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of the matrix in a singular value decomposition [9]. A
general algorithm which assumes that these feature pointsThis paper presents a new method for the computation of

the position and orientation of a camera with respect to a known are noncoplanar and fails to detect that this case is degener-
object, using four or more coplanar feature points. Starting with ate would probably produce inaccurate camera pose esti-
the scaled orthographic projection approximation, this method mations.
iteratively refines up to two different pose estimates, and pro- For the case of coplanar feature points, researchers have
vides an associated quality measure for each pose. When the formulated closed form solutions for configurations of
camera distance is large compared with the object depth, or three feature points and four feature points. The P3P prob-when the accuracy of feature point extraction is low because

lem (with three noncollinear points) can have as many asof image noise, the quality measures for the two poses are
four possible solutions [6, 4, 11]. On the other hand, thesimilar, and the two pose estimates are plausible interpretations
P4P problem has a single theoretical solution [3, 12, 1, 5]of the available information. In contrast, known methods using
when the coplanar points are in an ordinary configurationa closed form pose solution for four coplanar points are not

robust for distant objects in the presence of image noise because (no three collinear scene points, noncollinear image
they provide only one of the two possible poses and may choose points).
the wrong pose.  1996 Academic Press, Inc. Clearly, there is a problem with closed form calculations

claiming a single solution for four coplanar points. The
problem can be detected by the following reasoning:

1. INTRODUCTION
• With a scaled orthographic projection, there are always

Computation of the position and orientation of a camera two acceptable solutions; the two poses are mirror images
(pose estimation) from a single image with respect to a with respect to a plane parallel to the image plane.
known object has important applications in camera calibra- • For configurations where the object’s distance to the
tion, object recognition, and photogrammetry from aerial camera is large compared with its depth along the optical
imagery. When the relative geometry of n feature points axis direction, scaled orthographic projection is known to
is used, this problem is called the Perspective-n-Point prob- be a good approximation of true perspective projection.
lem (PnP) [3, 12, 7]. • Therefore, for these configurations, closed form calcu-

This paper focuses on the degenerate case in which the lations should also produce two solutions.
points are coplanar. It is important in practice to be able

The single closed form solution to the P4P problem forto solve this degenerate case. In aerial imagery, for exam-
coplanar points relies on foreshortening information fromple, the spread of feature points may be large compared
the perspective image to select one of the two poses. How-with the elevations of the points. Even if the map shows
ever, if the ratio of camera distance over object depth isthat the ground is not planar or that feature points can be
large, this foreshortening may be smaller than the noisetaken both on top of buildings and at ground level, these
level. With a small amount of added random error in thefeature points should be considered coplanar if the matrix
image, the single exact analytic solution will flip to eitherdescribing the geometry of feature points can be consid-
pose and will have a good chance of ending with the wrongered of rank 2 instead of 3; this decision can be taken by
pose. Therefore, in such configurations, analytic methodscomparing the respective amplitudes of the singular values
that provide a single pose for coplanar points are not reli-
able and should probably be avoided.

* Current address: Thomson-CSF Division Electronique de Missiles, This paper presents an iterative algorithm that performs92240 Malakoff, France.
equally well for short and long distance imagery. It is an† To whom all correspondence should be addressed. E-mail: daniel@-

cfar.umd.edu. application of our previous work [2] to the case of coplanar
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points. Starting the computation with a scaled orthographic
projection approximation, the process is able to find two
solutions that are both acceptable when the ratio of camera
distance over object depth is large. In this case, only a few
iterations (correcting the effects of the scaled orthographic
projection approximation) are necessary to converge on
solutions that satisfy the perspective projection model.

If, on the other hand, the camera is close to the observed
object, the image has strong perspective and the algorithm
requires a few more iterations to converge on a single
possible solution.

One may object that one is not better served by an
algorithm that provides two equally probable poses than
by an algorithm that chooses a single pose among these
two poses and is wrong 50% of the time. However, consider
a hypothetical computer vision system designed to assist
a pilot in landing on an aircraft carrier; far from the carrier,
the image of the runway may not contain enough informa-
tion to allow a definite answer about the pose of the aircraft
with respect to the runway. We contend that the algorithm
providing two possible poses is more useful than the algo-
rithm that is wrong 50% of the time; by providing two
possible poses, the first algorithm effectively warns the
system that more information is required to lift the ambigu-
ity, for example from an inertial sensor of the aircraft. This

FIG. 1. Perspective projection (mi) and scaled orthographic projec-additional information can be used to reject one of the
tion ( pi) for an object point Mi and a reference point M0 .poses, and the system can then incorporate the other pose

in its planning of the landing. With the algorithm providing
a single pose, there is no warning that the pose may be

In the following, we show how to find the rotation matrixwrong. Additional information can still be used to check
and translation vector of the object directly, without solv-the pose, but if the pose is rejected, the system is left with
ing explicitly for the coordinates (Xi , Yi , Zi) of the pointsno pose information for its landing plan.
Mi . The approach implicitly uses the scaled orthographic
projections pi of the points Mi . To construct pi , we draw

