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Abstract
Recent experiments established that a culture of Saccharomyces cerevisiae
(baker’s yeast) survives sudden high temperatures by specifically duplicating
the entire chromosome III and two chromosomal fragments (from IV and XII).
Heat shock proteins (HSPs) are not significantly over-abundant in the
duplication. In contrast, we suggest a simple algorithm to “  thepostdict”
experimental results: Find a small enough chromosome with minimal protein
disorder and duplicate this region. This algorithm largely explains all observed
duplications. In particular, all regions duplicated in the experiment reduced the
overall content of protein disorder. The differential analysis of the functional
makeup of the duplication remained inconclusive. Gene Ontology (GO)
enrichment suggested over-representation in processes related to reproduction
and nutrient uptake. Analyzing the protein-protein interaction network (PPI)
revealed that few network-central proteins were duplicated. The predictive
hypothesis hinges upon the concept of reducing proteins with long regions of
disorder in order to become less sensitive to heat shock attack.
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Introduction
Saccharomyces cerevisiae (baker’s yeast; for simplicity we mostly 
use yeast) was the first completely sequenced eukaryote1. Being 
simple to handle and manipulate has rendered yeast a preferred 
model organism for genetics, biochemistry and systems biology2–4. 
It grows optimally within a narrow temperature range but tolerates 
moderate deviations, some of which impinge upon cell structure 
and function, often through rapid physiological adaptations. One 
such adaptation mechanism is the duplication of the whole genome 
or particular chromosomes (aneuploidy)5–7 that contain the genes 
necessary to rapidly cope with specific adverse conditions over the 
course of several generations of evolving yeast8–14. Such evolution-
ary adaptations imbalance the genome15, destabilize reactions or 
pathways16,17, and cost energy18,19. Aneuploidy, therefore, is a tran-
sient solution. Over many generations exposed to the same adverse 
conditions refined specific and less expensive solutions replace 
aneuploidy20. Yeast cells can adapt to high-temperature stress by 
repeatedly duplicating chromosome III along with two other frag-
ments (from chrIV and chrXII)20. Why specifically copy these 
regions? Can particular biophysical features and/or functions of the 
proteins encoded in these regions explain the choice?

One simple biophysical feature is protein disorder: most proteins 
adopt well-defined three-dimensional (3D) structures21–24, i.e. will 
largely remain identical at different times. In contrast, disordered 
regions do not adopt well-defined 3D structures in isolation25, i.e. 
without binding substrates they will look very different at different 
time points. Proteins with long disordered regions encompass some 
unique biophysical characteristics26–34. Such regions are so difficult 
to characterize experimentally that there is no good experimental 
data set proxy for “all proteins with long regions of disorder in 
yeast”. In contrast, acceptably accurate computational predictions 
are available for entire proteomes30,35,36. Protein disorder seems one 
means for prokaryotes to adopt to extreme environments, e.g. halo-
philes have more proteins with long disorder than their closest phy-
logenetic relatives, while thermophiles tend to have fewer37. Here, 
we hypothesized a similar effect to govern the response to high 
temperature-related duplication in yeast, namely that chromosomal 
regions duplicated under high temperature are depleted of proteins 
with long disorder.

Methods
Data
We downloaded the yeast (S. cerevisiae) proteome from UniProt 
(proteome ID: UP000002311)38 as fasta files including only the 
reviewed proteins (UniProtKB/Swiss-Prot). Removal of dupli-
cates applying the method Uniqueprot239 (with 100% pairwise 
sequence identity, keeping the longer sequence) left 5667 proteins 
(Table S1A). We considered the 16 nuclear chromosomes (matched 
through http://www.yeastgenome.org40, the numbers of proteins 
per chromosome are given in Figure S1B). The yeastgenome.org 
resource also provided the annotations of heat-shock response pro-
teins (HSR). Proteins known to interact with HSR proteins aug-
mented this set of HSRs in the following way.

BioGRID (version 3.1.86) provided the data for experimental protein- 
protein interactions (PPIs) in yeast. After filtering out redundancy 
(a-b and b-a counted only once) and excluding self-interactions 

(a-a), we based all subsequent analysis on the single largest con-
nected component of the network. We focused on the most basic 
network features that allow the comparison and characterization of 
complex networks. The most elementary characteristic of a node is 
its degree or connectivity, defined as the number of interactions for 
a node (here protein), i.e. the number of interactions one protein has 
with all others. Another important parameter is the betweenness, 
i.e. the fraction of shortest paths between all other nodes that has 
to go through a given node. Additionally, we monitored the average 
degree of neighbors, which depends on the number of nodes and 
links in the network. These three parameters measured the impor-
tance of each node within the network.

