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Abstract

Cold-water corals form an important part of temperate benthic ecosystems by increasing three-dimensionality and providing 
an important ecological substrate for other benthic fauna. However, the fragile three-dimensional structure and life-history 
characteristics of cold-water corals can leave populations vulnerable to anthropogenic disturbance. Meanwhile, the ability of 
temperate octocorals, particularly shallow-water species, to respond to adjustments in their environment linked to climate 
change has not been studied. This study reports the first genome assembly of the pink sea fan (Eunicella verrucosa), a tem
perate shallow-water octocoral species. We produced an assembly of 467 Mb, comprising 4,277 contigs and an N50 of 
250,417 bp. In total, 213 Mb (45.96% of the genome) comprised repetitive sequences. Annotation of the genome using 
RNA-seq data derived from polyp tissue and gorgonin skeleton resulted in 36,099 protein-coding genes after 90% similarity 
clustering, capturing 92.2% of the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) ortholog benchmark 
genes. Functional annotation of the proteome using orthology inference identified 25,419 annotated genes. This genome 
adds to the very few genomic resources currently available in the octocoral community and represents a key step in allowing 
scientists to investigate the genomic and transcriptomic responses of octocorals to climate change.
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Significance Statement

In contrast to many tropical coral species, very little is known about the ability of cold-water corals to adapt to changes in 
their environment associated with climate change, particularly elevated seawater temperature. Yet, cold-water corals 
comprise more than half of the coral species that exist today and perform key ecological roles throughout the habitats 
in which they are found, most importantly by increasing the three-dimensional structure of temperate ecosystems where 
reef-building corals are absent. The lack of genomic resources for cold-water corals has limited investigations into the 
potential for these species to adapt to environmental perturbations on a genomic level; the genome of the pink sea fan, 
Eunicella verrucosa, will be a vital tool for the cold-water coral community in pursuing such questions.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
The pink sea fan, Eunicella verrucosa, is a temperate octo
coral within the soft coral order Malacalcyonacea (formerly 
Alcyonacea; see McFadden et al. 2022) and a member of 
the Gorgoniidae family. This species is distributed across 
the northeast Atlantic from western Ireland to (reportedly) 
the coast of Mauritania in West Africa (Hayward and Ryland 

2017) and as far east as the Aegean Sea (Chimienti et al. 
2020). The species is mostly found in dense “forest-like” 
aggregations (Chimienti et al. 2020; Jenkins and Stevens 
2022), while at its range-edge, for example, 
Pembrokeshire, southwest Wales (Holland et al. 2017), it 
exhibits a patchy distribution. Its depth ranges from 3 to 
50 m within the northeast Atlantic (Readman and Hiscock 
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2017) and down to 200 m in the Mediterranean Sea 
(Sartoretto and Francour 2012; Chimienti et al. 2019).

Gorgonians often act as key ecological substrates for 
many epifauna, increasing the structural complexity of ben
thic ecosystems (Wood 2013; Pikesley et al. 2016). For 
E. verrucosa, this species’ slow growth (Coz et al. 2012), 
longevity, and physical three-dimensional structure can 
render local populations vulnerable to ecological pressures, 
including physical disturbance (Readman and Hiscock 
2017) and disease (Hall-Spencer et al. 2007). Given the cur
rent distribution of E. verrucosa, and observations of the re
lationship between thermal regime and distribution in 
other octocorals (Ferrier-Pages et al. 2009; Haguenauer 
et al. 2013; Arizmendi-Mejía et al. 2015; Crisci et al. 
2017; Oualid et al. 2023), seawater temperature may be 
a key pressure underpinning local population persistence. 
Despite this, a dedicated study exploring this has not 
been conducted (although see Jenkins and Stevens 2022), 
whilst genomic and transcriptomic analyses have been lim
ited due to the lack of a genome for the species.

