
RESEARCH ARTICLE

Comparison of catchment scale 3D and 2.5D

modelling of soil organic carbon stocks in

Jiangxi Province, PR China

Tobias RentschlerID
1,2*, Philipp Gries1, Thorsten Behrens1, Helge Bruelheide3,4,
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Abstract

As limited resources, soils are the largest terrestrial sinks of organic carbon. In this respect,

3D modelling of soil organic carbon (SOC) offers substantial improvements in the under-

standing and assessment of the spatial distribution of SOC stocks. Previous three-dimen-

sional SOC modelling approaches usually averaged each depth increment for multi-layer

two-dimensional predictions. Therefore, these models are limited in their vertical resolution

and thus in the interpretability of the soil as a volume as well as in the accuracy of the SOC

stock predictions. So far, only few approaches used spatially modelled depth functions for

SOC predictions. This study implemented and evaluated an approach that compared poly-

nomial, logarithmic and exponential depth functions using non-linear machine learning tech-

niques, i.e. multivariate adaptive regression splines, random forests and support vector

machines to quantify SOC stocks spatially and depth-related in the context of biodiversity

and ecosystem functioning research. The legacy datasets used for modelling include profile

data for SOC and bulk density (BD), sampled at five depth increments (0-5, 5-10, 10-20, 20-

30, 30-50 cm). The samples were taken in an experimental forest in the Chinese subtropics

as part of the biodiversity and ecosystem functioning (BEF) China experiment. Here we

compared the depth functions by means of the results of the different machine learning

approaches obtained based on multi-layer 2D models as well as 3D models. The main find-

ings were (i) that 3rd degree polynomials provided the best results for SOC and BD (R2 =

0.99 and R2 = 0.98; RMSE = 0.36% and 0.07 g cm-3). However, they did not adequately

describe the general asymptotic trend of SOC and BD. In this respect the exponential (SOC:

R2 = 0.94; RMSE = 0.56%) and logarithmic (BD: R2 = 84; RMSE = 0.21 g cm-3) functions

provided more reliable estimates. (ii) random forests with the exponential function for SOC

correlated better with the corresponding 2.5D predictions (R2: 0.96 to 0.75), compared to

the 3rd degree polynomials (R2: 0.89 to 0.15) which support vector machines fitted best. We

recommend not to use polynomial functions with sparsely sampled profiles, as they have
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many turning points and tend to overfit the data on a given profile. This may limit the spatial

prediction capacities. Instead, less adaptive functions with a higher degree of generalisation

such as exponential and logarithmic functions should be used to spatially map sparse verti-

cal soil profile datasets. We conclude that spatial prediction of SOC using exponential depth

functions, in conjunction with random forests is well suited for 3D SOC stock modelling, and

provides much finer vertical resolutions compared to 2.5D approaches.

Introduction

Soils are a fundamental part of ecosystem functioning and services [1]. As finite resources,

soils contribute to food production, nutrient cycling, biodiversity and freshwater quality [2].

Furthermore, they are interconnected with other ecosystem functions and services, such as

local and global climate alteration; and therefore, contribute indirectly to human well-being

[3]. Among soil properties, soil organic carbon (SOC) plays an important role in this context.

SOC increases the water-holding capacity (e.g. important for agriculture, forest and flood

management), improves the physical properties of soils, such as nutrient availability for plants

in agriculture and forestry, and accounts for carbon sequestration to mitigate climate change

[4–6]. In forestry, there is strong interest in the effects of tree species and tree diversity on soil

carbon input and mineralization as well as the net effects of these processes [7]. Knowledge

about the interconnection between SOC, forests and the diversity of tree species as well as

SOC stock degradation by soil erosion [8,9] and land cover change [10,11] can also help to

implement countermeasures to reduce global warming [7]. Consequently, the implementation

of a credible soil carbon auditing and monitoring to verify changes in SOC is crucial regarding

soil security and carbon sequestration [7,12].

To preserve the functions and services provided by soils, a good quantitative understanding

of the SOC stocks is required–both in the vertical domain of a soil profile as well as in the spa-

tial domain over landscapes [13,14]. However, conventional soil maps use soil classes in hori-

zontal dimension and soil horizons in vertical dimension. This categorical setup is often not

precise enough and not well suited for interpreting soil functions and processes as well as for

decision-making, since soil properties mostly vary continuous in space and time [15,16].

For the spatial prediction of continuous soil properties, such as SOC, methods of digital soil

mapping (DSM) are suitable [17–19]. DSM is based on the soil forming factor concept [20]

and the scorpan model introduced by McBratney et al. [21]. Both approaches illustrate soil

information as a function of environmental covariates, influencing the process of soil forma-

tion. Terrain parameters, describing the shape of the land surface, are used widely as an envi-

ronmental covariate in DSM. Terrain is an essential factor of soil formation and controls the

effects of gravity, climate, lithology, water and biota [22–24]. Hence, models that are based on

terrain parameters reproduce displacement and reallocation of soil (i.e. mass movements and

soil erosion) and are of particular interest when modelling SOC at catchment scale [25]. Fur-

thermore, terrain can not only be used to estimate or model soil displacement and reallocation,

but also as a proxy for environmental covariates, which are not used as predictors, or inaccessi-

ble scorpan-factors. For instance, slope and aspect can serve as proxy for microclimate through

its influence on local solar insulation [24]. The catchment area can serve as a proxy for soil fer-

tility because of terrain driven water and SOC accumulation [19] and elevation, slope and

aspect can act as proxy for parent material, tectonics and periglacial climate through strike and

dip of the geological sediments and down-cutting processes [22,23,26].

Catchment scale 3D and 2.5D modelling of soil organic carbon stocks
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For spatially modelling soil properties, different approaches have been established to derive

relationships between soil properties and environmental covariates. However, for a reliable

estimation of SOC stocks, the vertical dimension is crucial [13]. A common way of three-

dimensional mapping is to consider the vertical dimension as multiple two-dimensional pre-

dictions, which can be interpreted in a three-dimensional way [17,27–29]. Because, multi-lay-

ered predictions do not provide full 3D soil information, since they are limited to the mapped

depth increments. Information of the space between the mapped depth increments has to be

derived on an interpretative and subjective basis. One approach is to vertically interpolate the

single layers to construct a volumetric model, which is computationally intensive [30,31].