2. NOTATION a plane K through M0 parallel to the image plane G. This
plane is at a distance Z0 from the center of projection O.In Fig. 1, we show the classic pinhole camera model,
The points Mi are projected on K at Pi by an orthographicwith its center of projection O, its image plane G at distance
projection. Then the points Pi are projected on the imagef (the focal length) from O, its axes Ox and Oy pointing
plane G at pi by a perspective projection. The same resultalong the rows and columns of the camera sensor, and its
would have been obtained if the object had been flattenedthird axis Oz pointing along the optical axis. The unit
into the plane K: approximating perspective projectionvectors for these three axes are called i, j, and k. In this
with a scaled orthographic projection amounts to assumingpaper, the focal length and the intersection of the optical
that the depths Zi of different points Mi of the object withaxis with the image plane (image center C) are assumed
camera coordinates (Xi , Yi , Zi) are not very different fromto be known.
one another, and can all be set to the depth Z0 of theAn object with feature points M0 , M1 , ..., Mi , ..., Mn is
reference point M0 of the object.located in the field of view of the camera. The object

coordinate frame of reference is (M0u, M0v, M0w). We call NomenclatureM0 the reference point for the object. The coordinates (Ui ,
Vi , Wi) of the points Mi in the object coordinate frame of O Center of projection of camera

G Image plane of camerareference are known. The images of the points Mi are
called mi , and their image coordinates (xi , yi) are known. f Focal length of camera

C Image centerThe coordinates (Xi , Yi , Zi) of the points Mi in the camera
coordinate system are unknown, because the pose of the Ox, Oy Axes of camera coordinate system

parallel to camera sensorobject in the camera coordinate system is unknown.
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3. PROBLEM DEFINITIONOz Axis of camera coordinate system
along optical axis

Our goal is to compute the rotation matrix R and transla-i, j, k Unit vectors of camera coordinate
tion vector T of the object. The rotation matrix R for thesystem
object is the matrix whose rows are the coordinates ofM0 Reference point for object
the unit vectors i, j, k of the camera coordinate system(M0u, M0v, M0w) Object coordinate frame of reference
expressed in the object coordinate system (M0u, M0v ,Mi Feature points of object
M0w). The rotation matrix can be written as(Ui , Vi , Wi) Coordinates of points Mi in object

coordinate frame of reference
(Xi , Yi , Zi) Coordinates of points Mi in camera

coordinate system
R � �

iu iv iw

ju jv jw

ku kv kw
�� �

iT

jT

kT�mi Images of points Mi by perspective
projection

(x�i , y �
i) Coordinates of points mi in image

pi Images of object points Mi by a scaled To compute the rotation, we only need to compute i
orthographic projection and j in the object coordinate system. The vector k is then

x�i , y�i Coordinates of points pi in image obtained by the cross-product i � j.
R Rotation matrix for object The translation vector, T is the vector OM0 between the
T Translation vector for object center of projection, O, and the reference point M0 , the
�i Correction factors between perspec- origin of the object coordinate frame of reference. Its cam-

tive and scaled orthographic projec- era coordinates are X0 , Y0 , Z0 . Since the image of M0 is
tions the known image point m0 , this translation vector T is

K Plane parallel to image plane G aligned with vector Om0 and is equal to (Z0/f )Om0 . There-
through M0 fore to compute the object translation, we only need to

Pi Orthographic projections of Mi on compute its z-coordinate Z0 . Thus the object pose is fully
plane K. defined by i, j, x0 , y0 , and Z0 .

I, J Vectors proportional to i and j The relationship between the coordinates of feature
A Matrix of coordinates (Ui , Vi , Wi) of points Mi in the camera and object coordinate systems can

object points Mi be expressed by
x� Vector with ith coordinate xi(1 �

�i) � x0

y� Vector with ith coordinate yi(1 � �
Xi

Yi

Zi
�� �

iT

jT

kT� �
Ui

Vi

Wi
�� �

X0

Y0

Z0
� . (1)�i) � y0

B Pseudoinverse of matrix A
D Plane of planar object
Hxi Projection of head of I on M0Mi

4. FUNDAMENTAL EQUATIONSQ Point corresponding to pseudoinverse
solution of system We define an exact pose as an object pose for which the

I0 , J0 Pseudoinverse vector solutions object points Mi fall on the lines of sight of the image point
u Unit vector normal to plane D of ob- mi . This condition can be expressed by the equalities

ject
� Coordinate of head of I along u
� Coordinate of head of J along u x0 � f

X0

Z0
, xi � f

Xi

ZiC Complex number equal to � � i�
[ �, �] Polar representation of C
[R, �] Polar representation of C 2

and similar equalities for the y coordinates. The second
� Elevation angle of camera equality can be expanded by the use of Eq. (1) into
� Azimuth angle of camera
U, V, W Camera position in world coordinates
�U, �V, �W Absolute errors in camera position xi � f

M0Mi � i � X0

M0Mi � k � Z0
.