Across most of its range, E. verrucosa is protected under 
the EU Habitats Directive Annex 1 and under Ecologically or 
Biologically Significant Marine Areas (EBSAs) throughout 
the Mediterranean Sea. In the United Kingdom, it is a 
“protected feature” used for the designation of Marine 
Protected Areas (MPAs) and previous research into genetic 
connectivity across southwest Britain (Holland et al. 2013, 
2017) has been used to assess whether MPAs represent an 
“ecologically coherent” network (Jenkins and Stevens 2018).

Ecological research questions are increasingly focused 
on the adaptive potential of marine taxa to environmental 
change and how subsequent conservation measures, 
such as MPA designations, can be more resilient to future 
anthropogenic and ecological pressures (Donelson et al. 
2019; Hoppit et al. 2022). Very few genomic resources 
for octocorals are currently available, hindering such inves
tigations into their adaptive capacity and the implications 
this may have for effective conservation and mitigation 
practices. This report presents the first annotated genome 
of a pink sea fan that will augment the limited genomic re
sources available in octocoral research, allowing scientists 
to investigate hypotheses concerning the species’ potential 
responses to environmental change.

Results and Discussion

Assembly

We generated 29.96 GB (∼46.8-fold coverage) of PacBio 
circular consensus reads (>1 kb in length), producing an 
initial genome assembly of 467 Mb comprising 11,043 
contigs with an N50 of 183,250 bp (“Raw” assembly—
fig. 1C). After identification and removal of 6,766 
haplotigs (supplementary fig. S1, Supplementary Material 

online), we produced a final assembly with 4,277 contigs, 
with an improved N50 of 250,417 bp (fig. 1B; “Purged” 
assembly—fig. 1C). Preliminary Benchmarking Universal 
Single-Copy Orthologs (BUSCO) assessment using the 
metazoan conserved orthologs (n = 954) showed a com
pleteness score of 86.5% (82.8% single-copy, 3.7% dupli
cated, 6.9% fragmented, and 6.6% missing) (fig. 1B and 
1C). In comparison with the very few available octocoral 
genomes, the number of contigs suggests a more contigu
ous assembly than that of Paramuricea clavata and fewer 
missing BUSCO genes than the assemblies of P. clavata 
and Trachythela sp. (table 1).

We identified 213 Mb (45.96%) of repetitive sequence in 
the genome assembly, of which 18% comprised unclassified 
repeats and the remaining 27% were categorized into re
peat families, the highest being DNA repeats (∼12%) (fig. 
1D and supplementary table S2, Supplementary Material on
line). This is comparable with the genomes of P. clavata 
(Ledoux et al. 2020) and Trachythela sp. (Zhou et al. 2020), 
which had 49% and 58.9% of the genome composed of re
petitive elements, respectively (table 1). When compared 
with the genome of Dendronephthya gigantean (12% re
petitive elements), a much greater number of repetitive ele
ments were identified in E. verrucosa, but D. gigantean has a 
considerably smaller assembly size (table 1).

Annotation

We performed gene prediction using paired-end RNA-seq 
data. The initial annotation (“Raw” annotation—fig. 1C) 
was produced using the initial gene predictions, recovering 
41,933 genes. BUSCO analysis showed a high proteome 
contiguity and completeness: 92.2% complete BUSCO 
genes (85.1% single-copy, 7.1% duplicated, 3.7% frag
mented, and 4.1% missing) but a high number of dupli
cated genes (fig. 1C and supplementary table S2, 
Supplementary Material online), indicating redundancy in 
this initial gene set. Filtering this initial proteome for the 
longest isoform reduced the BUSCO gene duplication 
from 7.1% to 3.9% (“Longest isoform” annotation—fig. 
1C and supplementary table S1, Supplementary Material
online). Despite this, the gene annotation was still higher 
than expected (40,003 protein-coding genes), especially gi
ven the number of genes annotated in other octocorals 
(table 1). Annotations were therefore filtered for 90% clus
tering similarity, removing 3,904 genes and resulting in an 
annotation containing 36,099 genes (“90% similarity” an
notation—fig. 1C). This final annotation contained 92.2% 
complete BUSCOs and lowered the duplication rate further 
from 3.9% to 2.3% (fig. 1C). Overall, this indicates that the 
E. verrucosa proteome has the second highest BUSCO gene 
completeness compared with other available octocoral pro
teomes (table 1). Functional annotation of the final annota
tion using eggNOG-mapper and InterProScan identified 
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25,419 functionally annotated genes, containing 92.3% 
complete BUSCO genes (88.6% single-copy, 3.7% dupli
cated, 3.7% fragmented, and 4.0% missing). All versions 
of these gene annotations are available on GitHub 
(https://github.com/klmacleod/pinkseafan-genome).