Therefore, multi-layered models are referred to as pseudo-3D mapping or 2.5D mapping

[32]. To overcome these drawbacks, it is favourable to map soil properties as continuous depth

function in the spatial domain [13,18], where the vertical distribution of soil properties is rep-

resented by depth functions, that are predicted spatially. These predictions allow the calcula-

tion of SOC stocks over the integral of the functions [33] as well as the calculation of fully

three-dimensional maps at any vertical resolution [32,34–37].

Besides geostatistical frameworks [38,39], different depth functions have been applied for

3D modelling: power, logarithmic [32,40], exponential decay [32,33], polynomial [34,36] and

equal-area spline functions [31,41].

While with 2.5D mapping soil properties are directly predicted at specific depth levels using

the environmental covariates [17,29], 3D approaches use environmental covariates to predict

parameters of the depth functions [34], which are abstract soil properties. According to the

scorpan model, soil properties can be spatially mapped with neighbourhood relations solely

[21], which also have been used for 3D modelling [36,40,42,43]. Over the past years, machine

learning techniques have become a standard technique in DSM due to several advantages like

dealing with non-linearity or the handling of large datasets. Aldana Jague et al. [33] used multi-

ple linear regression (MLR) to model SOC incorporating terrain covariates, while Gasch et al.

[43] compared spatial and terrain covariates using random forests (RF) and regression kriging

for mapping SOC at different depth layers. Piikki et al. [27] used multivariate adaptive regres-

sion splines (MARS) to model clay and sand fractions as well as organic matter based on proxi-

mal soil sensing data. Several other studies also suggest that machine learning techniques, such

as artificial neural networks (ANN; [41,44]), random forests (RF; [17]) and support vector

machines (SVM; [45]), can be applied successfully in DSM.

The objectives of this study were to test the spatial prediction of four soil profile depth func-

tions for modelling SOC content and bulk density with different machine learning methods

based on multi-scale terrain covariates. The tested soil profile depth functions are polynomials

of 2nd and 3rd degree, natural logarithmic and exponential functions. The machine learning

methods used to model the depth functions spatially were multivariate adaptive regression

splines (MARS), random forests (RF) and support vector machines (SVM) with radial basis

functions. We validated the machine learning models with 10-fold cross-validation and evalu-

ated the results of the 3D mapping approach by comparing it with the predictions of the more

common multi-layered 2.5D modelling approach based on five layers.

Material and methods

Study area and sampling design

The BEF-China study sites are artificial biodiversity experiments on property leased and man-

aged by the project partner Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun,

Xiangshan, Bejing, 100093, PR China. Field studies did not involve endangered or protected

species and no specific permissions for field research were required.

Catchment scale 3D and 2.5D modelling of soil organic carbon stocks
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The biodiversity and ecosystem functioning (BEF) China project [46] is located near Xin-

gangshan, Jiangxi Province, PR China (UTM/WGS84: 50R 588000 3222000), about 400 km

south-west of Shanghai (Fig 1). The study site is a topographically heterogeneous environment

in a small catchment of 26.7 ha leased by the Institute of Botany of the Chinese Academy of

Fig 1. Study area in mainland China with BEF-China plot scheme and indication of sampled plots. Upper right panel with permission by R.

Hijmans; https://gadm.org/.

https://doi.org/10.1371/journal.pone.0220881.g001
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Sciences (CAS). It features an elevation ranging from 105 to 275 m a.s.l., slopes inclined 29˚ in

average and a maximum slope inclination of 45˚, which are typically convex [19]. Non-calcare-

ous slates with varying sand and silt content and grey-green sandstone constitute the bedrock.

Predominant soil types are Endoleptic Cambisols with Anthrosols at the hillsides and Gleysols

at the valley bottom. The mean soil depth is 0.6 m with underlaying isomorphic weathered

slate (saprolite; [19]). Soil texture ranges from silt loam to silty clay loam [47]. The climate is

typically subtropical with monsoons in summer, a mean annual temperature of about 17 ˚C

and long-term average annual rainfall of about 1800 mm [48] but with a drier period from

2009 to 2012 [49].

About 18 ha were covered with 271 experimental plots. In total 8.7 ha at the valley bottom

were not part of the experimental design due to paths and rivulets. Plots had a size of 25.8

m × 25.8 m (traditional Chinese unit of 1 mu, 1/15 ha) and were replanted in 2008 after clear-

cut of a commercial Chinese fir plantation. One plot comprised 400 (20 × 20) trees in mono-

cultures and mixtures of 2, 4, 8, 16 and 24 species. Species composition of the plots was based

on random as well as non-random (plant trait-oriented) extinction scenarios, where all species

were represented equally (broken-stick design). The datasets used in this study comprised

soil samples from random subsets of all species and species richness levels referred to as VIPs

(Very Intensively Studied Plots). For details on the experimental design, see Bruelheide et al.

[46] and Trogisch et al. [50].

Datasets

All described datasets are part of the legacy database of BEF-China. Soil sampling was con-

ducted in 2014. Nine cores on a regular grid basis (3 cm in diameter) were taken at each of

the 67 VIPs according to the BEF-China experimental design (Fig 1; [46]). The samples were

bulked for each depth increment (0–5 cm, 5–10 cm, 10–20 cm, 20–30 cm and 30–50 cm) and

were referred to as dataset SOC (n = 67; Fig 2). Fine roots and charcoal were sorted out manu-

ally. For dry combustion CNS-analysis, a Vario EL III (Elementar, Hanau, Germany) was

used. Due to acidic soil conditions there was no detectable carbonate fraction, and thus total

carbon represented SOC [19]. SOC content ranged from 5.06 to 0.35% decreasing with depth.

Bulk density samples (n = 55) were taken in April 2015 with soil sample rings (100 cm3)

and five replicates for each depth increment at the VIPs. Bulk density was determined gravi-

metrically and was referred to as dataset BD (Fig 2). Bulk density ranged from 0.75 to 1.84 g

cm-3 increasing with depth.

Since some plots with SOC samples did not have BD data (Fig 1), both soil properties

were modelled individually instead of calculating and modelling the SOC stocks directly. This

‘model-then-calculate’ approach is a useful alternative to the ‘calculate-then-model’ approach.

Both were compared by Orton et al. [51].