E1 , E2 , E Relative error measures
i�, j�, k� Unit vectors for coordinate system of

camera in a second position A division of both terms of the fraction by Z0 leads to
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xi � �M0Mi �
f

Z0
i � x0��� 1

Z0
M0Mi � k � 1� .

Therefore, a necessary and sufficient condition for a pose
defined by i, j, x0 , y0 , and Z0 (where x0 and y0 define the
location of the image of the object origin) to be an exact
pose is that these quantities satisfy, for all points Mi , the
equations

M0Mi � I � xi(1 � �i) � x0 , (2)

M0Mi � J � yi(1 � �i) � y0 (3)

with

I �
f

Z0
i, J �

f
Z0

j
(4)

�i �
1

Z0
M0Mi � k

and k � i � j.

5. POSIT ALGORITHM

We first note that in the right hand sides of the funda-
FIG. 2. The initial loop in POSIT looks for a pose of the object suchmental equations, the terms xi(1 � �i) and yi(1 � �i), are

that the points mi are the scaled orthographic projections of the objectactually the coordinates x�i and y�i of the points pi , which points Mi .are the scaled orthographic projections of the feature
points Mi (Fig. 1). Indeed, in the expression of �i , the
dot product M0Mi � k is the z-coordinate of M0Mi , Zi � linear systems, POS (Pose from Orthography and Scaling).
Z0 ; therefore Indeed, finding the pose of the object by using fixed values

of �i in Eqs. (2) and (3) amounts to finding the pose for
which the points Mi have as scaled orthographic projections(1 � �i) �

Zi � Z0

Z0
� 1 � Zi/Z0 .

the image points pi with coordinates xi(1 � �i) and yi(1 �
�i), as we have just seen.

Also, in perspective projection xi � fXi/Zi . Therefore The solutions of the POS algorithm are only approxima-
tions if the values given to �i are not exact. But once the

xi(1 � �i) � fXi/Z0 . unknowns i and j have been computed, more exact values
can be computed for the �i using Eq. (4), and the equations

The point pi is the perspective projection of the point Pi , can be solved again with these better values. Initially, we
which has the same x coordinate Xi as Mi , and a z-coordi- set �i � 0. Assuming �i to be null implies that x�i � xi ,
nate equal to Z0 . Therefore the x-coordinate x�i of pi is pre- y�i � yi and amounts to assuming that pi and mi coincide,
cisely i.e., that the image points are scaled orthographic projec-

tions of the object points. Fig. 2 describes this configura-
tion. We call this iterative algorithm POSIT (POS withx�i � fXi/Z0 .
Iterations). This algorithm generally makes the values of
i, j and Z0 converge toward values which correspond to aThe basic idea behind the proposed method is that if
correct pose in a few iterations.values are given to �i , Eqs. (2) and (3) provide linear

The iterative pose algorithm can be described by thesystems of equations in which the only unknowns are re-
following pseudocode:spectively the coordinates of I and J. Once I and J have

been computed, i and j are found by normalizing I and J,
1. �i(0) � 0, n � 1and Z0 is obtained from either the norm of I or J. We call

this algorithm, which finds an approximate pose by solving 2. Beginning of loop.



ITERATIVE POSE ESTIMATION 499

Solve for i, j, and Z0 using Eqs. (2) and (3) (see
next section).
When the object points are coplanar, the additional
equality i � j � 0 must be used, and two approximate
poses are found.

3. Compute �i(n) � (1/Z0)M0Mi � k, with k � i � j. When
the object points are coplanar, two sets of �i with
opposite signs are found (see Section 8).

4. If ��i(n) � �i(n�1)� � Threshold, Exit.
FIG. 3. All vectors I whose heads project onto plane D in Q projectElse n � n � 1. Go to step 2.

onto M0M1 in Hx1 and onto M0M2 in H2 .
5. Exact pose(s) � last approximate pose(s).

For a geometric interpretation of this iterative algorithm,
the vector with ith coordinate yi(1 � �i) � y0 . If we hadsee [2].
at least three visible points other than M0 , and all these
points were noncoplanar, matrix A would have rank 3,6. SOLVING THE SYSTEMS OF EQUATIONS
and the solutions of the linear systems in the least square(POS ALGORITHM)
sense would be given by

Within the iterative algorithm described in the previous
section, we have to solve the equations I � Bx�, J � By�, (7)

M0Mi � I � xi(1 � �i) � x0 , where B is the pseudoinverse of the matrix A.
We call B the object matrix. See [2] for details on theM0Mi � J � yi(1 � �i) � y0 ,

case of noncoplanar points. In this paper, we concentrate
on the case where the object points are known to be co-with
planar. In this case, matrix A has rank 2, and the set of
equations is ill-determined even with an overdetermined