Comparative Proteome Analysis

Using our annotation data sets, we performed a compara
tive analysis using other available octocoral proteomes. 

Filtering of D. gigantean and Stylophora pistillata annota
tion sequences at 90% sequence similarity using CD-HIT 
produced a reference Blast database of 18,649 and 
22,553 genes, respectively. BlastP of the E. verrucosa prote
ome against both reference proteomes, using an e-value 
cut-off 0.00001 and then filtering for a 95% overlap hit ra
tio, gave 30,308 hits against D. gigantean and 25,876 hits 
for S. pistillata. Protein comparison of shared functional 
genes, annotated via eggNOG-mapper and InterProScan, 
indicated that 23,827 (93.7%) genes were present in all 
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FIG. 1—(A) Eunicella verrucosa colonies from Plymouth, southwest England, showing the three-dimensionality of populations and variation in colony 
shape and size; photo credit: Dr Paul Naylor. (B) Snail plot summarizing the final genome assembly summary statistics and the composition of BUSCO genes. 
(C) BUSCO statistics for the genome assembly and annotation sets. The purged assembly (removal of 6,766 haplotigs) comprised fewer duplicated BUSCO 
genes than the raw genome assembly. Filtering the raw annotation (longest isoform and 90% similarity) increased BUSCO completeness with the final an
notation gene set containing 89.9% single-copy genes and fewer duplicated BUSCO genes (2.3%). (D) Summary of the transposable element families de
tected using Earl Grey comprising 45.96% of the genome. The proportion of nonrepeat sequences (54.04%) represent the remaining genomic DNA 
sequences and are comparable with other cold-water corals (see supplementary table S2, Supplementary Material online, for full summary statistics).

Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad083 Advance Access publication 20 May 2023                                         3

https://github.com/klmacleod/pinkseafan-genome
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad083#supplementary-data
https://doi.org/10.1093/gbe/evad083


Macleod et al.                                                                                                                                                                  GBE

three species, with a greater proportion of genes (998 
genes; 3.9%) shared between E. verrucosa and the closely 
related octocoral D. gigantean, whereas only 251 genes 
(1%) were common to both E. verrucosa and S. pistillata 
(supplementary fig. S2, Supplementary Material online). A 
total of 343 genes (1.3%) were unique to the proteome 
of E. verrucosa.

This first annotated genome of E. verrucosa represents a 
key tool in supporting future investigation into any poten
tial genomic and transcriptomic mechanisms underpinning 
octocoral responses to environmental change and may also 
aid comparative analysis between octocorals and the more 
widely studied tropical, stony corals.

Materials and Methods

Sample Collection

A detailed description of the sample collection can be 
found in the Supplementary Material. Six colonies were col
lected via SCUBA at 8.5–12.7 meters depth in Plymouth 
Sound, England (lat. 50.33, long. −4.14) (L/2019/00143), 
representing the northern region of the species’ global dis
tribution. Colonies were transported in chilled seawater to 
a 350-l artificial seawater tank at the Aquatic Resources 
Centre, University of Exeter. Colonies were left to acclimate 
for 19 months at 14.3 °C (+/−0.5 °C) degrees prior to DNA 
extraction.

