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Preface

The arithmetic interpretation of the values at integers of complex L-functions
associated to projective varieties over number fields is fundamental in number the-
ory. By means of a great deal of work, Bloch-Kato style conjectures have made it
possible to understand how to interpret these numbers in a very general framework.
Starting with the very first examples of p-adic interpolation of these numbers, it
is natural to dream of constructing p-adic L-functions having properties as similar
as possible to complex L-functions. Iwasawa theory, for example, can be used to
construct two types of p-adic L-functions: the first type takes as its starting point
the values of the complex L-functions, and the second type works with the arith-
metic interpretation of these values. Relations between the two types of L-functions
constructed by Iwasawa theory are for the present entirely conjectural.

Let us briefly survey some well-known cases. The first example of an L-function
is Riemann’s ζ function, which is defined as the meromorphic continuation ζ(s) of∑

n>0

n−s =
∏
`

(1− `−s)−1

to all of C, where the product is over all prime numbers `. A p-adic analog of ζ
was first constructed by Kubota-Leopoldt, and then by Iwasawa, not as a product
of Euler factors, which does not (yet!) make sense p-adically, but by a process of
p-adic interpolation of the values ζ(k) for all strictly negative odd integers k. Thus,
the study of the p-adic properties of the values ζ(k), or rather of the values

ζ{p}(k) = (1 − p−k)ζ(k)(1)

shows that it is possible to construct a continuous function ζp(s, ωj) for every class
j modulo p− 1, where s ∈ Zp − {1} and ω is the Teichmüller character, such that
ζp(k, ωj) = ζ{p}(k) for k ≡ j mod p − 1 whenever k is a negative odd integer.
Using the functional equation, this formula can also be rewritten in terms of the
positive even integers: the interpolated values are then

Γ(k)(1 − p−k)−1(1− pk−1)
ζ{p}(k)
(2πi)k

(2)

for every positive even integer k belonging to a fixed congruence class modulo p−1.
In fact, this p-adic ζ function can also be defined by interpolating the values for
fixed k of the L-functions associated to Dirichlet characters η whose conductor is a
power of p and which satisfy η(−1) = (−1)k.

Another example which has become classical is that of elliptic curves E over Q
having good ordinary reduction at p, which are modular or have complex multipli-
cation. The first constructions of the p-adic L-functions associated to such elliptic
curves were due to Mazur and Swinnerton-Dyer in the first case, and to Coates and
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Wiles in the second one. In the case of elliptic modular curves with ordinary reduc-
tion at p, the p-adic L-function is obtained by p-adic interpolation of the values of
the Hasse-Weil function of E/Q at 1 twisted by a Dirichlet character of conductor
an arbitrarily large power of p; the value at 1 of this p-adic L-function (in a sense
to be defined) then has the form

(1 − α−1
p )(1 − p−1αp)−1L{p}(E/Q, 1)(3)

where L{p}(E/Q, 1) is the “incomplete” L-function at p of E/Q, i.e.

L{p}(E/Q, s) = (1− αpp−s)(1− βpp−s)L(E/Q, s),

and where (1− αpp−s)(1 − βpp−s) is the Euler factor at p with αp a p-adic unit.

The idea of Iwasawa theory is to construct an ideal of the Iwasawa algebra
starting from the p-adic representation associated to the situation: Qp(1) in the
first case, the tensor product of Qp with the Tate module of the points of order a
power of p on the elliptic curve in the second case (Iwasawa, Mazur, Greenberg,
Schneider...). In these much-studied cases, we are dealing with so-called ordinary
representations, and the desired ideal is constructed as the characteristic ideal of a
certain module (the Pontryagin dual of a Selmer group). The main conjectures give
the precise relations between this characteristic ideal and the interpolated p-adic
L-function.

In this book, we propose a generalization of the above theory to p-adic rep-
resentations having good reduction at p. The simplest non-ordinary case is the
case of the p-adic representation associated to a modular elliptic curve E having
good supersingular reduction at p. Several new phenomena appear. On the side of
L-functions, two p-adic L-functions can be constructed; their values at 1 are given
respectively by

(1 − α−1
p )(1 − p−1αp)−1L{p}(E/Q, 1)(4)

and

(1− β−1
p )(1− p−1βp)−1L{p}(E/Q, 1).(5)

These functions no longer belong to the Iwasawa algebra (an algebra isomorphic
to the algebra of formal power series in one variable with coefficients in Zp); their
power series expansions have denominators. On the side of Iwasawa modules, the
natural candidates are not torsion modules over the Iwasawa algebra.