I �
f

Z0
i, J �

f
Z0

j, set of equations. Then additional constraints are required.
We examine this degenerate situation using a geometric
interpretation.

and the terms �i have known values at each iteration. We
express the dot products of these equations in terms of

7. A GEOMETRIC POINT OF VIEWvector coordinates in the object coordinate frame of ref-
erence: We found the following equations for I

[Ui Vi Wi][Iu Iv Iw]T � xi(1 � �i) � x0 ,
(5) M0Mi � I � x�i ,

[Ui Vi Wi][Ju Jv Jw]T � yi(1 � �i) � y0 .

with x�i � xi(1 � �i) � x0 . Geometrically, this expression
These are linear equations where the unknowns are the states that if the tail of I is taken to be at M0 , the head of
coordinates of vector I and vector J. The other parameters I projects on M0Mi at a point Hxi defined by the alge-
are known: xi , yi , x0 , y0 are the known coordinates of mi braic measure
and m0 (images of Mi and M0) in the camera coordinate
system, and Ui , Vi , Wi are the known coordinates of the
point Mi in the object coordinate frame of reference. M0Hxi �

x�i
�M0Mi�

.
Writing Eq. (5) for the n object points M1 , M2 , Mi , ...,

Mn and their images, we generate linear systems for the
coordinates of the unknown vectors I and J, In other words, the head of I must belong to the plane

perpendicular to M0Mi at Hxi (Fig. 3). If the object had
AI � x�, AJ � y�, (6) four noncoplanar feature points, M0 , M1 , M2 , M3 , then I

would be completely defined as the vector with its tail at
M0 and its head at the intersection of the three planeswhere A is the matrix of the coordinates of the object

points Mi in the object coordinate frame of reference, x� perpendicular to M0M1 , M0M2 , and M0M3 , at Hx1 , Hx2 ,
and Hx3 respectively. Analytically, we would solve a systemis the vector with ith coordinate xi(1 � �i) � x0 , and y� is
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matrix provided by the singular value decomposition of A
[9]. This method of computing u provides a mean direction,
and seems to be useful in cases where the object points
are not exactly coplanar. This computation is performed
only once for a given distribution of points, at the same
time as the computation of the object matrix B.

In contrast to the general case of noncoplanar feature
points [2], we now have to use the additional fact that I
and J must (1) be perpendicular and (2) be of the same
length, in order to compute the unknowns � and �. The
first condition yields

�� � � I0 � J0 ,

and the second condition yields

FIG. 4. Two object poses giving the same image under the SOP ap-
�2 � �2 � J2

0 � I2
0 .proximation.

Huttenlocher [8] finds the same two equations for the re-
stricted case of three object points using a completely dif-

of three equations, and the matrix of the system would ferent approach, and solves them by squaring the first equa-
have rank 3. tion and eliminating one of the unknowns between the

However, if the feature points belong to the same plane two conditions. Squaring an equation introduces new solu-
D (but are not aligned), then the vectors M0M1 , M0M2 , tions, so that all solutions must be checked against the
etc. are coplanar and the planes perpendicular to them at original equations. We propose an alternative method that
Hx1 , Hx2 , etc. (defined above) all intersect at a single line does not require squaring the first equation.
or at close parallel lines that are perpendicular to plane We remark that the square of the complex number
D. The rank of matrix A is only 2. The simplest of such C � � � i� is C 2 � �2 � �2 � 2i��, i.e.,
configurations occurs when we use only a triangle of fea-
tures M0M1M2 . The pseudoinverse solution (7) of the sys- C 2 � J2

0 � I2
0 � 2iI0 � J0 .

tem is a point Q also located in plane D which minimizes
its distance to the planes, and we call the corresponding Therefore we can find � and � as the real and imaginary

parts of the square roots of the complex number C 2. Find-vector solution I0 (Fig. 3). Clearly, this solution to the
system is not unique, since all vectors I whose heads project ing the square roots requires writing C 2 in polar form:
onto plane D at Q still project onto M0M1 at Hx1 , onto

C 2 � [R, �], withM0M2 at Hx2 , etc. In other words any vector I with its tail
at M0 and its head on the line perpendicular to plane D R � ((J2

0 � I2
0)2 � 4(I0 � J0)2)1/2, and

at Q is a solution (Fig. 3).

� � Arctan ��2I0 � J0

J2
0 � I2

0
� , if J2

0 � I2
0 � 0, and8. SYSTEM SOLUTIONS FOR COPLANAR POINTS

Such solutions can be written as
� � Arctan ��2I0 � J0

J2
0 � I2

0
� � �, if J2

0 � I2
0 � 0

I � I0 � �u, (8)

(if J2
0 � I2

0 � 0, we have � � �Sign(I0 � J0)
�
2

,
where u is a unit vector normal to D and � is the coordinate
of the head of I along u. Similarly, and R � �2I0 � J0�).