The digital elevation model (DEM) had a resolution of 5 m and was generated by ordinary

kriging [52] based on differential global positioning system data (DGPS) with 1956 points (73

points per ha; [19]). The distribution of datasets SOC and BD over the DEM is shown in Fig 3.

Dataset SOC covered the elevation data more comprehensively compared to the dataset BD.

Digital terrain analysis

Environmental covariates that describe the morphometry of a landscape are grouped in four

major classes of terrain attributes: local, regional, combined (i.e. combinations of local and

regional) and solar morphometric variables. Given that many terrain attributes can be calcu-

lated based on different equations or modelling approaches and because it is unknown which

version would be most suitable for modelling SOC and BD within the study area, we used

Catchment scale 3D and 2.5D modelling of soil organic carbon stocks
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multiple established methods to derive single terrain attributes, if available. Given the circular

nature of aspect, we used sine and cosine transformations to derive eastness and northness.

Overall, we calculated 58 terrain attributes (Table 1) with SAGA GIS 2.3.1 [53].

Terrain attributes derived from a DEM with a given resolution may not be suitable for land-

scape characterization and for digital soil mapping due to a non-representative DEM resolu-

tion [63], since the terrain attributes are not derived on the most relevant scale [64,65]. To

examine the influence of scale, [65] applied simple smoothing (mean) filters with different

neighbourhood sizes. This approach was applied on every terrain attribute used in this study

with five circular neighbourhoods (radii of 1, 2, 4, 6 and 8 pixels), resulting in 290 terrain

attributes in total. The maximum radius was set to 8 pixels to represent the local catena scale of

90 m.

Machine learning techniques

We compared three data mining methods to test the 3D prediction of soil profile depth func-

tions for SOC and BD based on terrain covariates. Given the large number of 290 covariates

(instances) and sample sizes of n = 67 and n = 55, not all available techniques could be applied.

For example, the interpretable multiple linear regression (MLR) analysis used for spatial

modelling of polynomial depth functions by Aldana Jague [34] requires more samples (n)

than instances (p; [66]). Furthermore, we have to account for multi-collinearity. Many terrain

covariates in this study are calculated by different algorithms for the same terrain attribute

and on different spatial scales with the same algorithm, which is often seen as a constraint in

machine learning [66]. To reduce the covariate space to either enable MLR or handle the

‘curse of dimensionality’, principal component analysis (PCA) is often applied. However,

Fig 2. Datasets for SOC and BD used in this study summarized in boxplots. The boxplots show the variation of the SOC and BD values for each

depth increment. SOC and BD samples were taken in five depth increments and 9 cores per plot were bulked (Note that depth increments do not

increase linearly). The grey lines show model depth functions (3rd degree polynomial for SOC and natural logarithmic function for BD; see subsection

“3D mapping with soil depth functions”).

https://doi.org/10.1371/journal.pone.0220881.g002
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feature reduction with PCA can have negative effects on model accuracy with multi-scale ter-

rain data and models with the full set of covariates have higher accuracies [65]. Other feature

reduction methods increase accuracy only marginally [65]. In this study, we applied multivari-

ate adaptive regression splines (MARS), random forests (RF) and support vector machine

(SVM). These machine learning methods are robust against multi-collinearity, can handle

Fig 3. Empirical cumulative distribution functions (ECDF) for SOC and BD datasets. The ECDFs show the locations of the sampling sites in the

state space of the elevation (DEM) in metres above sea level (m a.s.l.). The aim is to show the coverage of the DEM feature space by the samples. It can

be seen that most samples are located in the mid-range of the elevation values. Therefore, predictions at grid locations which are only sparsely covered

by the samples (i.e. locations close to the minimum and maximum values of the DEM) may be less accurate. The minimum, median and maximum

values of both datasets (DEM and sampling locations) are shown with vertical lines (dashed grey: DEM, dashed black: sampling locations) to compare

the full range of the respective feature spaces.

https://doi.org/10.1371/journal.pone.0220881.g003

Table 1. Terrain attributes used for SOC and bulk density modelling.

Covariates Method Author(s)

Local Slope and aspect Fitted 2nd degree polynomial [54]

Fitted 3rd degree polynomial [55]

Least squares fitted plane [56]

Maximum triangle slope [57]

Fitted 2nd degree polynomial [58]

Plan, profile, longitudinal, tangential and flowline curvature Fitted 2nd degree polynomial [54]

Fitted 3rd degree polynomial [55]

Fitted 2nd degree polynomial [58]

Vertical distance to channel network [53]

Sky visibility, sky view factor, direct and diffusive insolation [59]

Regional Catchment area Top-down [60]

Recursive

Combined Topographic Wetness Index (TWI) Any combination of slope and catchment area [61]

Slope length and steepness factor (LS-Factor) Any combination of slope and catchment area [61,62]

https://doi.org/10.1371/journal.pone.0220881.t001
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n<p [66] and select the most informative covariates without expert knowledge. Further, we

omitted feature reduction.

For modelling, R version 3.3.1 was used [67]. For accessing the machine learning packages,

the uniform interface caret [68] was used, which also offers data handling and model validation

methods.

Multivariate adaptive regression splines (MARS). MARS was introduced by Friedman

[69] and is a generalisation of recursive partitioning regression approaches using piecewise

linear models. With its linear basis functions, it overcomes the discontinuous response of

other recursive partitioning models like Classification and Regression Trees (CART; [70])

and can generate continuous surfaces. Therefore, prediction accuracy of MARS is expected

to be higher [69]. MARS is a partial linear function, where each new part is added with an

exhaustive search for best fit and models a finite quantity of the regression. Thus, the model

measures variable importance by its nature and is insensitive to non-informative instances.

MARS require very little pre-processing and are non-affected by collinearity, since the pre-

dictor selection is random during iteration and redundant features are used equally [66].

This may affect measurement of variable importance and interpretation, which, however, is

out of scope in this study. For modelling using MARS, the earth package version 4.4.6 [71]

was used.

Random forests (RF). RF is a widely used machine learning technique in digital soil

mapping [17,22,64,72]. It was introduced by Breiman [73] and is an ensemble technique with

CART [70] as a base learner. The single decision tree uses binary splits to create more homoge-

nous groups in respect to the response. To grow an ensemble of trees, different random subsets

of covariates (bootstrap sampling) and features (random set of features for every split) are used

to build a single tree. The final prediction is created by averaging all individual tree outputs.

