
Introduction
Creating Multi-Threaded Code

Results

Multithreaded Code from Synchronous Programs:
Generating Software Pipelines for OpenMP

Daniel Baudisch, Jens Brandt, Klaus Schneider

Embedded Systems Group
Department of Computer Science

University of Kaiserslautern, Germany

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 1



Introduction
Creating Multi-Threaded Code

Results

Motivation

1 Introduction

2 Creating Multi-Threaded Code

3 Results

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 2



Introduction
Creating Multi-Threaded Code

Results

Outline

1 Introduction

2 Creating Multi-Threaded Code

3 Results

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 3



Introduction
Creating Multi-Threaded Code

Results

Motivation

synchronous languages, e. g. Esterel, Lustre, Quartz
can be used in Embedded Systems

generation of single threaded code so far

multicore processors more frequently used

adapt SW synthesis ⇒ generation of multithreaded code

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 4



Introduction
Creating Multi-Threaded Code

Results

Synthesis Flow

Synthesis Flow

Synthesis

Synchronous Program Guarded Actions

Multi-threaded Code

Single-threaded Code

Others, e.g. SystemC

synchronous languages ⇒ see talk of Mike Gemünde

here: from synchronous guarded actions to multi-threaded
code using OpenMP

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 5



Introduction
Creating Multi-Threaded Code

Results

Guarded Actions

System (Example)

Interface:
Inputs: i , c
Output: o
Locals: x ,y ,z

Guarded Actions:
c ⇒ o = x + y

true ⇒ x = i · i
true ⇒ z = 2 · i
true ⇒ next(y) = z + 1

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 6



Introduction
Creating Multi-Threaded Code

Results

Guarded Actions

System (Example)

Interface:
Inputs: i , c
Output: o
Locals: x ,y ,z

Guarded Actions:
c ⇒ o = x + y

true ⇒ x = i · i
true ⇒ z = 2 · i
true ⇒ next(y) = z + 1

Dependency Graph

i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 6



Introduction
Creating Multi-Threaded Code

Results

Guarded Actions

System (Example)

Interface:
Inputs: i , c
Output: o
Locals: x ,y ,z

Guarded Actions:
c ⇒ o = x + y

true ⇒ x = i · i
true ⇒ z = 2 · i
true ⇒ next(y) = z + 1

Dependency Graph

i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 6



Introduction
Creating Multi-Threaded Code

Results

Guarded Actions

System (Example)

Interface:
Inputs: i , c
Output: o
Locals: x ,y ,z

Guarded Actions:
c ⇒ o = x + y

true ⇒ x = i · i
true ⇒ z = 2 · i
true ⇒ next(y) = z + 1

Dependency Graph

i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 6



Introduction
Creating Multi-Threaded Code

Results

Guarded Actions

System (Example)

Interface:
Inputs: i , c
Output: o
Locals: x ,y ,z

Guarded Actions:
c ⇒ o = x + y

true ⇒ x = i · i
true ⇒ z = 2 · i
true ⇒ next(y) = z + 1

Dependency Graph

i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 6



Introduction
Creating Multi-Threaded Code

Results

Outline

1 Introduction

2 Creating Multi-Threaded Code

3 Results

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 7



Introduction
Creating Multi-Threaded Code

Results

Extracting Independent Threads

First Approach

intuitive:

group dependent
actions: create
”vertical slices”

execute groups in
parallel

due to sync. overhead:
only applicable for
large groups

problem: what if
creation of large
groups fails?

Dependency Graph

i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 8



Introduction
Creating Multi-Threaded Code

Results

Extracting Independent Threads

First Approach

intuitive:

group dependent
actions: create
”vertical slices”

execute groups in
parallel

due to sync. overhead:
only applicable for
large groups

problem: what if
creation of large
groups fails?

Dependency Graph Multithreaded

M

1 2

M i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 8



Introduction
Creating Multi-Threaded Code

Results

Extracting Independent Threads

First Approach

intuitive:

group dependent
actions: create
”vertical slices”

execute groups in
parallel

due to sync. overhead:
only applicable for
large groups

problem: what if
creation of large
groups fails?

Dependency Graph Multithreaded

M

1 2

M i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 8



Introduction
Creating Multi-Threaded Code

Results

Pipelining

Second Approach

pipelining:

group dependent
actions: create
”horizontal slices”

basic idea: execute
groups in parallel like a
pipeline

Example - Pipelining

π1

π2

i c

x = i · i z = 2 · i

x y z

c ⇒ o = x + y next(y) = z + 1

o

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 9



Introduction
Creating Multi-Threaded Code

Results

Pipelining

Problems:

How to partition dependency graph ?

⇒ use a legal partitioning
⇒ optimal partition depends on target architecture (not goal of

this approach)

What about values that are read in several stages ?
⇒ insert intermediate variables

How to store intermediate values ?
⇒ use queues

Where to write values at ?

Do we require something like stalling ?
⇒ implicit by queues

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 10



Introduction
Creating Multi-Threaded Code

Results

Pipelining - Legal Partitioning

A partitioning is legal iff

ctrl/data flow goes to one direction

NOTE: a delayed write access may go to a previous stage

Legal

π1

π2

Not-Legal

π1

π2

Legal

π1

π2

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 11



Introduction
Creating Multi-Threaded Code

Results

Pipelining - Intermediate Variables

Insertion of Intermediate Variables (IV)

copies of variables (comparable to pipeline register)

implemented by queues

whenever a variable is read by a stage

w/o IVs

π1

π2

π3

IV inserted

π1

π2

π3

IV in HW

π1

π2

π3

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 12



Introduction
Creating Multi-Threaded Code

Results

Pipelining - Write Access

forward write accesses to first intermediate variable (in spatial
dimension)

≈ forwarding in hardware
⇒ order values using merge-element

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 13



Introduction
Creating Multi-Threaded Code

Results

Pipelining - Merge Element

Dependency
Graph

π1

π2

π3

x

Merger for x

Merger for variable x

Immediate
actions in π1

x(I6)

x(I9)

Delayed
actions in π1

x(I7)

x(I8)

Immediate
actions in π3

x(I4)

x(I3)

x(I2)

x(I1)

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 14



Introduction
Creating Multi-Threaded Code

Results

Translation to C

using OpenMP: API for programming MT

create thread for each stage

each stage is executed in an own loop ⇒ allows stages to run
desynchronized

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 15



Introduction
Creating Multi-Threaded Code

Results

Outline

1 Introduction

2 Creating Multi-Threaded Code

3 Results

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 16



Introduction
Creating Multi-Threaded Code

Results

Benchmark

MergeSort - 2x Xeon Quad Core

 0

 1

 2

 3

 4

 5

256 2048 16384 131072 1048576 16777216

sp
ee

du
p

array size

Speedup for Dual Xeon Quad Core

Speedup 1Thread vs. Pipelined-MThread

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 17



Introduction
Creating Multi-Threaded Code

Results

The End

Thank you for your attention!

Questions? Suggestions? Ideas?

Multithreaded Code from Synchronous Programs (Daniel Baudisch, Jens Brandt, Klaus Schneider) 18


	Multithreaded Code from Synchronous Programs
	Introduction
	Creating Multi-Threaded Code
	Results


