Ptex: Per-face Texture Mapping for Production Rendering

Brent Burley and Dylan Lacewell
Walt Disney Animation Studios

(See attached slide notes for details)
Texture Mapping at Disney
Art-directed look = lots of textures

First Disney film to use subds.
No more stitching!
But nurbs made texture mapping easy.
Subds?
Chicken Little 2003

Approach chosen: Decompose subds into rectangular patches.

Texturing *almost* as easy as nurbs!
Raised complexity bar.

No more procedurals (now baking to avoid aliasing), just tons o’ maps.

Lesson learned: Geometry not always patch-friendly.
Case in point!

7637 textures *per layer* on this element.

Up to a dozen layers on some elements.
About \(\frac{1}{2} \) of the texture layers for the T-Rex are shown here.

Scales layer had a billion texels.

Many patches covered just a single face and used 2k*2k textures.

Even noise is baked (lower left).
Meet the Robinsons

- 6 million texture files
- 100,000+ textures per render
- Mean file size 30 KB
- Median file size 2.5 KB

- I/O Bound!

Moral: Lots of little files make systems engineers grumpy.
Pre-production estimate: 5x complexity of Meet the Robinsons
Already at limits of texture system
Bolt’s painterly approach placed additional demands on texture system.

Two full “looks” on everything: one detailed, one “loose” / less-resolved.

1. Hand-painted normal maps on top of displacement maps are used to make things look “banged up”.
2. Hidden “fins” use hand-painted opacity maps to break up silhouettes. = many more layers than before
Requirements for new texture system

- Film-quality
- General
- Efficient
- Setup-free
Filtering Requirements

Top row uses:

a) isotropic filtering
b) C^1 cubic filter
c) no cross-face filtering w/ large smooth displacements.

Bottom row is what we want:

a) sharpening, anisotropic filter
b) C^2 cubic filter for displacements
c) cross-face filtering
Previous Texture Mapping Methods
Projection Painting

In widespread use.

Depth maps and multiple projections needed to cover complex surfaces.

Cumbersome and expensive on intricate geometry. Doesn’t cover surface uniquely (can’t bake).

Commonly used on characters, but not at Disney.

Labor intensive, and there are filtering challenges.

Not general. Would be hard to pelt a building.
Atlas Methods

Automated, but …

Filtering challenges.
Limited resolution.
Not general.
Volumetric Methods

No setup, but…

Filtering issues (e.g. bleeding).
Inefficient storage.
Per-face Methods

Novel idea!

Lots of small textures w/ ability to filter across seams.

Not general.
Displaced Subdivision Surfaces.
Lee et al., Siggraph 2000.

Per-face Methods (cont.)

Top row: original surface, simplified control mesh.
Bottom row: Loop subd surface, reconstructed surface.

Interesting aspect (wrt texture mapping): storing attributes per-face in intrinsic subd domain. Uses subd rules to interpolate values.

But, no multi-res or anisotropic filtering.
Ptex
Per-face textures

Textures stored per-face in Catmull-Clark subd domain.

Big challenge is filtering.
Per-face UVs and adjacency data

Face 7:
adj. faces: {-1, 8, 17, -1}
adj. edges: {x, 3, 0, x}, x=don’t care

Adjacency data used to filter across face boundaries.
Painting

• Artists paint on limit surface in 3d painting system (tumble, paint, project).
• Auto-size feature compensates for parametric distortion.
• See video demonstration.
Uniform-res would simplify things, but would be inefficient (purple face at bottom has $1/256^{th}$ the texels of the auto-sized version for same texel budget).
Texture sizing - problem case

Naïve approach: size textures based on control-face area.

Problem: small faces spread out on limit surface; texels stretched too thin.
Sizing by limit-surface area *almost* works. But texels can be non-uniformly distributed over face.

Sampling derivatives over face and sizing based on max stretch point gives optimal results.

(Be careful of infinite derivative at EVs.)
Filtering
Filtering in PRMan

Shading grid spacing determines filter region.

Filter size is du by dv.

Filter rectangle always aligned with per-face textures. Easy anisotropic filtering!
First, we choose the optimal texture res and clamp it against the max res for the local face.

Stored mipmaps and dynamic anisotropic reductions keep kernel size reasonable.

If the overlapped faces have enough res, just apply to each face.
Resolution Mismatch

When insufficient res is available for a neighboring face, just apply to nearest texel.

Works because we don’t normally paint low-res textures – no extreme magnifications.
Resolution Mismatch (cont.)

Smooth surface vs. Smooth normals

Displaced surface in cross-section:

Clamping is a problem, not because of discontinuity, but because the normals bend towards the undisplaced surface.

Discontinuity is ok as long as normals point in roughly the same direction. PRMan will fill the gap but the sideways poly won’t affect the normals.
Extraordinary Vertex

Can’t apply kernel in usual way. Just ignore corner weights and renormalize.

But discontinuity is still ok.
Results

- Artists love it
- More detail than ever before
- No aliasing problems
- I/O vastly improved

Artists love it
- Modelers don’t worry about painting.
- Painters don’t worry about UVs. Just load and go.

More detail than ever before
- Sharpness control and anisotropic filtering resolve more detail than standard PRMan textures.
- Extra detail allowed coarser shading for final 2k renders. This gave us a big speedup!
Results

<table>
<thead>
<tr>
<th></th>
<th>Per-patch textures</th>
<th>Ptex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024x1024 pixels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU seconds</td>
<td>171</td>
<td>141</td>
</tr>
<tr>
<td># I/O calls</td>
<td>18,581,058</td>
<td>9,209</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x20 pixels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU seconds</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td># I/O calls</td>
<td>4,218,733</td>
<td>84</td>
</tr>
</tbody>
</table>
Glago’s Guest 2008

Short film. First production to use Ptex.

Wanted it for ease of use.
Appreciated it for efficiency – rendered entire short every night as regression test!
Bolt has nearly completed production. Ptex has been an unqualified success.

Ptex was used on virtually every surface in Bolt.
Future

- Currently adding non-quad support (straightforward, described in paper).
- Considering Loop subd support. Interesting question - what shape should texels be on a triangle mesh (triangular, quadrilateral, hexagonal)?