Breiman [73] has proven that random forests with a large number of trees is robust against

overfitting. Moreover, it is robust against noise, non-informative and correlated features. RF

also returns feature importance measures (affected by correlation as MARS; [66]) and there is

little need for fine-tuning [74]. The randomForest package version 4.6–12 [75] was used for

modelling with RF.

Support vector machine (SVM). Originally, SVM has been developed for classification

problems [76]. It is a kernel method and uses hyperplanes to linearly separate classes of objects.

For regression problems, Drucker et al. [77] developed support vector regression machines

(SVR), which are an extension of SVM. Therefore, the term SVM is often used in both cases.

The kernel function defines a transformation of the input data into a high dimensional feature

space. In this feature space, it is possible to derive a linear regression hyperplane for non-linear

relationships. Afterwards, it is back-transformed to non-linear space. Smola and Schölköpf

[78] provide a comprehensive and detailed insight into SVR. The kernel used in this study is a

radial basis function, where the scaling parameter σ is estimated by caret after a method by

Caputo et al. [79]. In contrast to MARS, Drucker et al. [77] suggest that SVM should be used

when the number of features is larger than the number of instances, since its optimisation

does not depend on the dimensionality of feature space. Furthermore, SVM is partially insensi-

tive to outliers (depending on cost factor) and does not require feature reduction to reduce

multi-collinearity [66]. The kernlab package version 0.9–25 [80] was used for radial support

vector regression modelling.

Data pre-processing. Some algorithms are sensitive to the scale and the range of the

covariate space (e.g. SVM). To reduce effects of small values and little variance, SVM needs

centred and scaled covariates [66], which was computed using the scale and centre-option in

caret. To make all models comparable, this was also done for MARS and RF.

Catchment scale 3D and 2.5D modelling of soil organic carbon stocks
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Spatial 2.5D and 3D models

Differences between 2.5D models and spatial prediction of depth functions. The envi-

ronmental covariates were used to train regression models (MARS, RF and SVM) to predict

SOC and BD. For 2.5D predictions this was done for each sampled depth increment individu-

ally, were we assigned the mid-depth of the sampled increments as depth of the respective

layer. This method to obtain volumetric soil information has several advantages. For modelling

of each standard depth individually, there are no further requirements to abstract soil informa-

tion in terms of vertical variability, i.e. a soil profile function. Furthermore, there is no error

propagation through secondary models that describe depth functions. On the other hand, in

contrast to 3D modelling, 2.5D modelling has the disadvantage that the individual model out-

comes are purely two-dimensional. Soil properties of the depth increments between the stan-

dard depths are not used in the model and have to be derived on an interpretative basis [15] or

through further processing [30] after spatial prediction. However, this is a well-established and

well-documented approach. Therefore, we compare the results of the 3D approach described

below directly with the 2.5D results.

3D mapping with soil depth functions. For the spatial modelling of depth functions,

which we handled similar to the soil properties in terms of modelling, we applied 3rd degree

polynomial functions proposed by Aldana Jague [34] and less flexible 2nd degree polynomials

as well as logarithmic and exponential functions [32]. The workflow of the 3D mapping (Fig 4)

of this study involved five main steps:

i). Mathematical approximation of depth functions to the five depth increments with a lin-

ear least squares approach. These were

f1ðxÞ ¼ c0 þ c1xþ c2x2þ c3x
3 ð1Þ

[34]

f2ðxÞ ¼ c0 þ c1xþ c2x
2 ð2Þ

f3ðxÞ ¼ c1 � lnðc2xÞ ð3Þ

[32]

f4ðxÞ ¼ expc1þc2x ð4Þ

cf. [32]

where f1,2,3,4(x) is SOC and BD at a specific depth x (depth of the lower corner of a voxel in

cm), c0 is the intercept that equals SOC and BD at depth 0 (cm) and the function coefficients

c1, c2 and c3 are dimensionless. This altogether described the vertical distribution of SOC in

respect to depth x at a certain location.

ii). Evaluation of model error for all equations in (i).

iii). Spatial modelling of the function coefficients c1, c2, c3 and c0 (analogous to two-dimen-

sional modelling of SOC and BD) of the depth function with the lowest error (ii) with

MARS, RF and SVM. The depth function parameters were treated and evaluated similar

to a soil property.

iv). Evaluation of the cross-validation results for MARS, RF and SVM models of the depth

function coefficients.
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v). Solving the depth functions with spatially modelled coefficients (iii) at each grid location

to generate a three-dimensional model.

The depth functions were solved for depths from 0 cm to 50 cm in 5 cm increments. The

resulting 11 depth layers (matrices) were stacked to two three-dimensional models (one for

Fig 4. Flow chart summarizing the methodology steps of the 3D mapping and the used datasets at each step.

https://doi.org/10.1371/journal.pone.0220881.g004
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SOC and BD each), where individual values are represented by voxels, which are the volumet-

ric 3D analogue of 2D pixels. Due to the nature of the polynomial depth functions, negative

SOC predictions in the profiles are possible. Consequently, the values of these voxels had to be

set to zero. This is not required for logarithmic and exponential functions.

Compared to the standard depth method, the main advantages of spatially modelled depth

functions are a higher vertical resolution and the fact that the result can be interpreted as volu-

metric structure. Instead of pixels with SOC and BD information in multiple layers, volumetric

elements–so called voxels–in a three-dimensionally georeferenced stack of matrices with user-

defined vertical resolution are obtained. Since the depth functions are secondary models, the

error which is propagated by the depth function model to the spatial model depends on the

chosen function. Due to the limited number of samples per profile, cross-validation of the

depth functions was omitted.

The final models for SOC and BD were validated internally against the measured values of

the input datasets.

Validation and evaluation

The evaluation consists of two independent steps for the 2.5D multi-layered model predictions

and the volumetric 3D model predictions of SOC and BD, where we treat the depth function

parameters as soil properties.

