypothesis implies that $(u, v) \in A(D)$ or there exists a u-directed path of length 2.

Now, it follows from Lemma 2.1 that for each $i \in \{0, 1, \ldots, n-2\}$ $(u_i, u_{i+3}) \in A(D)$ or $(u_{i+3}, u_i) \in A(D)$ (as $i \not\equiv i + 3 \pmod{2}$).

We will analyze two possible cases:

Case a: There exists $i \in \{0, 1, \ldots, n-2\}$ such that $(u_i, u_{i+3}) \in A(D)$. Let $j_0 = \max\{j \in \{i + 3, \ldots, n + 1\} \mid (u_j, u_i) \in A(D)\}$ (notice that Lemma 2.1 implies $i \not\equiv j_0 \pmod{2}$).

Case a.1: $j_0 = n + 1$.

Is this case the result follows from Claim 1.

Case a.2: $j_0 = n$ and $i = 0$.

We have $(u_0 = u_i, u_{j_0} = u_{i+3}, u_{i+1})$ is a w-directed path of length 2.

Case a.3: $j_0 = n$ and $i \geq 1$.

Since $i \not\equiv j_0 \pmod{2}$, we have $i - 1 \not\equiv j_0 + 1 = n + 1 \pmod{2}$ and it follows from Lemma 2.1 that $(u_{i-1}, u_{i+1}) \in A(D)$ or $(v, u_{i-1}) \in A(D)$, the affirmation of Lemma 2.3 follows from Claim 1. When $(v, u_{i-1}) \in A(D)$ we obtain $C_4 = (u_{i-1}, u_i, u_{j_0} = u_{i+3}, u_{i-1})$ a directed cycle of length 4 which by hypothesis is monochromatic; in fact C_4 is coloured 1 (as $(u_{i-1}, u_i) \in A(T) \cap A(C_4)$); and then $T' = (u, T, u_i) \cup (u_i, u_{j_0}) \cup (u_{j_0}, T, v)$ is a w-monochromatic directed path with $\ell(T') \leq n$. Now it follows from the inductive hypothesis that $(u, v) \in A(D)$ or there exists a w-directed path of length 2.

Case a.4: $j_0 \leq n - 1$.

If $i \not\equiv j_0 + 2 \pmod{2}$ (as $i \not\equiv j_0 \pmod{2}$), so it follows from Lemma 2.1 that $(u_i, u_{i+2}) \in A(D)$ or $(u_{i+2}, u_i) \in A(D)$; now the choice of j_0 implies $(u_{i+2}, u_i) \in A(D)$. Thus $C_4 = (u_i, u_{i+2}, u_{i+1}, u_{i+2}, u_i)$ is a directed cycle of length 4 which by hypothesis is monochromatic and coloured 1 (as $(u_{i+2}, u_{i+1}) \in A(T) \cap A(C_4)$); in particular (u_i, u_{i+2}) is coloured 1 and then $T' = (u, T, u_i) \cup (u_i, u_{i+2}) \cup (u_{i+2}, T, v)$ is a w-monochromatic directed path with $\ell(T') \leq n$ and the inductive hypothesis implies $(u, v) \in A(D)$ or there exists a w-directed path of length 2.

Case b: For each $i \in \{0, 1, \ldots, n-2\}$, $(u_{i+3}, u_i) \in A(D)$.

$C_4 = (u_i, u_{i+1}, u_{i+2}, u_{i+3}, u_i)$ is a directed cycle of length 4 and by a directed path it is monochromatic, moreover C_4 is coloured 1 because $(u_i, u_{i+1}) \in A(T) \cap A(C_4)$, hence for each $i \in \{0, 1, \ldots, n-2\}$, (u_{i+3}, u_i) is coloured 1. Let $k \in \{1, 2, 3\}$ such that $k \equiv n + 1 \pmod{3}$, then $(v = u_{k+1}, u_{k+2}, u_{k+3}, \ldots, u_i) \cup (u_i, T, u_k) \cup (u_k, u_0)$ is a w-monochromatic directed path, contradicting the hypothesis, thus this case is impossible. □

Theorem 2.1. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic, then $\mathcal{C}(D)$ is kernel-perfect.

Proof. During the proof we will use the fact that each closed directed walk of length at most 6 is a directed cycle (Lemma 2.2) without any more explanation.