Genomic DNA Extraction, Library Preparation, and 
Sequencing

Extracting sufficient quality and quantity of DNA and RNA 
from octocoral polyps is notoriously challenging. Whilst 
the underlying reasons for this is not well-understood, we 
have dedicated significant efforts to optimize extraction 
(detailed protocols are available in the Supplementary 
Material). Briefly, genomic DNA was extracted from polyp 

tissue using a salting-out protocol (Jenkins et al. 2019) 
optimized for the semi-rigid, gorgonian protein tissue of 
E. verrucosa. DNA extraction integrity was assessed on a 
1% agarose gel, purity using a NanoDrop 1000 spectropho
tometer, and concentration using the Invitrogen dsDNA HS 
Assay kit and a Qubit 4 Fluorometer. DNA extractions were 
cleaned using the Qiagen DNeasy PowerClean Pro Cleanup 
Kit according to the manufacturer protocol until DNA pre
cipitation, which was performed using isopropanol and 
then elution of genomic DNA via the salting-out protocol.

The quality of genomic DNA was checked on a pulsed 
field gel (Bio-Rad Chef-DR II). SMRTbell libraries were pre
pared using a SMRTbell Express Template Prep Kit 2.0 
(Pacific Biosciences) including a size selection of 15 Kb or 
greater using a BluePippin (BPLUS10, Sage Science). The 
library was diffusion loaded at 5 pM on the PacBio Sequel 
I using SMRTcell 1Mv3. Data were sequenced across three 
SMRT cells (expected output range of 120–180 Gb). 
Sequencing was carried out by the University of Exeter 
Sequencing Service.

Genome Assembly and Quality Assessment

An estimate for the expected size of the E. verrucosa gen
ome size was not available, and we did not generate short- 
read data to estimate the genome size using kmer profiling. 
We therefore used the C-value of the only soft coral, 
Sarcophyton sp. (640 Mbp; Adachi et al. 2017) as a guide 
for the expected genome assembly span.

The genome was assembled using the assembly algo
rithm in Flye v2.8.3 (Kolmogorov et al. 2019) with default 
settings for PacBio long reads. Based on initial assessment 
of assembly contiguity and BUSCO completeness, reads 
shorter than 1,000 bp were removed from the initial 
assembly. Contamination of contigs was assessed using 
Blobtools v1.1.1 (Laetsch et al. 2020), but no evidence of 
contamination was found (supplementary figs. S3, and 

Table 1 
Assembly Statistics for Published Genomes of Other Cnidarians

Species Total size 
(Mb)

No. of 
contigs

Contig 
N50(bp)

BUSCO analysis (%) Repeat elements 
(%)

No. of 
genes

C S D F M

Octocoral
E. verrucosa 

(this study)
467 11,043 183,250 86.5 82.8 3.7 6.9 6.6 45.96 36,099

P. clavata (Ledoux et al. 2020) 607 64,145 19,152 75.8 73.4 2.4 9.4 14.8 49 62,652
D. gigantean (Jeon et al. 2019) 276 — 1,445,523 93.9 87.3 6.6 2.4 3.5 12 28,879
Trachythela sp. (Zhou et al. 

2020)
578.26 396 3,563,727 90.7 88.4 2.3 2.0 7.3 58.9 35,305

Stony coral
S. pistillata (Voolstra et al. 2017) 434 32,144 24,388 a94.76 (gene database: 248 CEGs) 28.8 25,769

For P. clavata and D. gigantean, BUSCO completeness was assessed using the 978 metazoan gene database; the genome of Trachythela sp. was assessed using the 954 
metazoan gene database. BUSCO gene abbreviations: C, complete; S, single-copy; D, duplicated; F, fragmented, and M, missing. 

aGene completeness for the S. pistillata genome was assessed with 248 Core Eukaryotic Genes (CEGs).
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S4, Supplementary Material online). Duplicated haplotigs 
were assessed and removed using Purge_dups v1.2.6 
(Guan et al. 2020). To evaluate the assembly, presence 
and completeness of orthologs were assessed using 
BUSCO v5.1.3 (Simão et al. 2015) using the metazoan data
base containing 954 genes.