In a first step, we evaluated each model of the soil properties SOC and BD as well as the spa-

tial models of the depth function parameters, by using a 10-fold cross-validation with the coef-

ficient of determination (R2) and the root mean square error (RMSE) as quality criterion. In

this step, the models were tuned over the default grid- or hyper-learning sequence of parame-

ters [81] using the tune grid function of caret to identify the most suitable combination of

tuning parameters with the lowest RMSE and to reduce the model error, while preserving the

models ability to generalise. The tuning parameters are degree and nprune for MARS, mtry for

RF and cost for SVM. For RF ntree was set to the default value and σ for SVM was calculated by

a method after Caputo et al. [79]. All models used the same set of folds to make cross-validation

results comparable. The final models were selected from this sequence by the lowest RMSE.

To estimate the effect of overfitting of the depth function models based on grid learning, we

evaluated the 3D model results with the datasets SOC and BD by R2 and RMSE (observed-pre-

dicted-evaluation). Overfitting is indicated by large differences in the prediction error between

the training and the validation sets [81].

Further, we compared the 3D models against the 2.5D predictions of the same datasets to

evaluate the performance of the 3D models. We chose this approach, because the legacy data-

sets are too small to hold out a larger subset for independent validation. The model results

should be similar, if the spatial prediction of depth function parameters is reproducing the

spatial distribution of the soil properties. This means that independently from the modelling

framework (modelling of SOC and BD or modelling depth function as soil property) the

results of the 3D model are reasonable, if both models are similar.

We see this comparison as a valid method for the evaluation of the 3D models, since Brus

et al. [38] report strong correspondence between 2.5D and 3D geostatistical models and

MARS, RF and SVM are well established for 2D and 2.5D soil mapping and in data science

[17,27,66]. Therefore, we use the 2.5D layered predictions at the specific mid-depth of the

increments as reference predictions. For the comparison between the 2.5D models and the

corresponding depths of the 3D models, we used the coefficient of determination R2, Lin’s

concordance correlation coefficient (ρc; [82]), which validates the models against the 1:1 line,

and the RMSE.

Catchment scale 3D and 2.5D modelling of soil organic carbon stocks
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Estimation of SOC stocks

The three-dimensional array of SOC stocks was calculated by

SOCstocks ¼
SOC
100
� BD � 5002 � 5 ð5Þ

where SOCstocks (g voxel-1) is the soil organic carbon storage, SOC is SOC content (%), BD is

bulk density (g cm-3), 5002 is the base area of a voxel (cm2) related to the DEM resolution of

500 cm and 5 is the vertical resolution in cm. Consequently, 1 voxel represented 1.25 m3 of

soil. Adjustment with the fraction of coarse material (> 2 mm) was omitted, since the coarse

fraction was negligible low (< 5 vol.-%) at the VIPs and cannot be determined precisely by

coring. According to Orton et al. [51] calculating the SOC stocks from two models of SOC and

BD is an useful alternative when the samples are not taken at the same locations.

Results

2.5D predictions of standard depths as reference

For the models of SOC, the mean cross-validation R2 of MARS was 0.33 with a root mean

square error of 0.39%, compared to RF with an R2 of 0.41 (RMSE 0.34%) and SVM with an R2

of 0.39 (RMSE 0.35%; cf. Table 2). Models for BD showed a mean R2 of 0.43 (MARS), 0.39

(RF) and 0.39 (SVM) and mean RMSE values of 0.09 g cm-3 (MARS), 0.08 g cm-3 (RF) and

0.08 g cm-3 (SVM). In addition to the mean values, Table 2 shows the prediction accuracies

and the RMSE’s for each depth increment and all three machine learning techniques of both

SOC and BD.

Soil depth functions

For SOC, all equations showed R2 values higher than 0.9 (0.99 for f1, 0.96 for f2, 0.96 for f3 and

0.94 for f4) with a RMSE ranging from 0.36 (f1) to 0.7% (f2). For BD, the performance in terms

of R2 was similar (RMSE = 0.07 g cm-3), except for f3 with R2 = 0.84 (RMSE = 0.22 g cm-3),

which is the natural logarithmic function. The 3rd degree polynomial (f1) resulted in the best

fits for SOC and BD. However, the general trend of SOC in the profiles was exponential (Fig

2). Hence, both the 3rd degree polynomial and the exponential functions were chosen for fur-

ther spatial modelling and comparison in this study. With higher errors and without being

Table 2. Performance of 10-fold cross-validation for MARS, RF and SVM applied on the sampled standard depths of SOC and BD.

R2 RMSE

depth (cm) MARS RF SVM MARS RF SVM

SOC (%) 0–5 0.28 0.41 0.37 0.59 0.48 0.51

0–10 0.25 0.41 0.42 0.46 0.4 0.4

10–20 0.31 0.31 0.26 0.37 0.32 0.34

20–30 0.46 0.47 0.46 0.3 0.28 0.29

30–50 0.38 0.45 0.43 0.24 0.2 0.21

�X 0.34 0.41 0.39 0.39 0.34 0.35

BD (g cm-3) 0–5 0.51 0.53 0.61 0.07 0.06 0.06

0–10 0.5 0.52 0.49 0.07 0.06 0.06

10–20 0.31 0.26 0.24 0.11 0.11 0.11

20–30 0.41 0.35 0.33 0.1 0.1 0.1

30–50 0.42 0.31 0.3 0.09 0.09 0.09

�X 0.43 0.39 0.39 0.09 0.08 0.08

https://doi.org/10.1371/journal.pone.0220881.t002
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able to reproduce the general trend in the profiles profile the 2nd order polynomial (f2) was

omitted in the following steps.

Spatial modelling of soil depth functions

The cross-validation results for the machine learning methods applied on the depth functions

(c.f. Table 3) showed, that the polynomial depth functions for MARS, RF and SVM for SOC

were comparable in their goodness of fit with marginal differences (mean R2 from 0.3 to 0.32).

R2 of the exponential depth functions ranged from 0.3 for MARS to 0.44 for RF.

The models of the function coefficients could not be compared directly because c0 repre-

sented the SOC in % and BD in g cm-3, whereas c1, c2 and c3 were dimensionless. Hence, we

compared these models by the normalised RMSE (nRMSE), which is the RMSE divided by the

coefficients range (Table 3). The nRMSE showed little variation of around 0.18 for all coeffi-

cient predictions of the 3rd polynomial depth function of SOC. RF had the lowest mean of

nRMSE over all coefficients (0.17). The lowest nRMSE (0.09) for SOC was achieved by the

exponential depth functions (RF and SVM).

