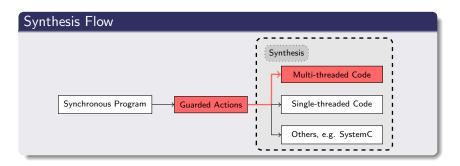
Multithreaded Code from Synchronous Programs: Generating Software Pipelines for OpenMP

Daniel Baudisch, Jens Brandt, Klaus Schneider

Embedded Systems Group Department of Computer Science University of Kaiserslautern, Germany

Motivation

- Introduction
- 2 Creating Multi-Threaded Code
- Results


Outline

- Introduction
- 2 Creating Multi-Threaded Code
- 3 Results

Motivation

- synchronous languages, e. g. Esterel, Lustre, Quartz can be used in Embedded Systems
- generation of single threaded code so far
- multicore processors more frequently used
 - adapt SW synthesis ⇒ generation of multithreaded code

Synthesis Flow

- synchronous languages ⇒ see talk of Mike Gemünde
- here: from synchronous guarded actions to multi-threaded code using OpenMP

System (Example)

```
Interface:
```

Inputs: i, c

Output: o

Locals: x,y,z

Guarded Actions:

$$c \Rightarrow o = x + y$$

true
$$\Rightarrow x = i \cdot i$$

true
$$\Rightarrow z = 2 \cdot i$$

true
$$\Rightarrow$$
 next(y) = $z + 1$

System (Example)

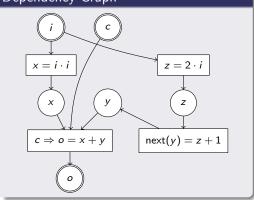
Interface:

Inputs: *i*, *c*

Output: o

Locals: x,y,z

Guarded Actions:


$$c \Rightarrow o = x + y$$

true $\Rightarrow x = i \cdot i$

true $\Rightarrow z = 2 \cdot i$

true \Rightarrow next(y) = z + 1

Dependency Graph

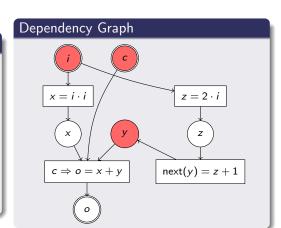
System (Example)

Interface:

Inputs: *i*, *c*

Output: o

Locals: x,y,z


Guarded Actions:

$$c \Rightarrow o = x + y$$

true $\Rightarrow x = i \cdot i$

true $\Rightarrow z = 2 \cdot i$

true \Rightarrow next(y) = z + 1

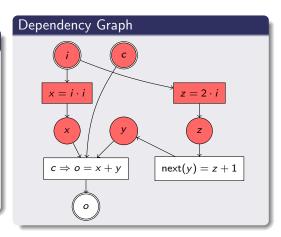
System (Example)

Interface:

Inputs: *i*, *c*

Output: o

Locals: x,y,z


Guarded Actions:

$$c \Rightarrow o = x + y$$

true
$$\Rightarrow x = i \cdot i$$

true $\Rightarrow z = 2 \cdot i$

true \Rightarrow next(y) = z + 1

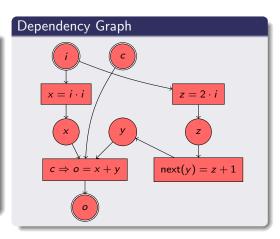
System (Example)

Interface:

Inputs: *i*, *c*

Output: o

Locals: x,y,z


Guarded Actions:

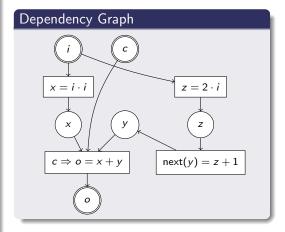
$$c \Rightarrow o = x + y$$

true $\Rightarrow x = i \cdot i$

true $\Rightarrow z = 2 \cdot i$

true \Rightarrow next(y) = z + 1

Outline

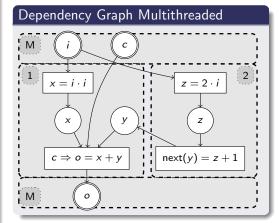

- Introduction
- 2 Creating Multi-Threaded Code
- 3 Results

Extracting Independent Threads

First Approach

intuitive:

- group dependent actions: create "vertical slices"
- execute groups in parallel



Extracting Independent Threads

First Approach

intuitive:

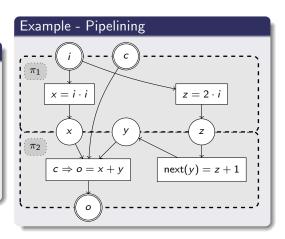
- group dependent actions: create "vertical slices"
- execute groups in parallel

Extracting Independent Threads

First Approach

intuitive:

- group dependent actions: create "vertical slices"
- execute groups in parallel
- due to sync. overhead: only applicable for large groups
- problem: what if creation of large groups fails?


Dependency Graph Multithreaded $x = i \cdot i$ $z = 2 \cdot i$ $c \Rightarrow o = x + y$ next(y) = z + 1

Pipelining

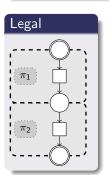
Second Approach

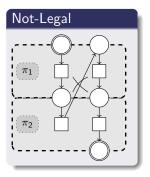
pipelining:

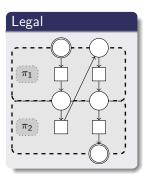
- group dependent actions: create "horizontal slices"
- basic idea: execute groups in parallel like a pipeline

Pipelining

Problems:

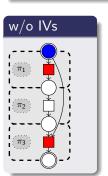

- How to partition dependency graph?
 - ⇒ use a legal partitioning
 - optimal partition depends on target architecture (not goal of this approach)
- What about values that are read in several stages ?
 - ⇒ insert intermediate variables
- How to store intermediate values?
 - \Rightarrow use queues
- Where to write values at ?
- Do we require something like stalling?
 - ⇒ implicit by queues

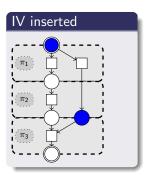


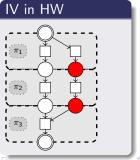

Pipelining - Legal Partitioning

A partitioning is legal iff

- ctrl/data flow goes to one direction
- NOTE: a delayed write access may go to a previous stage

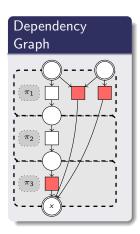


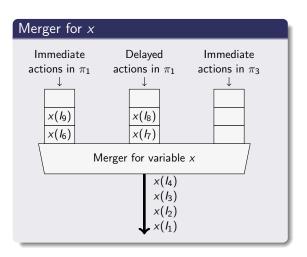



Pipelining - Intermediate Variables

Insertion of Intermediate Variables (IV)

- copies of variables (comparable to pipeline register)
- implemented by gueues
- whenever a variable is read by a stage

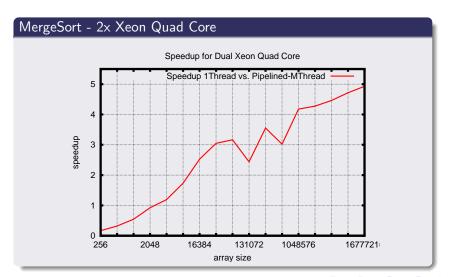




Pipelining - Write Access

- forward write accesses to first intermediate variable (in spatial dimension)
 - ≈ forwarding in hardware
 - ⇒ order values using merge-element

Pipelining - Merge Element


Translation to C

- using OpenMP: API for programming MT
- create thread for each stage
- each stage is executed in an own loop ⇒ allows stages to run desynchronized

Outline

- Introduction
- Creating Multi-Threaded Code
- Results

Benchmark

The End

Thank you for your attention!

Questions? Suggestions? Ideas?