J � J0 � �u (9) There are two roots C for this number, C � [ �, �] and
C � [ �, � � �], with

and � and � are unknown. Since the vector u is normal to
the plane D of the object, we have M0Mi � u � 0. Thus the

� � �R, and � �
�
2

.vector u is the unit vector of the null space of the matrix
A. It can be obtained as the column vector corresponding
to the smallest singular value in the second orthonormal � and � are the real and imaginary parts of these numbers
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� � � cos �, � � � sin �, or

� � �� cos �, � � �� sin �.

These values yield the two solutions for I and J

I � I0 � �(cos �)u, J � J0 � �(sin �)u, and

I � I0 � �(cos �)u, J � J0 � �(sin �)u

Notice that since u is perpendicular to the object plane,
the above solutions show that the pair (I, J) of the first
solution is symmetrical to the pair (I, J) for the second
solution. If we anchor our point of view to the camera,

FIG. 5. Case 1: POS yields a single feasible pose at each step of thethis is equivalent to the observation that the two solutions process (�: feasible pose, �: unfeasible pose).
for the pose of the object plane are symmetrical with re-
spect to a plane parallel to the plane (I, J), in other words
symmetrical with respect to a plane parallel to the image • In the first situation (see Fig. 5), at the first iteration
plane (see Fig. 4). step we compute the two poses, but find that one of the

poses is not feasible and has to be discarded because some
9. FROM SYSTEM SOLUTIONS TO APPROXIMATE scene points are placed behind the camera in that pose.

POSE SOLUTIONS This situation is then found to occur at every subsequent
step. Therefore we are left with a single path to follow and

Next we use these two solutions for I and J to find the convergence to a single feasible pose.
corresponding rotation matrices and translation vectors. • In the second situation (see Fig. 6), both poses of the
First we find the depth Z0 of the reference point M0 , by first iteration step are feasible, and we pursue the iterations
dividing the focal length by the norm of I or J; note that for both branches. At the second step, each branch still
the solutions for I and for J all have the same norm, because provides two feasible poses, but for each branch we keep
we imposed the condition �I� � �J�. Therefore there is a only the better pose. This strategy is justified by the fact
unique solution Z0 . Then we get X0 � (Z0/f )x0 , Y0 � that exploring a lower quality branch would not be fruitful:
(Z0/f )y0 . Thus, there is a single translation solution. How- experiments show that either we would end up with one
ever there are two rotation matrices corresponding to the of the same two poses that this strategy would produce
two solutions for I and J (for each set, normalizing I and (but at a much slower convergence rate) or we would have
J yields the first two rows of a rotation matrix and the last to stop the iteration because the process diverged. The
row is obtained by the cross product of the first two rows). exploration of a lower quality branch is illustrated by the
These two solutions correspond to the two symmetrical curved arrow in Fig. 6.
positions of the plane of object points, with respect to a

The measure of quality we use to select the better pose isplane parallel to the image plane, that lead to the same
image (see Fig. 4). However, they may not both be feasible.
We have to verify, for each pose, that all the object points
are in front of the camera (all Zi � 0). If it is not the case,
the pose has to be discarded.

10. ITERATING FROM APPROXIMATE POSE TO
EXACT POSE

For coplanar scene points, the POS algorithm produces
two poses at each iteration of the POSIT algorithm. There-
fore it would seem at first that we would need to explore
a tree of poses and might end up with 2n poses after n
iterations (see Figs. 5 and 6 for illustrations of these trees).
However, in practice we find that we have to only follow
one or two branches, and end up with one or two feasible FIG. 6. Case 2: POS yields two feasible poses at each step of the

process (��: best quality pose; �: lower quality pose).solutions. Two situations occur:
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FIG. 7. The POSIT algorithm for coplanar scene points.

the distance measure E, the average distance between ac- for the left branch is shown in the foreground of the figure.
This process includes choosing the better of two poses attual image points and projected points from the com-

puted pose. each iteration, and checking if the distance measure E
has fallen below a threshold predefined in relation to theThe flow chart for the POSIT algorithm for coplanar

scene points is shown in Fig. 7. It shows the two branches estimated noise in the image. If this is the case, the pose
for the branch is output, along with the final distance mea-produced at the first iteration step. One branch may have

to be dropped if the z-components of some scene points sure E; otherwise the pose is used at the next iteration
loop to recompute the �i . An example of computation withfor the corresponding pose are negative (points behind

camera). At the second and following iteration steps, the four coplanar points in a configuration where both poses
are acceptable can be found in Appendix.processes for each branch are similar, and only the process
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11.2. Image Generation

We obtain synthetic images by perspective projection
with a focal length of 760 pixels. Three levels of random
noise in the image are specified. At image noise level 1,
the real numbers computed for the coordinates of the per-
spective projections are rounded to integer pixel positions.
At noise level 2, these integer positions are disturbed by
vertical and horizontal perturbations of �1 pixel. These
are created by a uniform random number generator. At
noise level 3, the amplitude of the perturbations is �2
pixels. Note that when the camera is at a distance ratio of
20 from the object and at a 10� elevation, the image of the
object extends over as few as 30 pixels horizontally and 6

FIG. 8. Elevation angle � and azimuth angle � for the camera in pixels vertically: a perturbation of 2 pixels on each side of
the experiments. the image is relatively large in comparison to the size of

the projected object.

