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Motivation

synchronous languages, e. g. Esterel, Lustre, Quartz
can be used in Embedded Systems

generation of single threaded code so far

multicore processors more frequently used

adapt SW synthesis ⇒ generation of multithreaded code

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 4



Introduction
Creating Multi-Threaded Code

Results

Synthesis Flow

Synthesis Flow

Synthesis

Synchronous Program Guarded Actions

Multi-threaded Code

Single-threaded Code

Others, e.g. SystemC

synchronous languages ⇒ see talk of Mike Gemünde

here: from synchronous guarded actions to multi-threaded
code using OpenMP
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Guarded Actions

System (Example)

Interface:
Inputs: i , c
Output: o
Locals: x ,y ,z

Guarded Actions:
c ⇒ o = x + y

true ⇒ x = i · i
true ⇒ z = 2 · i
true ⇒ next(y) = z + 1
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Extracting Independent Threads

First Approach

intuitive:

group dependent
actions: create
”vertical slices”

execute groups in
parallel

due to sync. overhead:
only applicable for
large groups

problem: what if
creation of large
groups fails?

Dependency Graph

i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o
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Pipelining

Second Approach

pipelining:

group dependent
actions: create
”horizontal slices”

basic idea: execute
groups in parallel like a
pipeline

Example - Pipelining

π1

π2

i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o
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Pipelining

Problems:

How to partition dependency graph ?

⇒ use a legal partitioning
⇒ optimal partition depends on target architecture (not goal of

this approach)

What about values that are read in several stages ?
⇒ insert intermediate variables

How to store intermediate values ?
⇒ use queues

Where to write values at ?

Do we require something like stalling ?
⇒ implicit by queues

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 10



Introduction
Creating Multi-Threaded Code

Results

Pipelining - Legal Partitioning

A partitioning is legal iff

ctrl/data flow goes to one direction

NOTE: a delayed write access may go to a previous stage

Legal

π1

π2

Not-Legal

π1

π2

Legal

π1

π2
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Pipelining - Intermediate Variables

Insertion of Intermediate Variables (IV)

copies of variables (comparable to pipeline register)

implemented by queues

whenever a variable is read by a stage

w/o IVs

π1

π2

π3

IV inserted

π1

π2

π3

IV in HW

π1

π2

π3
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Pipelining - Write Access

forward write accesses to first intermediate variable (in spatial
dimension)

≈ forwarding in hardware
⇒ order values using merge-element
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Pipelining - Merge Element

Dependency
Graph

π1

π2

π3

x

Merger for x

Merger for variable x

Immediate
actions in π1

x(I6)

x(I9)

Delayed
actions in π1

x(I7)

x(I8)

Immediate
actions in π3

x(I4)

x(I3)

x(I2)

x(I1)
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Translation to C

using OpenMP: API for programming MT

create thread for each stage

each stage is executed in an own loop ⇒ allows stages to run
desynchronized
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Benchmark

MergeSort - 2x Xeon Quad Core
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Speedup 1Thread vs. Pipelined-MThread
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The End

Thank you for your attention!

Questions? Suggestions? Ideas?
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