In view of Theorem 1.1 it suffices to prove (and we will prove) that each directed cycle of $\mathcal{C}(D)$ has a symmetrical arc.
We proceed by contradiction; suppose that there exists a directed cycle of \(C \in \mathcal{G}(D) \), \(C = (u_0, u_1, \ldots, u_n, u_0) \) with \(C \subseteq \text{Asym}(\mathcal{G}(D)) \).

Claim 2. For each \(i \in \{0, 1, \ldots, n\} \), \((u_i, u_{i+1}) \in A(D)\) or there exists a \(u_i u_{i+1} \)-directed path of length 2 (notation mod \(n+1 \)).

Let \(i \in \{0, 1, \ldots, n\} \). Since \((u_i, u_{i+1}) \in A(\mathcal{G}(D))\) we have that there exists a \(u_i u_{i+1} \)-monochromatic directed path in \(D \), and the fact that \(C \) has no symmetrical arcs implies there is no \(u_{i+1} u_i \)-monochromatic directed path in \(D \), so Claim 2 follows from Lemma 2.3.

Now we consider two possible cases:

Case a: \(n = 2 \).

Since \(D \) has no odd directed cycles, we have that for some \(i \in \{0, 1, 2\} \), \((u_0, u_1) \notin A(D)\) (notation \((\text{mod} \ 3) \)). W.l.o.g we may assume \((u_0, u_1) \notin A(D)\), then it follows from Claim 2 that there exists a \(u_0 u_1 \)-directed path of length 2 in \(D \), say \((u_0, v_0, u_1)\).

Case a.1: \(\{(u_0, u_2), (u_2, u_0)\} \subseteq A(D) \).

Since \((u_0, u_1) \notin A(D)\), \((u_0, v_0, u_1, u_2, v_2, u_0)\) is a directed cycle of length 4 in \(D \), which implies \((u_2, u_0)\) is a \(u_0 u_2 \)-monochromatic directed path in \(D \); thus \((u_0, u_1)\) is a symmetrical arc of \(C \) in \(\mathcal{G}(D) \), contradicting our assumption.

Case a.2: \(\{(u_1, u_2), (u_2, u_0)\} \notin A(D) \).

Now it follows from Claim 2 that there exists a \(u_1 u_2 \)-directed path of length 2 in \(D \), say \((u_1, v_1, u_2)\), and a \(u_2 u_0 \)-directed path of length 2 in \(D \), say \((u_2, v_2, u_0)\). Thus \((u_0, v_0, u_1, v_1, u_2, v_2, u_0)\) is a directed cycle of length 6 in \(D \), and it follows from Lemma 2.1 that \((u_0, v_1) \in A(D)\) or \((v_1, u_0) \in A(D)\). When \((u_0, v_1) \in A(D)\) we obtain \((u_0, v_1, u_2, v_2, u_0)\) is a directed cycle of length 4 in \(D \) and by hypothesis it is monochromatic, in particular \((u_0, v_1, u_2)\) is a \(u_0 u_2 \)-monochromatic directed path in \(D \) which implies \((u_2, u_0)\) is a symmetrical arc of \(C \) in \(\mathcal{G}(D) \), contradicting our assumption. When \((v_1, u_0) \in A(D)\) we have \((u_0, v_0, u_1, v_1, u_0)\) is a directed cycle of length 4 in \(D \) and by hypothesis is monochromatic, thus \((u_1, v_1, u_0)\) is a \(u_1 u_0 \)-monochromatic directed path in \(D \) and then \((u_0, u_1)\) is a symmetrical arc of \(C \) in \(\mathcal{G}(D) \), a contradiction.

Case b: \(n \geq 3 \).

In what follows the notation is taken modulo \(n+1 \).

In view of Claim 2, for each \(i \in \{0, 1, \ldots, n\} \) we can take a \(u_i u_{i+1} \)-directed path as follows:

\[
T_i = \{(u_i, u_{i+1}) \text{ when } (u_i, u_{i+1}) \in A(D)\} \\
\cup \{(u_i, u_{i+1}) \text{ when } (u_i, u_{i+1}) \notin A(D)\}
\]

Let \(C' = \bigcup_{i=1}^{n} T_i \). Then \(C' \) is a closed directed walk in \(D \), so we may let \(C' = (z_0, z_1, \ldots, z_{k}, z_0) \) and define the function \(\phi : \{0, 1, \ldots, k\} \to V(C) \) as follows: For each \(i \in \{0, 1, \ldots, n\} \) if \(T_i = (u_i = z_{i+1} = u_{i+1}) \) then \(\phi(i) = z_i = u_i \); and if \(T_i = (u_i = z_{i+1}, z_{i+2} = u_{i+2}) \) then \(\phi(i) = \phi(i+1) = z_{i+1} \).