11.3. Camera Poses
11. PERFORMANCE CHARACTERIZATION

The camera always points toward the origin of the object
coordinate frame. It is successively located at four distanceIn this section, we evaluate the orientation and position ratios from the origin: 2, 5, 10, and 20.errors of the POSIT algorithm for a planar object or scene; For each of these distance ratios, 17 elevation angles,in photogrammetric applications, the object is the scene in from 10� to 90�, are considered. These camera elevationfront of the camera. We consider two objects with coplanar angles are denoted by � in Fig. 8. For the last elevationfeature points, at four distance ratio from the camera. The angle, the camera is at nadir. All the pose errors are plotteddistance ratio is defined as the ratio of the distance from against these elevation angles.the camera to the object, over the size of the object. For Figure 8 also shows the camera azimuth angle, denotedeach object, synthetic images are obtained using a number by �. In most tests, our goal is to obtain results that reflectof azimuth and elevation angles for the camera and three the performance of the method itself rather than the cam-levels of image noise. The camera poses are computed by era azimuths and the distribution of the object points.POSIT from these images and compared with the actual Therefore, we take the average of the pose errors obtainedcamera poses, and errors in position and orientation are for 72 camera azimuths �, in 5� increments. We displayplotted against the elevation angles of the camera for vari- these average errors and their standard deviation barsous distances from the camera to the object along the against the 17 elevation angles for the three noise levelsoptical axis. We also study the number of solutions found and the four camera distance ratios.by the algorithm for each configuration, the effect of errors We also study the occurrence of double solutions as ain positioning the image center, as well as the effect of function of the camera elevation for the four camera dis-assuming that an object is planar when it is not actually tance ratios and three noise levels. For these tests, weplanar. choose a single camera azimuth equal to zero, and we plot
for each elevation the probability of obtaining a double

11.1. Objects pose solution by examining the proportion of double solu-
tions obtained for 72 noisy images.The first object comprises 4 coplanar points; two points

are located at diagonally opposite corners of a 100 m 11.4. Number of Acceptable Posessquare, and the other two points are at arbitrary locations
inside the square. The second object has 10 coplanar points We now look at the number of ‘‘acceptable’’ poses found

by the algorithm. For these experiments the camera isand is used in most of the tests; for this object, 2 points
are also located at diagonally opposite corners of the 100 pointed toward the object at various elevation angles at a

single azimuth, but for each elevation, 72 random imagem square, and 8 points are positioned randomly inside the
square. Thus for both objects, the size used to compute noise configurations are generated. A pose is called accept-

able according to the following definition: we consider thethe distance ratio is 100 m. The original O of the coordinate
system (Ou, Ov, Ow) of the objects is located at the center offsets between image points and projected object points;

the pose is acceptable is all these offsets are smaller thanof the square, and the plane W � 0 is the plane of the
square (see Fig. 8). the amplitude of the image noise (1.5 pixels along x and
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FIG. 9. Probabilities of obtaining two acceptable poses, plotted against elevation angles �, for four coplanar points.

y for level 2, and 2.5 pixels for level 3). This is simply an shown. Noise level 1 is less interesting and is not shown
because it is deterministic quantization noise; for this typeacknowledgement of the fact that, in practice, one cannot

know whether an offset between the image points and the of noise, the 72 noisy images used to compute the percent-
ages are identical and all provide the same poses, so thatprojections of the feature points for the computed pose is

due to actual image points shifted by the image noise or the percentage of occurrence is 100% when two acceptable
poses are found and 0% otherwise.to projected feature points shifted by a poor pose, and one

has to give the benefit of the doubt to the pose computation We see from these diagrams that there is more chance
to find two poses when the ratio of camera distance overif the offsets fall within the level of the image noise.

The diagrams of Figs. 9 and 10 present results in the the depth of the object along the optical axis is large.
Indeed when this condition applies, we know that scaledforms of percentages of double pose solutions for elevation

angles from 10� to 90�. Each data is the percentage of orthography is a good approximation to perspective, and
that with this approximation there are always two solutionsoccurrence of two pose solutions for 72 noisy images ob-

tained by following the procedure described in Section for coplanar feature points. This condition is verified when
the object is far from the camera, when the camera faces11.2. These results can be interpreted as probabilities of

finding two acceptable poses instead of a single pose. In the object (then the dimension along the optical axis is
zero and the ratio is infinite), or for a combination of athese diagrams, only noise level 2 and noise level 3 are



ITERATIVE POSE ESTIMATION 505

FIG. 10. Probabilities of obtaining two acceptable poses, plotted against elevation angles �, for 10 coplanar points.

moderate distance and a nongrazing incidence angle. We Comparing the diagrams of percentages for 4 points and
10 points, we see that the probabilities of obtaining twofind two poses for the shortest distance ratios only when the

camera nearly faces the object. For intermediary distance acceptable poses are dramatically higher for 4 points than
for 10 points. We have not found a convincing explanationratios, we start finding two poses for intermediary angles;

for the largest distance ratio, the probability of finding two for this difference. One of the advantages of performing
multiple experiments on synthetic data (more than 14,000poses is practically independent of the camera angle.