Repetitive Sequence Identification

We used Earl Grey v1.3 (Baril et al. 2022), an automated 
transposable element (TE) annotation pipeline, which uses 
RepeatModeler v2.0.2 (Flynn et al. 2020) and RepeatMasker 
v4.1.2 (Tarailo-Graovac and Chen 2009) to identify repeats. 
Earl Grey combines pre-existing library-based and de novo 
TE annotation tools, but performs TE consensus and annota
tion refinements leading to fewer erroneous estimates of TE 
count and longer consensus sequences (Baril et al. 2022). 
The complete Dfam library (version 3.6; Dfam-p1.h5) was 
used for RepeatMasker (Storer et al. 2021).

RNA-Seq Extraction, Library Preparation, and 
Sequencing

RNA-seq data were collected from E. verrucosa colonies 
which had undergone an ex situ thermal experiment. 
Briefly, 10 cm fragments were individually exposed to ther
mal regimes representing the minima and maxima across 
the species’ range. After 24 h, whole fragments were flash 
frozen in liquid nitrogen and stored at −80 °C. In total, 24 
fragments were sampled. RNA extraction was conducted 
using QIAzol Lysis Reagent (QIAGEN) and 1-bromo-3- 
chloropropane (BCP), and RNA-seq libraries were prepared 
from total RNA using the NEB Next® Ultra™ RNA Library 
Prep Kit (see Supplementary Materials). Quantified libraries 
were pooled and paired-end sequenced on a NovaSeq 
6000 S4 flow cell (Illumina, Inc).

Genome Annotation

Prior to annotation, the genome assembly was softmasked 
for repeats (identified with Earl Grey) using BEDTools 
v2.27.1 (Quinlan and Hall 2010). RNA-seq reads were 
mapped to the softmasked assembly using the splice-aware 
aligner STAR v2.7.3 (Dobin et al. 2013). Annotation was car
ried out using the BRAKER2 v2.1.2 automated annotation 
pipeline (Brůna et al. 2021), and ab initio gene prediction 
was performed from spliced aligned RNA-seq reads using 
Augustus v3.5.0 (Stanke et al. 2006). Two filtering methods 
were used to assess the quality of the genome annotation. 
Firstly, the longest isoform and corresponding protein se
quences were extracted using agat_sp_keep_longest_iso
form.pl and agat_sp_extract_sequences.pl from AGAT 
v.1.0 (Dainat 2022). Secondly, to investigate possible gene 
redundancy, annotation sequences were clustered by 90% 
similarity using CD-HIT v4.8.1 (Fu et al. 2012).

Functional annotations were assigned to the final set of 
predicted genes using eggNOG-mapper v2 (Cantalapiedra 
et al. 2021), which examines orthologous gene clustering 
through the detection of orthologous groups, and 
InterProScan v5.61-93 (Jones et al. 2014), which performs 
annotation of protein family and domain information 
through integration of protein signatures. Functional anno
tations from both sources were then integrated 
using annotate from funannotate v1.7.4 (https://github. 
com/nextgenusfs/funannotate) to produce a final annota
tion file that was then assessed for BUSCO completeness.

Comparative Analysis

To further assess the final set of functionally annotated 
genes, the number of shared functional genes with other oc
tocorals was compared. The proteomes of D. gigantean 
(Jeon et al. 2019) (GCF_004324835.1) and S. pistillata 
(Voolstra et al. 2017) (GCF_002571385.1) were down
loaded from the NCBI database, and annotations were clus
tered by 90% similarity using CD-HIT (Fu et al. 2012). The 
number of shared homologous genes was assessed using 
BlastP (Altschul et al. 1990) to the E. verrucosa genome. 
Annotations of predicted protein-coding genes were identi
fied using the eggNOG v2 and InterProScan v5.61-93. A re
cent genome assembly of the deep-water octocoral 
Trachythela sp. (GCA_016169945.1) is available online, 
but unfortunately, arrived too late for inclusion in our com
parative analysis.

Supplementary Material
Supplementary data, Supplementary Material online are 
available at Genome Biology and Evolution online (http:// 
www.gbe.oxfordjournals.org/).
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