Disorder predictions
We applied methods capturing different “flavors” of protein dis-
order29,41,42. IUPred (version 1.0) is based on statistical contact 
potentials and exclusively uses single sequences28,43. MD (Meta-
Disorder)42 combines different original prediction methods through 
machine learning (neural network) with evolutionary profiles and 
predictions of solvent accessibility and protein flexibility. To some 
extent disorder is a gradual phenomenon, i.e. proteins may have 
more or less disorder44. On the other hand, prediction methods dis-
tinguish between a 30-residue loop resembling “protein disorder” 
and another resembling a region with “regular structure”29. Thus, 
protein disorder seems more a binary feature (it is there or not, or 
present/absent) than a gradual one25. Unfortunately, no argument or 
data determines one single correct threshold for what constitutes 
present/absent for protein disorder. Typically, experts use a length 
threshold of the type: protein disorder is present when at least 
T consecutive residues in a protein are predicted to be disordered. 
If so, this protein is considered to contain a long region of disorder. 
More disorder in this model could imply, e.g. more than one region, 
or the entire protein. We analyzed many alternatives to choose the 
threshold for long disorder, and found most to be redundant. We 
included different views only if they provided relevant information. 
In particular, we largely focused on one threshold to define “long 
disorder”: %long30, is the percentage of proteins with at least one 
region of ≥30 consecutive residues predicted as disordered (alter-
natives were: %long50 and %long80, i.e. with length thresholds 
at ≥50 and ≥80, and completely disordered implying no region of 
30 consecutive residues without any disorder).

GO term enrichment
We applied BINGO (Biological Networks Gene Ontology44, 
version 2.44) to identify the enrichment of GO (Gene Ontology)45 
terms in subsets of experimentally annotated proteins. We focused 
on “biological process” and “molecular function”. For two sets of 
proteins with annotated biological functions (more precisely: GO 
numbers) BINGO estimates to which extent their annotations dif-
fer in a statistically significant way. We visualized BINGO results 
with Cytoscape46 platform (version 2.8). Our analysis focused on 
the hypergeometric test in BINGO, which accurately estimates 
p-values as it tests without replacement. Following the common, 
procedure for BINGO, we considered p-values >0.05 as significant46. 
Testing multiple hypotheses may give many false positives (Type I 
error: incorrect rejection of true null hypothesis47,48). Using BINGO, 
we corrected for these through the Benjamini and Hochberg correc-
tion which provides strong control over the False Discovery Rate 
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(FDR, expected proportion of erroneous null hypothesis rejections 
among all rejections48).

Results and discussion
Duplications in response to high temperature reduce 
protein disorder
In response to high temperature yeast (S. cerevisiae) duplicates the 
entire chromosome III (for brevity we use chrN to denote ‘yeast 
chromosome N’ with N as Roman numerals following convention) 
and fragments from chrIV and chrXII20. The size of the 16 yeast 
chromosomes varies over six-fold (Table S1). The average protein 
length is similar between the 16 chromosomes (Figure S1, Table S1). 
The duplicated chrIII is the 3rd smallest with 183 genes, of which 
153 are mapped and 132 constitute “verified ORFs”. Fewer genes 
are encoded only by chrI with 90, and chrVI with 125 proteins 
(Table S1). The relatively small number of genes on chrIII was one 
reason for choosing it as the first fully synthesized functional yeast 
chromosome49. In contrast to protein length, the percentage of pro-
teins with predicted long regions of disorder differed significantly 
between the 16 yeast chromosomes (Figure 1).

The least protein disorder was predicted for chrIII and chrX 
(Figure 1, Table S2). That means heat response duplicates one 
of the two chromosomes with the least disorder. In addition, the 
fragments of chrIV and chrXII that are duplicated along with the 
entire chrIII also clearly have less disorder than the chromosomes 
from which they were taken (Figure 1). This enhances the effect of 
protein disorder reduction in response to high temperatures.

