Management of time-shifted IPTV services through transparent proxy deployment

T. Wauters, W. Van de Meerssche, F. De Turck, B. Dhoedt, P. Demeester
T. Van Caenegem, E. Six
Introduction
- IPTV
- access network architecture

Time-shifted television
- concept
- caching algorithms
- deployment options

Proxy implementation
- RTSP proxy
- streaming session setup
- performance measurements

Conclusions
Introduction
- IPTV
- access network architecture

Time-shifted television
- concept
- caching algorithms
- deployment options

Proxy implementation
- RTSP proxy
- streaming session setup
- performance measurements

Conclusions
High priority: IPTV services

- requirements: high bandwidth, low delay and jitter
- today: broadcast TV (live) or VoD (older content)
 - highly loaded VoD servers at the network edge
 - complete files are stored
- solution: time-shifted TV for (very) recent content
 - distributed servers in the access network
 - fragments are stored
Introduction

Current ATM-based broadband aggregation

ATM DSLAMs
- Unintelligent Layer 1 aggregation
- Low-speed ATM uplinks
- Mostly Central Office - based

Complex, fixed connections
- PPP-based
- Bound to DSL CPE in the home
- Provisioning cost high

Centralized B-RAS
- Optimized for best-effort internet
- Lack of scalable routing and QoS
- Typical OC-12 handoff to IP core

Lack of network resiliency
- Outages tolerated
- Minimal financial repercussions

Introduction

Current ATM-based broadband aggregation

ATM DSLAMs
- Unintelligent Layer 1 aggregation
- Low-speed ATM uplinks
- Mostly Central Office - based

Complex, fixed connections
- PPP-based
- Bound to DSL CPE in the home
- Provisioning cost high

Centralized B-RAS
- Optimized for best-effort internet
- Lack of scalable routing and QoS
- Typical OC-12 handoff to IP core

Lack of network resiliency
- Outages tolerated
- Minimal financial repercussions

PPP obstructs
- scalability
- multicast support
- auto-configuration

Management of time-shifted IPTV services – Tim Wauters
Department of Information Technology – Broadband Communication Network group
Introduction

Next-generation Ethernet/IP-based broadband aggregation

IP DSLAMs
- Intelligent aggregation with multicast support
- Gigabit Ethernet Uplinks
- Increasingly RT-based

Simple, flexible connections
- DHCP-based
- Independent of device
- User-based
- Provisioning cost low

Distributed routers
- Optimized for QoS-sensitive services
- Highly scalable
- 10 GbE handoff to IP/MPLS core

Highly available network
- Little to no tolerance of service interruptions
- Risk of churn if reliability metrics aren’t met

Management of time-shifted IPTV services – Tim Wauters
Department of Information Technology – Broadband Communication Network group
Introduction
- IPTV
- access network architecture

Time-shifted television
- concept
- caching algorithms
- deployment options

Proxy implementation
- RTSP proxy
- streaming session setup
- performance measurements

Conclusions
Network view
- caching of fragments
- p2p caches

CS: central server
ER: edge router
AR: access router
AM: access multiplexer

User 1: real-time
User 2: delayed t_1
User 3: delayed t_2
Streaming diagram

- supports user interactivity
Time-shifted TV

- **Caching algorithm**
 - **storage space**
 - small part S for learning (< 1 GB)
 - large part L for storage of popular/distant fragments, determined by the parameters $A_{n,p}$
 - **time intervals Δ**
 - during Δ: as requests arrive, all parameters $A_{n,p}$ are updated
 - after Δ: store “occupied” fragments and fragments with highest value for $A_{n,p}$

request for program p

<table>
<thead>
<tr>
<th>program stored locally?</th>
<th>window appropriate?</th>
<th>is it new?</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

- stream locally - set to “occupied” - adapt $A_{n,p}$
- stream from other cache
- stream from server - cache in S
- stream from other cache - adapt $A_{n,p}$
Time-shifted TV

- **Input parameters**
 - 5 tsTV channels
 - 6 programs per channel
 - 45 minutes per program
 - exponentially decreasing popularity
 - $\Delta = 5$ minutes