Let us roughly indicate how to overcome these difficulties.

Firstly, all the p-adic L-functions we construct will depend on a parameter be-
longing to a suitable exterior power of the Dieudonné-Fontaine module D associated
to the p-adic representation. When we evaluate them at the trivial character 1, the
same exterior power of an operator (1− ϕ)(1− p−1ϕ−1)−1 will appear, where ϕ is
the Frobenius operator acting on D. The eigenvalues of this operator provide the
explanation of the “bizarre” Euler factors appearing in the interpolation formulas.

On the side of arithmetic Iwasawa theory, we do not attempt to construct a tor-
sion module over the Iwasawa algebra, which we do not believe has any good reason
to exist. Instead, very roughly, we use modules constructed starting from Galois
cohomology groups H1 and H2 which are “unramified” outside of a “sufficiently
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large” finite number of places, and “measuring” them by means of an “expanded
logarithm” or regulator with values in the tensor product of D with an algebra of
functions contained in the Iwasawa algebra.

To make this a little more precise, let us give some notation.

Let Q be an algebraic closure of Q and Qp an algebraic closure of Qp. If F is a
number field contained in Q, we set F = Q, GF = Gal(F/F ). Let p be an odd prime
number. Throughout this book, we fix an embedding ofQ into Qp. We fix a number
field F unramified at p. We set F∞ = F (µp∞), Fn = F (µpn+1), Gn = Gal(Fn/F ),
G∞ = Gal(F∞/F ) and Λ = Zp[[G∞]]. The group G∞ is canonically isomorphic
to Gal(Q∞/Q). If S is a finite set of places containing the places at infinity and
the places of F lying over p, we write GS,F for the Galois group of the maximal
algebraic extension of F unramified outside S.

Let V be a pseudo-geometric p-adic representation of GF , (pseudo-geometric
means unramified outside of a finite set of places of F and de Rham at the places of
F lying over p) which is crystalline at the places of F lying over p. Let S be a finite
set of places containing the places over p, the places at infinity and the places where
V is ramified. Then V can be consider as a p-adic representation of GS,F . To every
lattice T of V stable under GF , we attach a Λ-module of rank ≤ 1, which we denote
by Iarith,{p}(T) and call the module of the arithmetic p-adic L-functions of
T. The construction is functorial in T, multiplicative for exact sequences, and
compatible with twisting homomorphisms by Tate’s representation Qp(j) for every
integer j; we have a functional equation relating V to V ∗(1) = HomQp(V,Qp(1)) and
T to T∗(1) = HomZp(T,Zp(1)). More precisely, if Dp(V ) is the filtered ϕ-module
associated to IndF/Q(V ) over Qp by Fontaine’s theory, the Λ-module Iarith,{p}(T)
is naturally (up to a particle of dust...) contained in K(G∞)⊗∧∗Dp(V ∗(1)) where
K(G∞) is the total ring of fractions of an algebra H(G∞) containing the Iwasawa
algebra Λ and where ∧∗Dp(V ∗(1)) is the exterior algebra of Dp(V ∗(1)) (in fact, we
can replace K(G∞) by H(G∞)⊗Frac(Λ) where Frac(Λ) is the total ring of fractions
of Λ). If we consider the component Iarith,{p}(T)

+
fixed by Gal(Q(µp)/Q(µp)+),

the suitable exterior power is the d+-th power where d+ is the dimension of the
vector subspace of IndF/Q(V ) fixed by a complex conjugation.

How is this Λ-module constructed? The first ingredient is the expanded loga-
rithm LV which is a homomorphism of Λ-modules

Z1
∞,p(F,T)→ K(G∞)⊗Dp(V )

where Z1
∞,p(F,T) is the projective limit of the ⊕v|pH1(Fn,v,T). This homomor-

phism (or rather its inverse ΩV ) is constructed in [P94] (it depends on an integer
h, but we ignore this technical difficulty in this introduction, at the price of being
slightly incorrect). The existence of ΩV and of LV depends on analytic properties
of the Bloch-Kato logarithms associated to the twists V (j) of V for sufficiently
large j. For example, a consequence of these continuity properties is that for v
lying over p, if j and j′ are sufficiently large integers modulo (p − 1)pn, and if
P ∈ H1(Fv, T (j)) and P ′ ∈ H1(Fv, T (j′)) are congruent modulo pn+1 (i.e. their
projections to H1(Fv, T (j)/pn+1T (j)) ∼= H1(Fv, T (j′)/pn+1T (j′)) are equal), then
the (suitably modified) Bloch-Kato logarithms of P and of P ′ relative to V (j) and
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to V (j′) respectively are congruent modulo pn. For a precise statement, see §4.5
and in particular §4.5.5.