The other low-disorder option is chrX: Why not duplicate chrX in 
response to high temperatures? ChrX is more than twice as large 
as chrIII (Figure S1). Thus duplicating chrX would “cost” twice 
as much. This might be prohibitive. ChrX might also not contain 
the cell activities important for coping with high temperature. Fur-
thermore, as chrX and chrIII are similar in disorder content while 
chrX has twice the proteins of chrIII, the duplication of chrX would 
increase the overall level of proteins with disorder that might 
become unfolded and thereby “jam” cellular activity more than the 
duplication of chrIII.

Assume a certain amount of tolerable duplication were tolerable 
and that number were about 153 proteins (as for chrIII): where in 
the genome do we find a continuous stretch (within a chromosome) 
that has 153 proteins with the least disorder? Our results under-
scored the special role of chrIII (Figure S2): only 3% of all continu-
ous genome fragments with 153 proteins have as little disorder as 
chrIII (corresponding numbers for chrX: 5%; 29-protein fragment 
from chrIV: 52%; 64-protein fragment from chrXII: 10%). These 
figures demonstrate that the duplication of chrIII might be THE 
optimal choice for a simple way to duplicate 153 proteins with as 
little disorder as possible.

Figure 1. Protein disorder differs between yeast chromosomes. 
The composition of proteins with long regions of disorder (y-axes) 
differed significantly between the 16 chromosomes of S. cerevisiae 
(x-axes) and also for the set of HSPs. The three rightmost marks 
on the x-axes describe: HSPs and the disorder predictions for 
the HSR-related duplicated fragments on chromosome IV and 
chromosome XII (frag IV and frag XII). The differences were similar 
for two different prediction methods (MD in black, IUPred in light 
gray), and for different thresholds with respect to the minimal length 
of a disordered region (A: ≥30 consecutive residues predicted in 
disorder, B: ≥50, C: ≥80). Dashed horizontal lines mark the averages 
over all chromosomes. Error bars are too small to become visible 
on the scale chosen. The least disorder content was predicted 
for chromosome III and chromosome X. Overall, all duplications 
in response to heat shock treatment reduced the level of protein 
disorder in the offspring.
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Heat-shock proteins do not explain the temperature-related 
duplication
Our results explained why duplicating 150–200 proteins from 
another chromosome might have been potentially more damaging 
than the duplication of chrIII in response to high temperatures. In 
other words, our model might suggest why the duplication of this 
particular region is better than other duplications. However, what 
is the selective benefit from the proteins on chrIII? We expected to 
find the answer to this question in proteins that actively help with 
coping with heat stress. The immediate suspects are heat-shock pro-
teins (HSP) and the proteins known to interact with these HSPs 
(HSP-binders). The known HSPs and HSP-binders scatter over 
all 16 yeast chromosomes (Figure S3). All regions duplicated in 
response to heat shock contain only one known gene coding for 
HSPs (HSP30) and one known HSP-binder (TAH1). This implied 
that 1.3% of all known HSPs and HSP-binders were duplicated in 
an event that duplicated 0.5% of all genes, i.e. a 2.6-fold over-rep-
resentation. This statistically insignificant the finding that fewer 
than 1 in 50 of all HSPs and HSP-binders are duplicated might still 
be scientifically significant if HSP30 and TAH1/HSP90 were out-
standingly important proteins for the given conditions. However, 
this is not the case, at least not given what is currently known about 
HSP30. Furthermore, introducing an extra copy of HSP30 into 
wild-type cells did not increase the ability of the cells to cope with 
high temperature (Dahan & Pilpel, personal communication).

The set of known HSPs (Figure S3) slightly changed expression 
levels in response to heat stress during the fixation of the trisomy20 
only slightly but almost all HSPs were significantly up-regulated 
(arrows in Figure S3) when the “refined descendants” replaced 
the trisomy20. This could imply that the duplicated genes are 
essential for survival under heat stress. Nevertheless, quite con-
trary to the naïve expectation, the HSPs and the HSP-binders by 
no means explained the heat-stress-specific duplications observed 
experimentally.

Incidentally, HSPs appeared particularly abundant in disorder 
regions of 30–50 consecutive residues (Figure 1A, in particular for 
IUPred). It has previously been argued that such disorder is required 
for proper function of HSPs50. In contrast, HSPs are depleted of 
longer disorder (>50; Figure 1B,C).

