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Abstract: In this paper, the problem of the behaviour of soft jaws that can be used to replace the steel 

jaws of grippers is studied. One of the advantages of additive manufacturing is the printing of fully 

functional parts. Choice of material is often related to the part strength. The mechanical properties of 

3D printed parts should meet the service loading and, also, must be comparable with parts produced by 

traditional manufacturing techniques - machined parts or injection moulding. From the specialized 

literature information regarding the test results for effect of various printing parameters on part strength 

are available made in laboratory conditions and for standard test sample. For ABS materials various 

values for Young module are presented varying from 1.5 GPa to 2.15 GPa, for 100% infill rate and 

various modified parameters such as raster orientation. In order to study the behaviour of soft gripper 

jaws several part were printing and the resistance to bending was tested, by simulating the way a gripper 

works. An experimental stand was built using a force transducer and a displacement transducer to 

measure the deformation of the jaw, obtained by 3D printing, under load. The mechanical elastic 

hysteresis loop during an experimental loading/unloading was plotted and the amount of mechanical 

energy lost during a cycle, dissipated because the internal friction, was determined. Finite element 

analysis method was applied to make a comparison with the experimental results. In the finite element 

analysis, several simulations were considered, varying Young's modulus for the tested material 
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1. Introduction   
Grippers are used for orientation-positioning and tightening of the object / part during handling, 

processing, control and assembly. To ensure the fulfilment of the functions presented, the materials used 

in the construction of devices and grippers are usually alloy steel. The requirements of grippers are 

similar to those of clamping fixtures, namely: precise orientation and positioning according to machining 

requirements, rigidity depending on the size of the workpiece and machining forces, reliability, low 

maintenance, standardized components, high productivity, costs low [1]. To ensure the performance of 

the functions presented, the materials used in the construction of devices and grippers are usually alloy 

steel with an HRC hardness of up to 55-60 HRC for the clamping components. 

There are also cases where "flexible" jaws / soft jaws are needed to reduce the deformation of 

workpieces, especially for thin-walled thin parts when clamping. Soft jaws are one of the simplest 

methods of customized workholding and can be machined to the negative shape of the workpiece. 

Soft jaws can be manufactured by Additive Manufacturing (AM) methods by benefiting from the 

maximization of the flexibility offered by this method of manufacturing parts [2]. Additive 

Manufacturing (AM) is defined by the American Society for Testing and Materials as "the process of 

joining materials to make objects from 3D model data, usually layer by layer" [3, 4].  
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One of the advantages of AM is the printing of fully functional parts. Choice of material is often 

related to the part strength. The mechanical properties of 3D printed parts should meet the service 

loading and, also, must be comparable with parts produced by traditional manufacturing techniques - 

machined parts, for metal 3D printing or injection moulding thermoplastic [5, 6]. Most metal AM 

processes create parts with poor surface finish, usually no more than 15 μm Rz and very often 

considerably reduced. Machine finishing is necessary as a post-process [5]. Thermoplastic 3D printing 

can achieve good quality surfaces [7].  

From the specialized literature information regarding the test results for effect of various printing 

parameters such as: layer thickness, raster angle, build orientations, fill pattern, printing directions, infill 

rates and infill patterns air gap and model build temperature, made in laboratory conditions, for standard 

test sample on part strength are available [5, 6, 8-11]. 

Dudescu tested the influence of the raster orientation and of the infill pattern and the results indicate 

a Young’s modulus corresponding to the parts with infill percentage from 982 MPa at 20% to 1503 MPa 

at 100%, for ABS. The influence of the raster orientation for test parts with 100% infill rate have a 

constant value around 1500 MPa [6]. 

From experimental research Ahmed determined the flexural strength for ABS test sample and 

obtained 31.50 MPa Ultimate Flexural Stress at a loading of 58 daN and a Deflection at Ultimate Load 

of 5.96 mm [11]. 

Wu determine experimentally that the value for the elastic limit for ABS obtained was 22.9 MPa and 

the tensile strength for ABS was 27.1 MPa. The tensile properties of 3D-printed ABS test samples were 

lower than test samples obtained by injection-moulding by 26.2% for the elastic limit and by 26.8% for 

the tensile strength. The bending strength of ABS determined was 48.6 MPa. The 3D-printed ABS  test 

samples had bending strength and bending modulus reduced by up to 8.2% and 20.8%, respectively, 

compared with those obtained by injection-moulding [8]. 

 

2. Materials and methods  
In order to analyze the behaviour of the 3D printed gripper jaws, based on the presented previous 

research, jaw from a De-sta-co gripper model De-sta-co 84A3-3300AAAA was 3D printed, Figure 1. 