Let us return to the construction of Iarith,{p}(T), or rather, to be simpler, of
Iarith,{p}(T)

+
. If M is a Gal(Q(µp)/Q)-module, we set M+ to be the submodule of

M fixed by Gal(Q(µp)/Q(µp)+). We can consider Iarith,{p}(T)
+

as a Λ-submodule
of

HomQp(∧d+Dp(V ),K(G∞)+)

via the isomorphism K(G∞)+ ⊗ ∧d+Dp(V ∗(1)) ∼= HomQp(∧d+Dp(V ),K(G∞)+).
Let us consider the Λ-modules

H i
∞,S(F,T) = lim

←
n

Hi(GS,Fn ,T).

By localization, we obtain a Λ+-module homomorphism

H1
∞,S(F,T)+ → Z1

∞,p(F,T)+.

If n ∈ ∧d+Dp(V ), then Iarith,{p}(T)
+

(n) is essentially (up to some technical factors)
given by

Λ+f+(H2
∞,S(F,T)) · n ∧ detΛ+LV (H1

∞,S(F,T)+)

where f+(H2
∞,S(F,T)) is a characteristic series of the Λ+-module H2

∞,S(F,T)+.
Thus, Iarith,{p}(T)

+
simultaneously measures the position of H1

∞,S(F,T)+ inside
K(G∞)+⊗Dp(V ∗(1)) by the logarithm (regulator) map and the size of H2

∞,S(F,T).

In order to be sure that this definition does not give a Λ-module equal to zero,
we need the so-called weak Leopoldt conjectures for V and for V ∗(1). We denote the
union of these two conjectures by Leop(V, V ∗(1)): they state that H2(GS,F∞ , V/T)
and H2(GS,F∞ , V ∗(1)/T∗(1)) vanish. We show that if we assume Leop(V, V ∗(1)),
then Iarith,{p}(T) is free of rank 1.

Under some regularity hypotheses, it is possible to compute the value at 1 of
the leading coefficient of a generator of Iarith,{p}(T), up to a unit. In particular,
the operator

∧d+(1− ϕ)(1 − p−1ϕ−1)−1

which already arose in the interpolation properties of logarithms appears again
here, as do the numbers (or their p-adic analogs when dealing with complex pe-
riods) occurring in the Bloch-Kato conjectures. This makes it possible for us to
establish comparisons between our conjectures and the Bloch-Kato conjectures in
the framework of motives.

Similarly, if V is still a pseudo-geometric representation crystalline at the places
lying over p, and if c is a complex conjugation, we attach to (V, c) a free Λ-module
Iarith,{p}(V, c) of rank 1 contained in the total ring of fractions K of H = Bcris ⊗
H(G∞). The Λ-module Iarith,{p}(V, c) is obtained from Iarith,{p}(T) by a suitable
projection. Unlike Iarith,{p}(T), it is independent of the choice of T.

When V is the p-adic representation of GQ associated to an elliptic curve on Q
having good reduction at p, Iarith,{p}(T) is related to the Λ-submodule Iarith(T)
of K(G∞) ⊗ Dp(V ) defined in [P93]. For V = Qp(j), we find the characteristic
ideal of classical Iwasawa modules (2.5, see also [P94b]).
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Now, let M be a motivic structure on Q in the sense of [FP94], with de
Rham realization MdR, Betti realization MB and `-adic realization M`. Its p-
adic realization Mp is a pseudo-geometric p-adic representation of GF . Suppose
moreover that it is crystalline at the places of F lying over p. The Euler factor at
p of the complex L-function can be interpreted as the characteristic polynomial of
the “Frobenius operator” ϕ acting on the Qp-vector space Dp(Mp) ∼= Qp ⊗QMdR

(in the examples above, Mp is the Tate module of the p-power order roots of unity
or of the p-power order points on the elliptic curve, tensored with Qp).