Overall, we argue that HSPs could have explained the duplication of 
many other chromosomes, possibly even better than that of chrIII. 
Therefore, this explanation is not specific. Thus, we conclude that 
the duplication of known HSPs and HSP-binding proteins did not 
explain why chrIII was specifically duplicated. Many HSPs and 
HSP-binders might remain unknown. However, we have no scien-
tific ground to suspect that the fraction of the unknown HSPs differs 
between the chromosomes, i.e. that there are particular HSPs on 
chrIII that remain undiscovered.

GO terms enriched for growth and reproduction in heat 
stress-duplication
Are any other proteins on chrIII important for growth under high 
temperature? Simply scanning GO45 annotations is insufficient: 
the question is not whether proteins on chrIII have certain func-
tions, but whether these are overrepresented enough to explain why 

chrIII and not the other two small chromosomes (chrVI or chrI) are 
duplicated in response to high temperatures. In order to address this 
question, we need a GO term enrichment analysis of the duplicated 
regions51.

Growth and reproduction might be considered as the most impor-
tant cell activities in the sense that the organism must grow and pro-
liferate (cells that fail are not observed) even under stress. The GO 
enrichment analysis seemed to confirm this expectation (Figure 2): 
the two most abundant GO terms in the heat stress-duplicated 
regions were those related to (i) sexual reproduction (Figure 2 and 
Figure S2; “conjugation with cellular fusion”, “reproductive cellular 
process” and “response to pheromone”) and to (ii) sugar transport 
(hexose transport process as well as mannose, fructose and glucose 
transmembrane transporter activity; Figure S4).

The major energy source of yeast is sugar, in particular hexose mon-
osaccharides (C6H12O6; e.g. glucose, fructose, mannose). These 
nutrient sugars are imported into the cell through hexose transport-
ers, which are encoded by HXT genes52,53. The HXT yeast genes 
on the duplicated fragment of chromosome IV (HXT3, HXT6 and 
HXT7) are almost five-fold over-represented with respect to random 
(yeast has 5667 N

genY
 genes, 243 N

genD
 are duplicated, 15 N

genHXT
 

genes are in yeast; in a region with 243 N
genD

 genes we would find 
by chance 0.64 HXT genes in the duplicated regions p

chance
=N

genHXT
 

*[N
genD

/N
genY

]). Two HXT genes on the duplicated chrIV fragment 
(HXT6 and HXT7) appear to encode high-affinity transporters 
required for growth at very low glucose concentrations (~0.1%54), 
i.e. these two would become particularly important when yeast is 
cultured under glucose limitation54. Interestingly, several works 
have detected duplication of these two genes (HXT6 and HXT7) in 
yeast populations evolving under low nutrient availability8,55. These 
numbers suggest that heat stress also puts strain upon obtaining the 
energy needed for growth and reproduction.

Sexual reproduction also appeared crucial for the survival of 
yeast cultured under heat stress56,57. Seven of the ten molecular 
functions to be significantly overrepresented in the heat stress- 
duplicated chrIII (Table S3) by a standard GO-term enrichment 
analysis51 are involved in reproduction. Three of these seven 
molecular functions are related specifically to sexual reproduction; 
the others pertain to general reproductive processes (Figure 2). In 
particular, the reproduction-related processes involve cell fusion 
(FUS1 and FIG258–60), pheromone response (STE50 which is also 
required for optimal invasive growth and hyperosmotic stress 
signaling61,62 and NOT1 that is also involved in several RNA regu-
lation levels63), nuclear fusion, chromosome disjunction, nuclear 
segregation after mating (BIK1 which is involved in microtubule 
function during mitosis64,65), fusion of haploid nuclei during mat-
ing; KAR4 or KARyogamy plays a critical role in the choreography 
of the mating response66), cytokenesis (division of cytoplasma and 
plasma membrane of a cell and its separation into two daughter 
cells which is also relevant for asexual mitotic growth: CDC1067), 
specification of the site where the daughter cell will form (rel-
evant for budding and asexual growth, also referred to as axial bud 
selection) and in the developmental process in which the size of 
a cell is generated and organized (also referred to as morphogen-
esis: CDC1067–69). All these genes are also required for the correct 
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Figure 2. GO enrichment of sexual reproduction and nutrient uptake. The tree gives the complete set of all experimentally annotated 
GO-terms (Gene Ontology45) for any of the proteins on chromosome III that describe biological process (left branch) and molecular function 
(right branch). The enrichment analysis51 describes how much chrIII GO-terms are enriched with respect to all other GO-terms from yeast: 
all terms marked by yellow circles are significantly enriched. Sexual reproduction (7 GO-terms on chrIII) and transport (carboxylic acid and 
organic anion 4 GO-terms on chrIII) mapped to most overrepresented GO terms on this chromosome.
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localization of other proteins involved in cytokinesis and bud site 
selection67,70–73. Other important processes and activities overrepre-
sented on chrIII are related to the avoidance of oxidative stress (e.g. 
carboxylic acid transport – Figure 2 - which may be important for the 
survival since during the vegetative asexual reproduction cells were 
exposed to oxidative stress) and NAD(P)H nitro-reductase activity 
(Figure 2). The only nitroreductase-related proteins in yeast – HBN1 
and FRM274 - are only on chrIII (Table S4). The proteins involved 
in these two activities (carboxylic acid transport and NAD(P)H 
nitro-reductase activities) are also implicated in cellular detoxifica-
tion75, which is another task relevant for survival under stress.