We will say that an index \(j \in \{0, 1, \ldots, k\} \) is a principal index when \(\phi(j) = z_j \); and we will denote by \(I_p \) the set of principal indices. Notice that in \(C' \) the indexes are all different and also notice that a vertex \(u_j \) may correspond to a principal index \(\ell \) and also to a non principal index \(p \).

Suppose w.l.o.g. that \(u_0 = z_0 \). Since \(D \) is a bipartite tournament, we have \(k \equiv 1 \pmod{2} \) and by Lemma 2.1, for each \(i \in \{1, \ldots, \frac{k-1}{2}\} \), \((z_0, z_{2i+1}) \in A(D)\) or \((z_{2i+1}, z_0) \in A(D)\). We consider the following cases:

Case b.1: \((z_0, z_0) \in A(D) \).

In this case we have \((z_0, z_1, z_2, z_3, z_0)\) is a directed cycle of length 4 and by hypothesis is monochromatic. The definition of \(C' \) implies \(z_1 = u_1 \) or \(z_2 = u_1 \). If \(z_1 = u_1 \) then \((u_1 = z_1, z_2, z_3, z_0 = u_0)\) is a \(u_0 u_1 \)-monochromatic directed path in \(D \) which implies \((u_0, u_1)\) is a symmetrical arc of \(C \) in \(\mathcal{G}(D) \), contradicting our assumption on \(C \). So \(z_1 \neq u_1 \), consequently \(z_2 = u_1 \) and then \((u_1 = z_2, z_3, z_0 = u_0)\) is a \(u_1 u_0 \)-monochromatic directed path in \(D \), thus \((u_0, u_1)\) is a symmetrical arc of \(C \) in \(\mathcal{G}(D) \), a contradiction.

Case b.2: \((z_0, z_{k-2}) \in A(D) \).

The assumption in subcase b.2 implies \((z_0, z_{k-2}, z_{k-1}, z_k, z_0)\) is a directed cycle of length 4 which by hypothesis is monochromatic. The construction of \(C' \) implies \(z_k = u_0 \) or \(z_{k-1} = u_0 \). When \(z_k = u_0 \) we have that \((u_0, z_0, z_{k-2}, z_{k-1}, z_k, u_0)\)
is a \(u_0\text{to}u_0\)-monochromatic directed path in \(D\) which implies that \((u_0, u_0)\) is a symmetrical arc of \(C\) in \(\mathcal{E}(D)\), contradicting our assumption. Hence \(z_2 \neq u_0\) and then \(z_{k-2} = u_0\); now \((u_0 = z_0, z_{k-2}, z_{k-1} = u_0)\) is a \(u_0\text{to}u_0\)-monochromatic directed path in \(D\) which implies that \((u_0, u_0)\) is a symmetrical arc of \(C\) in \(\mathcal{E}(D)\), a contradiction.

Case b.3: \((z_0, z_1) \in \mathcal{A}(D)\) and \((z_{k-2}, z_{k-1}) \in \mathcal{A}(D)\).

Since \(\{(z_0, z_1), (z_0, z_3), (z_{k-2}, z_{k-1})\} \subseteq \mathcal{A}(D)\) we have \(k-2 \geq 5\) and there exists \(j \in \{1, \ldots, \frac{k-5}{2}\}\) such that \((z_0, z_{j+1}) \in \mathcal{A}(D)\) and \((z_{j+3}, z_0) \in \mathcal{A}(D)\). Let \(i_0 = \min\{j \in \{1, \ldots, \frac{k-5}{2}\} \mid ((z_0, z_{j+1}), (z_{j+3}, z_0)) \subseteq \mathcal{A}(D)\}\). Hence \(\tilde{C} = (z_0, z_{j+1}, z_{j+3}, z_0)\) is a directed cycle of length 4 in \(D\) which by hypothesis is monochromatic. Now we consider two possible cases.

Case b.3.1: \(2i_0 + 1 \in I_p\).