Note that the occurrence of double solutions does not experiments for these two diagrams) is that it brings to
light properties which would have been difficult to predictnecessarily increase with the image noise level. The reason

may be that two mechanisms with opposite effects are at analytically or discover from a few experiments with real
data.play. On one hand, the larger the noise, the easier it is for

a pose to be acceptable (see definition of acceptable poses 11.5. Computation of Pose Errorsin the beginning of this section). On the other hand, the
larger the noise, the more distorted the image may be, and For each pose estimated by the algorithm, the position

and orientation of the camera with respect to the objectthe more offset the pose may be.
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FIG. 11. Average orientation errors and standard deviations against elevation angles � for 10 coplanar feature points. These results are obtained
from 72 azimuth angles �.

are compared to the actual position and orientation used For camera distance ratios up to 10 and elevation angles
up to 35�, the orientation errors are typically less than 3�to obtain the image. We compute the axis of rotation to

align the coordinate system of the object in its actual orien- even for the largest image noise. The largest orientation
errors occur for the largest image noise level when thetation with the coordinate system of the object in its orien-

tation computed by POSIT with respect to the camera elevation is close to nadir. The orientation computations
coordinate system. The orientation error is defined as the are then very sensitive to image noise. Indeed, at nadir,
rotation angle in degrees around this axis required to all the rotations around axes in the plane of the object
achieve this alignment. The position error is defined as the displace the feature points in directions which are close to
norm of the translation vector required to align the actual the directions of the lines of sight, and are difficult to detect
and computed positions of the origin of the object coordi- because they produce few changes in the image. Only rota-
nate frame. This distance is normalized by the distance tions around axes parallel to the optical axis are easy to
between the origin of the camera coordinate frame and detect. The points on the rotation error plots reflect the
the origin of the object coordinate frame. Thus the position average interpretations of errors from 72 images, and the
error is a relative error, whereas the orientation error is a chances that small shifts in the image points be interpreted
measure in degrees. by large shifts in the pose angle are large. This does not

happen for grazing views of the object, where most rota-
11.6. Average Pose Errors for the Ten-Point Object tions displace the feature points along directions normal

to their lines of sight.The plots of Fig. 11 and Fig. 12 show the orientation
and position errors of the camera obtained by averaging Figure 12 shows that the position results are less sensitive

to image noise at nadir than the orientation results, withdata for 72 azimuth angles around the 10-point object.
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FIG. 12. Average position errors and standard deviations against elevation angles � for 10 coplanar feature points. These results are obtained
from 72 azimuth angles �.

position errors always under 6%, even at nadir at a distance Both average position and orientation error increase
slightly with the default of planarity, but the simulationsratio of 20 with the largest image noise level. We can

explain this from the fact that only translation in the direc- show that the algorithm is not very sensitive to this type
tion of the optical axis is difficult to detect from the image of input error. For example, if we consider a 100 � 100 m
for this pose. Then the chances that small shifts in image scene, with actual elevations up to 15 m (top of houses)
points are interpreted by large shifts in pose angle are for the scene points, the use of a street map with no indica-
small. tions of altitudes will typically generate a position error of

10 m when the camera is 500 m away from the scene (a
relative error of 2%).

11.7. Other Simulations We also studied the influence of uncertainty in image
center position. Indeed, this position is not always avail-The map used as a model often does not provide altitude
able; printed images may be peripheral parts of originalinformation; then the feature points may be modeled as
photographs. The simulations show that the computationcoplanar, whereas the actual geometry may not be planar.
of the camera orientation is almost insensitive to the shifts.Also, with aerial imagery, the spread of feature points may
For the camera position, a shift of the image center by (20,be large compared with the elevations of the points. Even
20) pixels generates an average relative camera positionif the map shows that the ground is not planar, these feature
error of 4% (i.e. 20 m for a scene of 100 m seen at 500 m).points should be considered coplanar if the matrix describ-
A lateral image translation is interpreted as a small lateraling the geometry of feature points can be considered of
translation of the object. Details and diagrams for theserank 2 instead of 3. Experiments were performed to esti-
simulations are provided in [10].mate the effect of this type of modelling approximation.
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FIG. 13. The Mall in Washington, D.C., from the top of the Washington Monument, with feature points and image coordinate system.