All these data supported the view that chrIII is important for sex-
ual reproduction. A seemingly convincing story, until we learned 
that the laboratory strains of yeast survived through asexual 
reproduction20, i.e. apparently did not need what is so uniquely 
enriched in the heat stress duplication. The set of proteins known to 
be involved in reproduction on chrIII (Table S3) had more disorder 
than the average for chrIII (Figure S5). Some of these proteins with 
long disordered regions might not work correctly in heat.

Why duplicate proteins that fail? Not having found a convincing 
answer, we propose two conjectures: first, sexual reproduction 
might “frame” another cellular activity of the same protein that 
is more relevant to the growth conditions applied during the evo-
lution in the laboratory experiment. For instance, CDC10 is also 
required to maintain cell polarity (GO: 0030011), BUD3 and BUD5 
are involved in axial cellular bud-site selection (GO: 0007120), 
KCC4 a bud neck kinase involved in budding and cell bud growth 
(GO: 0007117) and BIK1, which is involved in microtubule func-
tion during mitosis. All of these activities are related to asexual 
reproduction. Our second proposition seems more far-fetched, 
namely that the set of proteins with the strongest GO-enrichment 
might have been duplicated coincidentally, i.e. the disorder-rich 
proteins related to sexual reproduction might have been duplicated 
because they happened to be on chrIII but not due their relevance 
for the survival in heat. If so, there must be something else we have 
not found yet on chrIII.

Several other processes were slightly enriched in the duplicated 
fragments with some relevance for yeast survival in heat but none 
of those gave a clear explanation (Figure 2): (i) fatty acid elon-
gase, (ii) rRNA (guanine) methyltransferase, and (iii) the importin- 
alpha export receptor activities. We analyzed these in detail. (i) Fatty 
acid elongase: currently, only three proteins are known to be 
involved in lengthening fatty acids; two of those (ELO2 and APA1; 
Table S3) are on chrIII. Fatty acid elongases are involved in sphin-
golipid biosynthesis. The sphingolipids are components of the cel-
lular membrane and bioactive signaling molecules that contribute 
to heat tolerance as they are directly involved in organizational 
cellular structures (e.g. cell membrane)76. (ii) rRNA methyltrans-
ferases: three yeast proteins are known to be involved in rRNA 
(guanine) methyltransferase activity; two of those (BUD23 and 
SPB1) are on chrIII (Table S4). It is believed that the modification of 

ribonucleotides optimizes the rRNA structure and represents a way 
to expand the topological potentials of RNA molecules. It is pos-
sible that the loss of modification affects fine-tuning of ribosome 
function that could give rise to the pronounced cold-sensitivity77. 
(iii) Importin-alpha nuclear export: two yeast proteins contribute 
toward the importin-alpha export receptor activity; one of those 
(MSN5) is in the duplicated fragment of chromosome IV. MSN5 
knockout mutants show a variety of phenotypes, including carbon-
source utilization, defects and sensitivity to high concentrations of 
ions, severe heat shock, and high pH78. Moreover, these mutants are 
partially sterile78. Therefore, this protein appears necessary for cell 
survival, especially under extreme conditions.

Only one cellular activity related to tRNA synthase appeared over-
represented on the duplicated fragment of chrXII (DUS3 and DUS4 
proteins; Table S7). In particular, to the tRNA dihydrouridine syn-
thases, which are responsible for the reduction of the 5,6-double 
bond of a uridine residue on tRNA (one of the numerous modifica-
tions observed on tRNA cytoplasmatic79). However, this particular 
finding appeared less relevant since the corresponding fragment 
was only duplicated in one of four growth experiments in response 
to high temperatures20.