- **Deployment options**
 - hierarchical caching
 - caches at AR and AM level
 - co-operative caching
 - co-operating caches at AM level

Management of time-shifted IPTV services – Tim Wauters
Department of Information Technology – Broadband Communication Network group
Hierarchical caching

Server load reduced by 50% to 70% with 0.5GB caches

Management of time-shifted IPTV services – Tim Wauters
Department of Information Technology – Broadband Communication Network group
Co-operative caching

Server load reduced by 95% with 6 co-operating 0.5GB caches

![Graph showing cache size vs. % requests]
Outline

- Introduction
 - IPTV
 - access network architecture

- Time-shifted television
 - concept
 - caching algorithms
 - deployment options

- Proxy implementation
 - RTSP proxy
 - streaming session setup
 - performance measurements

- Conclusions
RTSP proxy

- implementation using RTP / RTCP / RTSP
Time-shifted TV

Detailed scenario

- **C:** Cacher
- **CVM:** CacheVerdictManager
- **RP:** RTSPProxy
- **PH:** PacketHandler

Time Points
- **0:**
 - **server**
 - **cache:**
 - RTSPMessage: `describe <program url>`
 - ok + SDP data
 - RTSPMessage: `setup <stream> to clientIP:port x`
 - ok
 - RTSPMessage: `play <program url> at <time>`
 - ok
 - **proxy:**
 - RTP stream to clientIP:port x
 - **client:**
 - update cache state

- **1a:**
 - **server**
 - **cache:**
 - RTP stream to proxyIP:port y
 - ok
 - **proxy:**
 - RTP stream to proxyIP:port y
 - **client:**
 - update cache state

- **2a:**
 - **server**
 - **cache:**
 - cache from server!
 - **proxy:**
 - RTP stream to clientIP:port x
 - **client:**
 - update cache state

Additional Notes
- CSE: Common Service Environment
- RTC: Real-Time Communication
Detailed scenario

Time-shifted TV

server

<table>
<thead>
<tr>
<th>C</th>
<th>CVM</th>
<th>RP</th>
<th>PH</th>
</tr>
</thead>
</table>

cache

<table>
<thead>
<tr>
<th>C</th>
<th>CVM</th>
<th>RP</th>
<th>PH</th>
</tr>
</thead>
</table>

proxy

<table>
<thead>
<tr>
<th>C</th>
<th>CVM</th>
<th>RP</th>
<th>PH</th>
</tr>
</thead>
</table>

client

- RTSP
- RTP
- CSE
- internal

RTSPMessage

verdict?

RTSPSession

setup <stream> to clientIP:port x

play <program url> at <time>

RTP stream to clientIP:port x

update cache state

RTP stream to cacheIP:port y

update cache state

C: Cacher

CVM: CacheVerdictManager

RP: RTSPProxy

PH: PacketHandler

Management of time-shifted IPTV services – Tim Wauters
Department of Information Technology – Broadband Communication Network group

p. 17
RTSP proxy

- measurements
 - AMD Athlon™ 64 (512MB RAM), 1GB links
 - handling of simultaneous client RTSP requests (low priority), while serving RTP streams (high priority)
RTSP proxy

- measurements
 - AMD Athlon™ 64 (512MB RAM)
 - delay between PLAY request and first RTP packet in a server-proxy-client configuration
Outline

- Introduction
 - IPTV
 - access network architecture

- Time-shifted television
 - concept
 - caching algorithms
 - deployment options

- Proxy implementation
 - RTSP proxy
 - streaming session setup
 - performance measurements

- Conclusions
Access network transformation

- from ATM based broadband aggregation to multi-service IP-aware access networks
- increased flexibility, scalability and availability

IPTV

- identified as highest-priority, bandwidth intensive residential telecom service
- server load and access network load reduced effectively through time-shifted TV using distributed and transparent proxy streamers, especially for co-operative caching
- proxy implementation using RTP / RTCP / RTSP protocol suite