Let M be a Z-structure on M . This is given by the following data: a free
maximal Z-submodule M of MB, and for every prime number l, a free maximal
Zl-moduleMl of Ml stable under GQ such that Zl⊗M =Ml. Then the Λ-module
Iarith,{p}(Mp) can be defined. Moreover, M admits a complete L-function L∞(M),
defined by

L∞(M, s) =
∏
`∈P

L`(M, s)

where P is the union of the set of prime numbers and ∞. Let L∞(M,η, s) de-
note the L-function twisted by a Dirichlet character η. Using the special values
of L∞(M,η, j), where j is an integer and η is a character of finite order whose
conductor is a power of p, we give a conjecture on the existence of a distinguished
generator of Iarith,{p}(Mp), which will be denoted by Lp,2πi{p} (M) (it also depends
on the choice of a p-adic and complex 2πi). It is the p-adic L-function of M.
Once the objects are defined, a large part of the work consists in verifying the com-
patibilities between the conjectures made here and the Bloch-Kato conjectures, the
functional equation, the examples already known and so on.

Let us give some details on the properties (conjecturally) defining the p-adic L-
function Lp,2πi{p} (M). This L-function is characterized by its values on χj for j large
enough (here χ denotes the cyclotomic character). Recall that for j sufficiently
large, the Beilinson conjectures predict that the quotient of L(M(j), 0) by a certain
period PerM(j) is a rational number. This period is the determinant (in rational
bases) of H1

f (Q,M(j)) → C⊗MdR(j)/C ⊗MB(j)+ where H1
f (Q,M(j)) is the Q-

vector space of the motivic points of M(j). We define similarly a p-adic period
PerM(j)p(n) for n ∈ ∧d+MB. Set also L∞{p,∞}(M) =

∏
l 6=p L`(M, s). Then,

∧d+((1− pjϕ)−1(1− p−j−1ϕ−1))χ−jLp,2πi{p} (M)

is essentially equal (for j even) to

L∞{p,∞}(M(j), 0)

PerM(j)

PerM(j)p

(up to some factorials which we leave out here). We refer to the main body of the
text for the precise formulas (cf. also [Pa]).

This text follows [P94], where what we referred to above as the expanded
logarithm was constructed. The special case of elliptic curves was considered in
detail in [P93] (see also [BP93]). All the p-adic representations considered here
are assumed pseudo-geometric and crystalline at the places lying over p,
and defined over a number field F unramified at p. We would also have liked
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to consider the case of semi-stable p-adic representations, but we were prevented
from doing so by the lack of a local theory in the semi-stable framework. We also
refer to [FP91] or [FP94] for the “basic” notions on geometric representations, the
Zp-modules H1

f (F,T), motivic structures . . .

We also decided not to discuss motives and the cohomology of projective va-
rieties in this book, especially in the first three chapters, but to stick to p-adic
representations. Of course, if one wants to verify the fundamental conjectures on
p-adic L-functions, the examples to consider lie in these cohomologies.

Let us outline the contents of the chapters.

In chapter 1, we construct the module of p-adic L-functions without factors at
infinity of a representation V which is geometric and crystalline at p, using both
results from Galois cohomology and the local theory developed in [P94].

In chapter 2, we define the factors at infinity and the module of the p-adic
L-functions of V ; we study some of their properties, in particular its functional
equation.

In chapter 3, we define the p-adic periods and study their relation with the
value at 1 (up to a unit) of a basis of the module of p-adic L-functions.

In chapter 4, we begin to develop a theory of the p-adic L-functions of a motive,
whose the associated p-adic representation is of the type studied above.

There are also three appendices. The first contains no proofs; it recalls some
classical results of Galois cohomology. The second gives precise details on the
conjecture Leop(V ) made in the text and gives examples. The cases where this
conjecture is known are all easy applications of difficult theorems (of Kolyvagin,
Rubin, Flach and others).

The third appendix, which was written jointly with J.-M. Fontaine, gives a
conjecture on the computation of certain local Tamagawa numbers. We also show
how this local conjecture makes it possible to verify the compatibility of the Bloch-
Kato conjectures with the functional equation. It is totally independent from the
rest of the book.

This book reflects research done over the past few years, at the university of
Pierre and Marie Curie. I particularly want to thank the “Laboratoire de mathéma-
tiques fondamentales” (URA CNRS 747). Thanks are also due to Pierre Colmez
for his many fruitful remarks.
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