One crucial limitation for any functional enrichment study remains 
the incomplete experimental annotation even for an organism as 
intensively studied as yeast. It may be that all our speculation above 
missed the real causation because the functions of the proteins that 
are really relevant remain uncharacterized. Therefore, we comple-
mented our analysis with one aspect of function for which we have 
a complete prediction, namely the prediction of sub-cellular locali-
zation of all yeast proteins. The experimental localization annota-
tions for yeast are still cover at most 70% of all proteins80. However, 
today’s top prediction methods, such as LocTree3, are very 
reliable80 and can make crucial differences for comparing ‘com-
plete’ data sets81. We found nuclear proteins to be clearly depleted 
on chrIII (-4.6 percentage points with respect to the entire pro-
teome; Figure S7A). Other abundant proteins found on chrIII were 
secreted (extra-cellular) or annotated as endoplasmic reticulum 
(ER) membrane proteins (each 3.2 percentage points higher than in 
the full yeast proteome). We also observed significantly more dis-
order in nuclear proteins (nuclear 77% vs. <40% for non-nuclear; 
Figure S8). This might explain the depletion of nuclear proteins 
on chrIII. While these findings were clear, they did not suggest a 
simple interpretation. The abundance of secreted proteins on chrIII 
(about 3.2 percentage points more on chrIII than in entire yeast; 
Figure S7A) implies that in the response to heat shock, more pro-
teins are secreted into the ‘hot’ environment. Given the correlation 
between habitat and disorder37, we expect that proteins are more 
likely to sustain high temperatures with less disorder. Unfortunately, 
a GO enrichment study of the secreted proteins also did not pro-
vide the answer we had been hoping for. However, the “secretome” 
alone could not explain the lower content of disordered proteins on 
chromosome III (disorder entire yeast-chrIII=50%-43%=7%>3% 
for secretome; Table 1 and Figure S7A).
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Figure 3. PPI network differs between yeast chromosomes. 
We began with the entire network of all PPIs with experimental 
annotations in yeast (Methods), and then differentially analyzed 
major network features: (A) Degree: The number of PPIs per 
protein (degree) was minimal for the proteins from chrIII (box in red; 
lowest mean - black dot and lowest median - black line in the box. 
(B) Betweenness: betweenness (number of times that a node acts 
as a bridge along the shortest path between two other nodes) was 
also lowest for chrIII. (C) Average neighbor degree: plotting the 
average degree for all network neighbors of all proteins on chrIII (i.e. 
all those proteins in direct PPI with proteins on chrIII), we observed a 
much less differentiated view. For this network feature, the proteins 
from chrIII had one of the highest means (black dot), but one of 
the lowest medians. Clearly, the proteins from the HSR-duplicated 
chromosome appeared less involved in the yeast network than 
expected by chance.

Proteins from chrIII less implied in overall PPI network
As proteins cannot be understood without also considering their net-
works of interaction, we compared the network of experimentally 
characterized PPIs between the entire yeast and those fragments 
that are duplicated in heat evolving populations. As for the differen-
tial analysis of any experimental annotation, the limitation of such 
an approach lies in the incompleteness of the experimental data. In 
all 16 chromosomes, the degree (number of interactions per pro-
tein) was lowest for chrIII (average=16±2; Figure 3A). A similar 
trend was observed for betweenness (number of times that a protein 
acts as a bridge along the shortest path between two other proteins: 
average=1800±300; Figure 3B). Furthermore, chrIII is one of the 
chromosomes with the largest mean value for the average neigh-
bor degree (average=380±40; Figure 3C). Our network analyses 
confirm chrIII as a good choice for a first line of defense against 
high temperature because the proteins encoded on this chromosome 
play less essential roles for the overall PPI network. However, once 
again, this portrays the duplication as a solution with least possible 
damage without positively suggesting causation.