12. EXPERIMENTS ON REAL IMAGES Ten feature points, numbered 1 to 10 in Fig. 13, were
chosen in the image and located on the map. Their coordi-

We present results using the aerial photograph shown nates were measured in both frames. The threshold of
in Fig. 13. This picture is a view of the Mall in Washington, the convergence test (see Fig. 7) was adjusted for each
D.C., taken from the top of the Washington Monument. experiment in order to obtain single pose estimations, as
For verification of pose results, the monument position is refined as possible.
available on a topographic map of known scale (Fig. 14). The algorithm, applied to the first four points, generated
The camera elevation with respect to the assumed plane a single solution with the error measure E1 � 0.13%. This
of the area was estimated from the known altitude of the means that for the estimated pose, the reconstructed image
monument and the elevation of the ground at this location. points would be at an average distance of 0.2 mm from
With respect to a scene coordinate frame (O, u, v, w) of the actual image points shown in Fig. 13. This is quite good
our choice, the position of the camera was considering the uncertainty of the feature points’ locations

in the original image. The corresponding computed posi-
U � �2276 m; V � �31 m; W � 159 m. tion of the camera is

Note that this position is approximate because of the U � �2279 m; V � �27 m; W � 161 m.
low precision of the map and the uncertainty of the eleva-
tion. The image center was assumed to be the center of Comparing this computed position with the position esti-
the picture. (C, x, y) is an image coordinate frame centered mated from the map and the monument height we find
on this estimated image center. The orientation parameters
of the camera were not recorded during the snapshot, but �U � 3 m; �V � 4 m; �W � 2 m
they can be computed by observing the position of the
intersection of the optical axis with the assumed plane of which is surprisingly good considering the low precision

of the map.the ground.
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FIG. 14. Topographic map of the area, with feature points and object coordinate system.

Note, however, that the control points were chosen in Using a number of points larger than the minimum re-
quired (four points) provides a least square estimate ofa favorable configuration (they cover a large portion of

the scene). For example, the results degrade if we use the pose, based on all the available information.
points 3, 4, 6, and 8. We obtain E1 � 0.14% and

13. CONCLUSION
U � �2277 m, �U � 1 m

We have presented an iterative method for the computa-
V � 9 m, �V � 40 m tion of the pose of a camera with respect to an object. This

method is flexible in the sense that it can be used withW � 163 m, �W � 4 m.
four or more coplanar feature points. Unlike techniques

It is interesting to note that with points 3, 4, 6 and 8
(more distant from the camera), we can obtain a second
solution. But the corresponding error measure for this
solution is quite high: E2 � 2.31%. Furthermore, this pose
must be rejected because object points 1 and 2 would be
behind the camera.

An advantage of the algorithm is that it can deal with
more than four control points. With all ten points, we find
E(�E1) � 0.58% and

U � �2266 m, �U � 10 m

V � �24 m, �V � 7 m

FIG. 15. Object and camera defined in Appendix.W � 152 m, �W � 7 m.
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FIG. 16. Diagram of calculations and results for example of Appendix.

based on closed form solutions for four coplanar points, rithm always converged toward the pose in which the trian-
gle is parallel to the image plane. For this reason we advisethis method is able to determine two poses with quality

measures. Applications range from aerial imagery inter- that the algorithm be used only when more than three
feature points are available.pretation to robot navigation.

Whereas there is no upper limit to the number of points
the algorithm can use, there is a lower limit. We performed APPENDIX: EXAMPLE OF CALCULATION WITH
experiments with only three feature points, with images FOUR COPLANAR POINTS
for which there was clearly four possible poses. For this
purpose we used the example provided by Fischler and • Effective focal length � 760 pixels.

• Object points: (�15, 0, 0), (15, 0, 0), (15, 500, 0), (�15,Bolles [3] for an equilateral triangle. However, our algo-
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uation, Department of Electrical and Computer Engineering, The500, 0) (m) (Fig. 15). Object reference frame Fo � (M0 ,
University of Tennessee, July 1991, to be published in IEEE Trans.u, v, w);
Pattern Anal. Mach. Intelligence.

• Position and orientation of Fo with respect to the cam-
2. D. F. DeMenthon and L. S. Davis, Model-based object pose in 25era reference frame Fc � (O, x, y, z): lines of code, in Second European Conf. Computer Vision, May 1992

(G. Sandini, Ed.), Lecture Notes in Computer Science, Springer-
Verlag, Berlin/New York; extended version, Int. J. Comput. Vision
15(1995), 123–141.
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and
3. M. A. Fischler and R. C. Bolles, Random sample consensus: A para-

digm for model fitting with applications to image analysis and auto-
mated cartography, Comm. ACM, 24 (1981), 381–395.

4. R. M. Haralick, C. Lee, K. Ottenberg, and M. Nölle, Analysis and
solutions of the three point perspective pose estimation problem, in

R ��
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0.663 0.383 �0.643
�⇔�
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� . Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), Maui, HI, June 1991, pp.
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of the image points are CVGIP: Image Understanding 54 (1991), 368–383.
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