In this case \(z_{2i_0+1} = u_j\) for some \(j \in \{2, \ldots, n - 2\}\) (as \(3 \leq 2i_0 + 1 \leq k - 4\)). By the construction of \(C'\) we have \(z_{2i_0+2} = u_{j+1}\) or \(z_{2i_0+3} = u_{j+1}\). If \(z_{2i_0+2} = u_{j+1}\) then \((u_{j+1}, z_{2i_0+2}, z_{2i_0+3}, z_0, z_{2i_0+1} = u_j)\) is a \(u_{j+1}\text{to}u_{j+1}\)-monochromatic directed path in \(D\) which implies that \((u_{j+1}, u_{j+1})\) is a symmetrical arc of \(C\) in \(\mathcal{E}(D)\) contradicting our assumption. Hence \(z_{2i_0+2} \neq u_{j+1}\) and consequently \(z_{2i_0+3} = u_{j+1}\) thus \((u_{j+1}, z_{2i_0+3}, z_0, z_{2i_0+1} = u_j)\) is a \(u_{j+1}\text{to}u_{j+1}\)-monochromatic directed path in \(D\) and then \((u_j, u_{j+1})\) is a symmetrical arc of \(C\) in \(\mathcal{E}(D)\), a contradiction.

Case b.3.2: \(2i_0 + 1 \notin I_p\).

Now, by construction of \(C'\) we have that \(\{2i_0, 2i_0 + 2\} \subseteq I_p\), i.e. \(z_{2i_0} = u_{j-1}\) and \(z_{2i_0+2} = u_j\) for some \(j \in \{2, \ldots, n-1\}\). Lemma 2.1 implies \((z_{2i_0}, z_{2i_0+1}) \in \mathcal{A}(D)\) or \((z_{2i_0+2}, z_{2i_0+3}) \in \mathcal{A}(D)\). When \((z_{2i_0+2}, z_{2i_0+3}) \in \mathcal{A}(D)\) we obtain that \((z_{2i_0}, z_{2i_0+1}, z_{2i_0+2}, z_{2i_0+3}, z_{2i_0})\) is a directed cycle of length 4 and by hypothesis is monochromatic; thus \((u_j = z_{2i_0+2}, z_{2i_0+3}, z_{2i_0} = u_{j-1})\) is a \(u_{j-1}\text{to}u_{j-1}\)-monochromatic directed path and \((u_{j-1}, u_j)\) is a symmetrical arc of \(C\) in \(\mathcal{E}(D)\), a contradiction. So we have \((z_{2i_0}, z_{2i_0+1}) \in \mathcal{A}(D)\); observe that the choice of \(i_0\) implies \((z_0, z_{2i_0-1}) \in \mathcal{A}(D)\) (when \((z_{2i_0-1}, z_0) \in \mathcal{A}(D)\), the fact \((z_0, z_1) \in \mathcal{A}(D)\) implies that there exists \(j \leq i_0 - 2\) such that \((z_0, z_{j+1}) \in \mathcal{A}(D)\) and \((z_{j+3}, z_0) \in \mathcal{A}(D)\) contradicting the choice of \(i_0\)), thus \(C' = (z_0, z_{2i_0-1}, z_0, z_{2i_0+1}, z_0)\) is a directed cycle of length 4 which by hypothesis must be monochromatic; since \((z_{2i_0+3}, z_0) \in \mathcal{A}(\tilde{C} \cap C')\) we have that \(\tilde{C}\) and \(C'\) are of the same colour; so \((u_j = z_{2i_0+2}, z_{2i_0+3}, z_0, z_{2i_0-1}, z_0 = u_{j-1})\) is a monochromatic directed path in \(D\) and \((u_{j-1}, u_j)\) is a symmetrical arc of \(C\) in \(\mathcal{E}(D)\), a contradiction.

The following result is a direct consequence of Theorem 2.1:

Theorem 2.2. Let \(D\) be an \(m\)-coloured bipartite tournament. If every directed cycle of length 4 in \(D\) is monochromatic, then \(D\) has a kernel by monochromatic paths.

Remark 2.1. The hypothesis that every directed cycle of length 4 is monochromatic in Theorem 2.2 is tight.