Conclusions
Organisms can duplicate the whole genome or particular chromo-
somes (aneuploidy) in response to sudden dramatic changes in the 
environment. As such coarse-grained major changes are costly, 
aneuploidy tends to give way to more fine-tune focused solutions 
that require many generations to evolve. The entire chromosome 
III and two fragments from chromosomes IV and XII in a culture 
of budding yeast (S. cerevisiae) were duplicated as a “transient 
evolutionary solution” in response to high temperature - a “tran-
sition” that fostered the survival of between 400 and 2,000 gen-
erations. Here, we reported that while the proteins on all 16 main 
chromosomes from yeast have similar length, they differ substan-
tially in the fraction of proteins with long regions predicted to 
contain protein disorder (≥30–80 consecutive residues predicted 
as disordered by IUPred and MD). We found the regions dupli-
cated under heat stress depleted of predicted disorder. In fact, 
chromosome III was one of the two chromosomes with the least 
disorder (Figure 1). The other (chromosome X) is twice as large, 
i.e. would cost twice to duplicate. Decreasing the overall content 
in protein disorder is likely an important strategy to protect against 
heat stress. A detailed analysis of the experimentally characterized 
PPI network in yeast revealed the duplicated proteins to be con-
nected less than average (Figure 3). The PPI analysis, therefore, 
added to the explanation that the duplication causes minimal dam-
age. However, why did the duplication create an advantage under 
heat stress? Surprisingly, we found no sustained evidence for a 
significant over-representation of HSPs in the duplication i.e. of 
proteins that usually help out under such stress. Instead, a Gene 
Ontology (GO) enrichment analysis suggested that the dupli-
cated regions were enriched in processes related to reproduction 
and to the import of nutrients (Figure 2). The enrichment was 
strongest for proteins related to sexual reproduction although the 
heat stress survival was maintained through budding, i.e. through 
asexual reproduction. Nevertheless, the set of GO enriched proteins 
appeared so important that they were duplicated although high in 
disorder. This might point to where the explanation for the dupli-
cation might be found. Overall, our data suggested a very simple 
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algorithm: identify the region with lowest protein disorder that is 
large enough, yet not too large and duplicate it along with possibly 
other fragments that are also depleted of disorder in order to cope 
with heat stress.
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The manuscript by Vicedo and colleagues presents an interesting observation: the authors have
examined chromosomal regions (all of chromosome III and fragments of chromosomes IV and XII) that
are duplicated in  in response to sudden exposure to high temperature andSaccharomyces cerevisiae
find that these chromosomal sequences are significantly decreased for genes encoding proteins with long
disordered regions. The authors further analyzed these duplicated regions and the encompassed genes
for any enrichment in annotated GO terms, as well as for encoded protein positioning in interaction
networks. The results do not indicate significant GO term enrichment and reveal that the encoded
proteins exhibit a decreased number of interactions per protein. The biological advantage to this
duplication remains unclear.
 
Comments/suggestions:
 
The main conclusion presented here is interesting, but as the authors themselves attest, this observation
does not explain a biological advantage behind the duplication.
 
On p. 4, the authors state that introducing an extra copy of  into wild-type yeast does not modifyHSP30
the ability of the cells to cope with high temperature. The inclusion of laboratory data considering the
effect of adding an extra copy of genes or chromosomal regions corresponding to some of the duplicated
sequences would strengthen the paper significantly. This seems to be the easiest way to address a
biological effect from duplication of a given gene.
 
In regards to the analysis, are the observed GO function annotations enriched with respect to other
chromosomes/segments as opposed to being enriched against the genome as a whole? If the advantage
to the cell centered on the functions associated with the genes in the duplicated regions, then these
regions relative to other regions may be enriched for a function. If I’m thinking of this correctly, that would
be slightly different than comparing a region for enrichment against the whole genome. Maybe the authors
could compare enrichment in one chromosome versus another or utilize a sliding window corresponding
to the size of a duplicated fragment to identify regions that would be most enriched for some potentially
interesting functions. That might be a more sensitive means of identifying a functional enrichment for the
duplicated regions.
 