The models based on the 3rd degree polynomial depth functions of BD had a mean R2 of

about 0.23–0.4, while the mean nRMSE was about 3×104, due to the low performance of mod-

els with c3. Given such high errors, none of the models could reasonably predict the 3rd degree

polynomial depth function for bulk density. The exponential function was not able to repro-

duce the vertical trend of BD. Thus, we used the logarithmic depth function, although it fitted

the five depth increments least. However, these spatial depth function models performed better

(mean R2 from 0.36 to 0.45; nRMSE of about 0.16 for SVM).

Evaluation of 3D predictions

For the comparison of 3D models against the 2.5D reference predictions, we used the coeffi-

cient of determination R2, Lin’s concordance correlation coefficient ρc and the RMSE in corre-

sponding depths (Table 4).

Table 3. Performance of a 10-fold cross-validation for MARS, RF and SVM applied on function coefficients of a 3rd degree polynomial (f1 for SOC and BD with

four coefficients) and natural logarithmic function (f3 for BD with two coefficients).

R2 RMSE nRMSE

MARS RF SVM MARS RF SVM MARS RF SVM

SOC (f1) c0 0.29 0.28 0.26 0.83 0.75 0.79 0.20 0.18 0.19

c1 0.36 0.43 0.46 0.15 0.13 0.14 0.22 0.19 0.20

c2 0.29 0.28 0.24 0.008 0.007 0.007 0.2 0.18 0.18

c3 0.3 0.21 0.31 0.0001 0.0001 0.0001 0.14 0.14 0.14

�X 0.31 0.3 0.32 - - - 0.19 0.17 0.18

BD (f1) c0 0.56 0.45 0.38 0.09 0.09 0.09 0.23 0.2 0.20

c1 0.38 0.34 0.218 0.02 0.02 0.02 0.14 0.14 0.14

c2 0.38 0.17 0.26 0.001 0.001 0.001 0.2 0.2 0.2

c3 0.25 0.27 0.31 0.00002 0.00002 0.00002 1.3×105 1.2×105 1.2×105

�X 0.39 0.31 0.28 - - - 3.2×104 3×104 3×104

BD (f3) c1 0.56 0.48 0.53 0.09 0.09 0.09 0.2 0.18 0.18

c2 0.34 0.24 0.2 0.03 0.04 0.04 0.14 0.19 0.14

�X 0.45 0.36 0.36 - - - 0.17 0.19 0.16

Note that coefficients dimensions are different and specifying a mean of the RMSE is not reasonable.

https://doi.org/10.1371/journal.pone.0220881.t003
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The three-dimensional MARS prediction for SOC with the 3rd degree polynomial depth

function showed the largest difference to its counterpart. The prediction at 2.5 cm ranged

from close to zero to 15% SOC compared to 1.5 to 4% SOC in the two-dimensional prediction

(Fig 5). The other depth increments showed a similar pattern with values down to -15% SOC.

For the 2.5 cm increment the performance of RF was slightly better than that of SVM, but sub-

sequently dropped with increasing depth. Especially at 40 cm, but also at 25 cm and 15 cm, the

three-dimensional prediction of RF differed more from the two-dimensional predictions than

the three-dimensional predictions of SVM differed from their counterparts. There was no dis-

tinct over- or underestimation of RF, but random scattering between -4 and 4% SOC for 40

cm (Fig 5). SVM showed lower deviation at 15 cm, 25 cm and even 40 cm. There were less pre-

dictions with negative values and less scattering. The predicted depth intersections of spatially

modelled depth functions corresponded to the two-dimensional predictions by SVM largely

by R2 and ρc, while RMSE is low (Table 4).

In contrast, the 3D predictions of RF and SVM based on the exponential function showed

good correspondence for all five depth increments (Table 4). The 3D predictions overesti-

mated SOC for the 0–5 and 5–10 cm increments and underestimated it for 20–30 and 30–50

cm slightly due to the exponential nature of the equation, but there was no wide scattering as it

was the case with the polynomial prediction for RF.

The results of the internal validation showed high correspondence between the chosen

models (RF with exponential function for SOC and RF with logarithmic function for BD)

and respective input data at all five sampled depth increments (Table 5). The R2 and RMSE

values of the internal validation were similar to the validation results of the model compari-

son, indicating that model overfitting of both models is similar (Table 4). This partly

accounts to the propagation error of the profile depth function. The spatial prediction of the

exponential function for SOC had an average R2 of 0.79 with an average RMSE of 0.33% and

Table 4. Coefficient of correlation (R2), Lin’s concordance correlation coefficient (ρc) and RMSE of 2.5D reference predictions and correspondent depths of 3D pre-

dictions with polynomial (f1), logarithmic (f3) and exponential (f4) depth function.

R2 ρc RMSE

MARS RF SVM MARS RF SVM MARS RF SVM

SOC (%; f1) 2.5 cm 0.02 0.92 0.89 -0.03 0.95 0.79 4.13 0.09 0.12

7.5 cm 0 0.69 0.89 -0.01 0.81 0.85 3.84 0.16 0.1

15 cm 0.02 0.41 0.72 -0.03 0.43 0.47 2.42 0.37 0.22

25 cm 0 0.17 0.45 0 0.17 0.66 9.09 0.68 0.15

40 cm 0 0.07 0.15 0 0.04 0.31 46.96 1.73 0.33

�X 0.01 0.45 0.62 -0.01 0.48 0.62 13.29 0.61 0.18

SOC (%; f4) 2.5 cm 0 0.96 0.93 0 0.93 0.79 19.22 0.11 0.14

7.5 cm 0.1 0.84 0.67 0 0.39 0.29 26.25 0.38 0.35

15 cm 0 0.89 0.88 0 0.94 0.93 29.42 0.06 0.05

25 cm 0.06 0.85 0.93 0 0.55 0.79 31.28 0.21 0.1

40 cm 0.02 0.88 0.75 0 0.31 0.26 32.71 0.31 0.3

�X 0.04 0.88 0.83 0 0.62 0.61 27.78 0.21 0.19

BD (g cm-3; f3) 2.5 cm 0.02 0.94 0.87 -0.05 0.39 0.53 0.48 0.09 0.07

7.5 cm 0 0.8 0.71 0 0.29 0.24 0.44 0.09 0.1

15 cm 0.01 0.66 0.5 -0.05 0.48 0.31 0.46 0.05 0.07

25 cm 0.01 0.44 0.57 0.02 0.59 0.53 0.43 0.04 0.04

40 cm 0.02 0.76 0.43 -0.12 0.17 0.08 0.64 0.1 0.11

�X 0.01 0.72 0.62 -0.04 0.38 0.34 0.49 0.07 0.08

https://doi.org/10.1371/journal.pone.0220881.t004
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Fig 5. 3D predictions of sampled depth increments plotted against corresponding 2.5D predictions. 3D prediction of SOC was

calculated with 3rd degree polynomials (upper row) and exponential function (middle row). The 3D prediction for BD with

logarithmic function (lower row).