Let \(D\) be the 3-coloured bipartite tournament defined as follows:

\[V(D) = \{u, v, w, x, y, z\}\] and \(A(D) = \{(u, x), (x, v), (t, y), (y, w), (w, z), (z, u), (x, w), (y, u), (z, v)\}\); the arcs \((x, w), (w, z)\) and \((z, u)\) are coloured 1; the arcs \((y, u), (u, x)\) and \((x, v)\) are coloured 2; and the arcs \((z, v), (v, y)\) and \((y, w)\) are coloured 3. The only directed cycles of length 4 in \(D\) are \((u, x, w, z, u), (v, y, u, x, v)\) and \((w, z, v, y, w)\) which are quasi-monochromatic and the digraph \(\mathcal{E}(D)\) is a complete digraph which has no kernel; hence \(D\) has no kernel by monochromatic paths. Moreover, we can construct an infinite family of digraphs all of whose directed cycles of length 4 are quasi-monochromatic and which have no kernel by monochromatic paths as follows: Let \(D_n\) be the digraph obtained from \(D\) by adding vertices \(x_1, x_2, \ldots, x_n\) and arcs coloured from 3 each one of these vertices to \(u, v\) and \(w\), respectively.

Remark 2.2. The assumption that every directed cycle of length 4 in a bipartite tournament \(D\) is monochromatic, does not imply that every directed cycle of length 6 in \(D\) is monochromatic.

Remark 2.3. For each \(m\) there exists an \(m\)-coloured Hamiltonian bipartite tournament such that every directed cycle of length 4 is monochromatic.

Proof. Let \(D\) be the \(m\)-coloured digraph defined as follows:

\[V(D) = X \cup Y \cup Z \cup W\] where: \(X = \{x_1, x_2, \ldots, x_m\}\), \(Y = \{y_1, y_2, \ldots, y_m\}\)

\[Z = \{z_1, z_2, \ldots, z_m\},\] \(W = \{w_1, w_2, \ldots, w_m\}\).

\[A(D) = X_Y \cup Y_Z \cup Z_W \cup W_X \cup X_W \cup W_Y\] where:

\[X_Y = \{(x_i, y_i) \mid i \in \{1, 2, \ldots, m\}\},\] \(Y_Z = \{(y_i, z_i) \mid i \in \{1, 2, \ldots, m\}\},\) \(Z_W = \{(z_i, w_i) \mid i \in \{1, 2, \ldots, m\}\},\)

\[W_X = \{(w_i, x_{i+1}) \mid i \in \{1, 2, \ldots, m - 1\}\} \cup \{(w_m, x_1)\}\].
$Z = \{(z_i, y_j) | i \in \{1, 2, \ldots, m\}, j \in \{1, 2, \ldots, m\}, i \neq j\}$,

$W = \{(w_i, z_j) | i \in \{1, 2, \ldots, m\}, j \in \{1, 2, \ldots, m\}, i \neq j\}$,

$X = \{(x_i, w_j) | i \in \{1, 2, \ldots, m\}, j \in \{1, 2, \ldots, m\}, i \neq j + 1\}$,

(notation mod m).

For each $i \in \{1, 2, \ldots, m\}$ the arc (x_i, y_i) is colored i and any other arc is coloured 1.

Clearly D is an m-coloured bipartite tournament.

Claim 3. D is Hamiltonian. It follows from the definition of D that for each $i \in \{1, 2, \ldots, m\}$ we have the directed path

$T_i = (x_i, y_i, z_i, w_i, x_{i+1})$ and clearly $V(T_i) \cap V(T_j) = \emptyset$ for $j \neq i + 1$, and $V(T_i) \cap V(T_{i+1}) = \{x_{i+1}\}$. So $C = \bigcup_{i=1}^{m} T_i$ is a Hamiltonian directed cycle of D.

Claim 4. Every directed cycle of length 4 of D is monochromatic. Proceeding by contradiction, suppose that $C_4 = (u_1, u_2, u_3, u_4, u_1)$ is a non monochromatic directed cycle of D, so C_4 must contain at least one arc coloured i for some $i \in \{2, \ldots, m\}$, so we may assume that $u_1 = x_2$ and $u_2 = y_2$; it follows from the definition of D that $u_3 = z_2$ and $(u_4 = w_2$ or $u_4 = y_i$ for some $i \neq 2$). When $u_4 = w_2$, we obtain that $(x_2, w_2) \in A(D)$ and hence $(w_2, x_2) \notin A(D)$, a contradiction. When $u_4 = y_i$ for some $i \neq 2$ we obtain that $(x_2, y_i) \in A(D)$ contradicting that $(u_4 = y_i, u_1 = x_2) \in A(D)$.

Acknowledgements

We thank the referees for their suggestions which improved the rewriting of this paper.

References