Typos/stylistic suggestions:
 

on p.2, first line under Introduction: I think it would be sufficient to state “The baker’s yeast 
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on p.2, first line under Introduction: I think it would be sufficient to state “The baker’s yeast 
” rather than the text in parentheses.Saccharomyces cerevisiae

 
on p. 3, fourth paragraph under “Duplications in response to high temperature reduce protein
disorder”: the first sentence in this paragraph (“Assume a certain amount …”) needs to be
reworded.
 
on p. 4, first paragraph, line 16: delete “the” from “insignificant the finding”

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 17 November 2015Referee Report

doi:10.5256/f1000research.7734.r11121

 Paul Pavlidis
Centre for High-Throughput Biology and Department of Psychiatry, University of British Columbia,
Vancouver, BC, Canada

Vicedo . report a computational analysis sparked by the interesting findings of Yona  (2012) ofet al  et al.
yeast duplication of chrIII having a selective advantage in the face of heat stress. Yona . did not fullyet al
mechanistically explain the reason chrIII aneuploidy is the one selected for, so Vicedo . haveet al
proposed a hypothesis: that chrIII has a substantially lower number of disordered proteins. They test this
computationally, followed by some additional bioinformatics and “by hand” characterization of chrIII genes
(and some other regions of interest following from Yona .).et al

The difficulty here is assigning cause vs. “permissive”. As Vicedo . report, the disorder hypothesis haset al
limited predictive value because chrX genes also have a low disorder (on average), so the size of the
chromosome is posed as the other important variable. However, Vicedo . seem to be proposing thatet al
“low disorder” is good for heat resistance per se (I grant them this) – and that overexpression of low
disorder proteins is even better. I have difficulty with this second step, because the way the experiment of
Yona . was done, it could easily be that there are “heat resistance proteins” on chrIII and that theet al
overall duplication of chrIII is tolerated in the context of the advantage of overexpression those genes. But
if this was the end of the story it would be hard to make a determination of whether this is a viable
hypothesis.

However, there is an obvious problem: the work of Yona identified 17 genes on chrIII that appear toet al. 
be the main culprits for the heat resistance (at least most of them). I see no mention of these 17 in Vicedo 

. nor of the 22 control genes tested by Yona . If Vicedo are right then there should be aet al et al et al. 
difference in the disorder of these two sets of proteins. Otherwise, the observations might still be relevant,
but that the orderedness of chrIII proteins might be permissive for overexpression of the actual
heat-resistance genes via aneuploidy. In that case it might be the rest of the proteins on chrIII that have
the orderedness properties, not the 17. (Note that I was not familiar with the Yona work before this review
and I have not checked to see if Yona or others have done any followup.)et al. 

Given the omission of discussion of the 17, the sections of this paper on network analysis, GO and
localization cannot be interpreted with confidence. While I have some quibbles about them I would rather
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1.  

2.  

localization cannot be interpreted with confidence. While I have some quibbles about them I would rather
wait to see the response to the comments above.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

 17 November 2015Referee Report

doi:10.5256/f1000research.7734.r11122

 Melchor Sanchez-Martinez
Mind the Byte, Barcelona, Spain

The research article entitled 'Protein disorder reduced in to survive heatSaccharomyces cerevisiae 
shock' by Vicedo, Rost and co-workers shows how reduces protein disorderSaccharomyces cerevisiae 
to survive heat shock. It constitutes an interesting example about the usage of bioinformatic techniques to
analyze protein disorder and its implications at a whole proteome level. In the article, there is a
comprehensive explanation of study design, methods and analysis. The conclusions are well explained
and justified on the basis of the results.

Consequently, the manuscript is recommended for approval. It is a good piece of science that meets the
indexation requirements of F1000Research.

However I have some comments that the authors may consider and/or answer.
As far as I know except some rare exceptions the protein disorder is reduced as temperature
increases, oppositely as happens with ordered proteins or protein regions. With increasing
temperature, disordered proteins and regions tend to adopt a transitory structure. Commonly this
transitory structure is necessary for proteins to perform its biological function. In other recent works
that the authors have published have published (Reference 37 in the References section), they
stated that "protein disorder appeared as a possible building block to bring about evolutionary
changes such as the adaptation to different habitats" and in that sense seems that more disorder
should imply a better response to heat shock.

Thus is surprising for me that in response to heat there is a protein disorder reduction, whereas I
expect a disorder increment. Why does it happens? Maybe the answer is so easy as that the
disordered proteins do not help to "fight" against heat shock or as the authors said "...Some of
these proteins with long disordered regions might not work correctly in heat...", but  I am curious
about that. Do you have any evidence or supported hypothesis to explain that?
 
Regarding to authors statement "...Some of these proteins with long disordered regions might not
work correctly in heat...", a plausible way to study that and obtain a more conclusive answer could
be to perform a molecular simulation. Maybe a Replica Exchange Molecular Dynamics or Monte
Carlo simulations could give a better understanding of what happens with these protein at high
temperatures.
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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