https://doi.org/10.1371/journal.pone.0220881.g005

Table 5. Internal validation results of the final 3D models with the exponential function for SOC and the logarith-

mic function for BD.

SOC (%) BD (g cm-3)

R2 RMSE R2 RMSE

2.5 cm 0.88 0.32 0.87 0.29

7.5 cm 0.74 0.47 0.85 0.07

15 cm 0.77 0.24 0.72 0.12

25 cm 0.76 0.29 0.74 0.08

40 cm 0.8 0.31 0.66 0.12

�X 0.79 0.33 0.77 0.14

https://doi.org/10.1371/journal.pone.0220881.t005
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the prediction of the logarithmic function used for BD had a R2 of 0.77 with an average

RMSE of 0.14 g cm-3.

SOC stocks

The 2.5D models showed SOC stocks of 61.9 Mg ha-1 from 0 to 40 cm, with 19, 14.7, 12, 8.9

and 7.3 Mg ha-1 in the individual depth increments (from surface downwards).

The 3D model predicted 78.3 Mg ha-1 over the whole interval. The upper 20 cm of soil con-

tained about 46.4 Mg ha-1. This depth is often designated as topsoil [83,84] and is also a critical

soil depth for modelling plant productivity and community assembly [85]. 31.9 Mg ha-1 SOC

are stored in the subsoil from 20 to 40 cm. Considering that the rooting depth varies, depend-

ing on the species and individual age, a static discrimination between topsoil and subsoil may

be not appropriate. The model showed that plants with shallow roots down to 5 cm mainly

interacted with a carbon pool of 10.9 Mg ha-1, whereas plants with roots in 25 cm depth inter-

acted with a pool of 54.5 Mg ha-1. Fig 6 shows the 3D prediction of SOC stocks as vertical inter-

sections of the solum. The highest stocks in the upper 5 cm were predicted in the central upper

slopes and at the western slopes. Predictions for this depth at the valley bottom were around

20% lower. However, at the valley bottom the predictions for intermediate depth increments

(around 30 cm) were higher than predictions at the upslope positions. The depth function for

SOC stocks was much steeper and the SOC stock decline with depth was more pronounced at

upslope positions compared to downslope and valley positions.

Discussion

2.5D predictions of standard depths as reference

As RF returned the lowest error for the 2.5D models, this was the best choice for modelling

SOC. SVM ranked slightly below. Compared to the results presented by Lacoste et al. [30],

who used Cubist for 2.5D SOC stock mapping, the accuracy of our results was similar and

reasonable.

However, the sampled VIPs do not represent the terrain of the study site adequately, since

they were chosen based on species richness levels, which were distributed randomly, and not

representative for the study site. For example, a representative sampling design could be

achieved with Conditioned Latin Hypercube Sampling (cLHS) [72,86].

For bulk density SVM and RF performed equal by means of R2 and RMSE and showed a

similar pattern, especially at 15 cm and 40 cm. MARS performed least for BD. In general, RF

resulted in the most stable predictions and is therefore recommended over SVM.

Evaluation of 3D predictions

The negative values in the prediction results and the pronounced difference between the 3D

models, with predictions up to 15% SOC, and the 2.5D models indicated that MARS is not

capable of adequately predicting the depth functions in space, although the cross-validation

showed similar results as for RF and SVM models. The latter showed better correspondence

between the 3D and the 2.5D models (Fig 5, Table 4). According to the results of the direct

comparison between the multi-layered prediction and the corresponding depths in the 3D

model, RF with exponential functions was most suitable for SOC modelling. RF and SVM with

polynomials performed well at upper depth increments and less in lower increments. MARS

models were not suitable of reproducing the 2.5D predictions. Lower performance of all tech-

niques with polynomials in the lower depth increments may be referred to lower influence

of the terrain as a driving factor to explain SOC accumulation and redistribution (e.g. by

Catchment scale 3D and 2.5D modelling of soil organic carbon stocks
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erosion). Other factors accounting for SOC redistribution in deeper soil horizons may be bio-

turbation or vertical transport in the liquid soil phase. Additionally, it is possible, that accumu-

lation layers in the solum, that would reflect the lateral distribution, were not fully covered by

the legacy dataset and, therefore, the interpretation remains difficult. All these processes and

others relevant for SOC concentration as well as SOC stocks cannot be fully covered by a dis-

tinct set of terrain parameter and lead to a dilution effect by predicting the deeper horizons.

Lower accordance of the models also may be referred to uncertain models of function coeffi-

cients (c3) and (c2), which have significant influence at greater depths (cubic and squared) and

exponentiate up this error. Based on the results, we chose RF with exponential depth functions

for three-dimensional mapping of SOC and the logarithmic depth function for BD.

SOC stocks

Compared to other studies in this area, the estimated SOC stocks were well in line. Scholten

et al. [19] calculated mean SOC stocks of 70 Mg ha-1 for the upper 50 cm with the same data

but a different approach. Chen et al. [83] compared five plantations with different species

in five age groups and calculated SOC stocks for the upper 20 cm. Especially the age of the

trees and shrubs and their biomass have a strong impact on SOC stocks. Very young forest

communities showed SOC stocks ranging from 20 to 25 Mg ha-1 and plantations with older

trees of 7 to 10 years 30–40 Mg ha-1. The latter were slightly older than the trees of BEF-China,

where 42 Mg ha-1 were predicted. Diverse species pools in these studies may explain differ-

ences. Tang et al. [87] found SOC stocks in the top 60 cm in bamboo forests ranging from 60

to 200 Mg ha-1.

Fig 6. Three-dimensional prediction of SOC stocks for the whole catchment. The final 3D SOC stock model is shown in vertical slices 150 m apart to

display the vertical variability, which is larger than the spatial variability.

https://doi.org/10.1371/journal.pone.0220881.g006
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The introduced approach is capable of summing SOC stocks at any depth interval. Since

topsoil depth varies spatially, conventional static assumptions of topsoil thickness can result

in inaccurate SOC stock calculations for individual horizons. Incorporating spatial models of

topsoil depth into 3D SOC stock mapping can overcome this drawback and help to improve

ecological and biodiversity models as conducted in the BEF-China experiment. In particular,

consideration of biotic predictors like forest biomass, tree species richness and functional

plant diversity might further improve model fit and accuracy of estimated SOC stocks [14].

This would allow one to quantify terrain-specific effects of changes in forest cover and compo-

sition on SOC stocks. The developed models could also help to identify areas that are especially

prone to loss of SOC stocks (e.g. by soil erosion or land cover change).

Furthermore, continuous three-dimensional SOC mapping can support models of a

national SOC inventory. Yang et al. [37] applied depth functions to categorical soil types and

estimated SOC stocks for mainland China. Combining models with high vertical resolution by

Yang et al. [37] and continuous spatial modelling like in this study can improve accuracy of

SOC mapping compared to the categorical mapping approach. This combination can also help

to estimate and understand carbon fluxes between topsoil and subsoil [88] as well as between

soil and the atmosphere [5]. Both objectives play major roles in inventory estimation, SOC

auditing and decision making in respect to ecosystem services and carbon sequestration

[1,5,7,12,89].

Conclusion

This study comprises the spatial prediction of soil depth functions for three-dimensional

modelling of SOC and bulk density. The spatial prediction of the function coefficients enabled

the calculation of two three-dimensional arrays by solving the depth functions for depths from

0 to 50 cm by 5 cm increments. This was used to estimate the SOC stocks in high spatial (5 m)

and vertical (5 cm) resolution. The main conclusions of this study are:

• The general trend of SOC as visualised by the boxplots (Fig 2) was exponential. However,

polynomial depth functions described the soil profiles for SOC with higher accuracy and the

logarithmic functions for BD showed better results in spatial modelling. Therefore, we con-

clude that functions resulting in high accuracies based on the soil profile data may not be the

most suitable for spatial modelling, as they may overfit the vertical trend of SOC content.

• The 3D RF models correspond best with the 2.5D counterparts (R2 up to 0.96). Thus, RF is

recommended to predict SOC based on exponential depth functions and bulk density with

logarithmic depth functions in high vertical resolution. The 2.5D and 3D predictions of SOC

with RF correlated much better, especially when using exponential functions, and lacked

accuracy in deeper layers for SOC when modelled based on polynomial functions.

• Comparisons between conventional 2D and 2.5D predictions at the sampled depth and the

corresponding depth of the three-dimensional predictions showed that MARS is not suitable

for modelling corresponding 2.5D and 3D models, although cross-validation of the individ-

ual models showed similar performance in R2.

Minor conclusions are: polynomial functions may be an option, when the problem of prop-

agated errors and the ability to generalise in the horizontal domain is investigated further,

however, polynomials of any degree have to be used carefully. To overcome these shortcom-

ings, a higher sampling density in the vertical and horizontal domain and in combination with

other depth functions, such as equal-area splines [90], should be considered, since exponential

functions are not suitable for soil properties that do not increase or decrease continuously.
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The 3D approach presented in this study is promising for SOC auditing in various disci-

plines and especially for decision making regarding climate and land use policies. Future work

should focus on sampling design to cover valley positions outside the established plots at site A

of BEF-China project. Given the dynamics of SOC stocks, we recommend the analyses of time

series data and the expansion of the current database for four-dimensional models.
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heide, Peter Kühn, Steffen Seitz, Stefan Trogisch, Thomas Scholten, Karsten Schmidt.

References
1. Adhikari K, Hartemink AE. Linking soils to ecosystem services—A global review. Geoderma. 2016;

262: 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009

2. Montanarella L, Pennock DJ, McKenzie N, Badraoui M, Chude V, Baptista I, et al. World’s soils are

under threat. SOIL. 2016; 2: 79–82. https://doi.org/10.5194/soil-2-79-2016

3. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, et al. The value of the world´s eco-

system services and natural capital. Nature. 1997; 387: 253–360. https://doi.org/10.1038/387253a0

4. Dexter AR, Richard G, Arrouays D, Czyż EA, Jolivet C, Duval O. Complexed organic matter controls

soil physical properties. Geoderma. 2008; 144: 620–627. https://doi.org/10.1016/j.geoderma.2008.01.

022

5. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004; 123: 1–22. https://doi.

org/10.1016/j.geoderma.2004.01.032

6. Rawls WJ, Pachepsky YA, Ritchie JC, Sobecki TM, Bloodworth H. Effect of soil organic carbon on soil

water retention. Geoderma. 2003; 116: 61–76. https://doi.org/10.1016/S0016-7061(03)00094-6

Catchment scale 3D and 2.5D modelling of soil organic carbon stocks

PLOS ONE | https://doi.org/10.1371/journal.pone.0220881 August 20, 2019 19 / 23

https://doi.org/10.1016/j.geoderma.2015.08.009
https://doi.org/10.5194/soil-2-79-2016
https://doi.org/10.1038/387253a0
https://doi.org/10.1016/j.geoderma.2008.01.022
https://doi.org/10.1016/j.geoderma.2008.01.022
https://doi.org/10.1016/j.geoderma.2004.01.032
https://doi.org/10.1016/j.geoderma.2004.01.032
https://doi.org/10.1016/S0016-7061(03)00094-6
https://doi.org/10.1371/journal.pone.0220881


7. Liu X, Trogisch S, Schmid B, He J-S, Bruelheide H, Tang Z, et al. Diversity and stand age increase car-

bon storage and fluxes in subtropical forests. 2019: submitted.

8. Lal R. Soil erosion and the global carbon budget. Environment International. 2003; 29: 437–450.

https://doi.org/10.1016/S0160-4120(02)00192-7 PMID: 12705941
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