Based on the versatility of the printing process the jaw was designed to clamp a can of soft drink. 

 

Figure 1. a. View of the 3D printed gripper jaw, b. De-sta-co gripper, c. view of the clamped soda can 

 

In the experiments ABS plus P-430-Acrylonitrile-Butadiene-Styrene production-grade thermoplastic 

was used to 3D print the gripper soft jaws. The mechanical properties of the ABS plus P-430 

thermoplastic are presented in Table 1, [12]. 
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Table 1. Main Mechanical Properties for ABS 

plus P-430 thermoplastic [12] 
Mechanical Properties Value 

Tensile Strength, Yield 26 MPa 

Tensile Modulus 2,180 MPa 

Tensile Elongation at Break 2% 

Flexural Strength 48 MPa 

Flexural Modulus 1,760 MPa 

Rockwell Hardness 109.5 HRC 

 

The pre-processing of the STL model was realized in the 3D printer Insight command software for 

selecting the appropriate printing parameters. A view of the tool paths used for 3D printing is presented 

in Figure 2. 

The printer used is Stratasys Fortus 250 mc, that uses Fused Deposition Modelling (FDM) 

technology to build parts from the bottom up with precisely deposited layers of modelling and support 

material, with the following features: ABS plus P-430 – production-grade thermoplastic and soluble 

support material, build envelope - 254 x 254 x 305 mm, three layer thicknesses 0.178, 0.254 and 0.330 

mm. 

 
Figure 2. View of the tool paths used for 3D printing 

 

Printing parameters were selected according to the recommendation from specialty literature and 

considering the machine maximum possibilities: 1. parts slicing (on z axis): 0.254mm; 2.visible surface 

raster: 0.3556 mm; 3. internal raster: 0.3556 mm; 4. raster angle: 0; 5.part raster width: 0.3556, 6 part 

interior style solid. 

After printing the jaws in accordance with the printing parameters mentioned above, the jaws were 

mounted in a test stand that simulated the loading of one in the gripper. 

The acting force is measured with the force transducer and simulates the effect of the clamped part. 

The elastic deformation was measured by using and displacement transducer. 

The measuring equipment presented in Figure 3 consists of: force transducer S9 5kN produced by 

Hottinger Baldwin Messtechnik; inductive displacement transducer type Wl/10mm -10 mm stroke, 

produced by Hottinger Baldwin Messtechnik; Spider 8 multi-channel electronic PC measurement unit 

produced by Hottinger Baldwin Messtechnik; computer. 
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Figure 3. Test stand 

 

3.Results and discussions 
Figure 4 shows the hysteresis behaviour (force F versus deformation d evolution) during three 

successive cycles of gripper jaw loading/unloading, with three consecutive elastic mechanical hysteresis 

loops characterized by relative high deformations. 

 

 
Figure 4. The description of mechanical hysteresis 

loops for the 3D printed gripper jaw 

 

It is obvious that there are big similarities between these loops (shape and size). The analysis of each 

hysteresis loop produces some interesting results. 

Figure 5 shows the first mechanical elastic hysteresis loop during an experimental loading/unloading 

cycle with a force range: 0÷52 N and a deformation range: 0÷7.12 mm.  

First important experimental information available here is the area of hysteresis loop (0.02285N·m). 

This area is exactly the amount of mechanical energy - El lost during a cycle, dissipated because the 

internal friction (El=0.02285N·m). The input mechanical energy - Ei during the loading process used for 

deformation (calculated as the area between the red curve and horizontal line - hl on Figure 5, 

Ei=0.197795 N·m) is bigger than the output mechanical energy - Eo delivered by the gripper jaw during 

unloading process (calculated as the area between the blue curve and horizontal line hl on Figure 5, 

Eo=0.174941N·m). The difference between these two energies is evidently the lost mechanical energy 

El as El=Ei-Eo. Both areas (energies) were calculated here by numerical integration. 
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The energy El can be a cumulative characterization of the behaviour of material and the gripper jaw 

shape during a loading/unloading cycle. We propose two more appropriate characterizations: 

-The ratio between the energy El and the variation of force (the amount of mechanical energy lost per 

unit of force, Elf=4.455·10-4Nm/N), with meter as measurement unit. 

The ratio between the energy El and the variation of deformation (the amount of mechanical energy 

lost per unit of deformation, Eld=3.2207Nm/m), with Newton as measurement unit. 

Thus Elf does not depend by applied force and Eld does not depend by deformation. 

 

          

 
 

Second important experimental information on Figure 5 is the average bending stiffness of the 

gripper jaw (depending by material type, material structure, shape and loading) as the slope of the line 

which produces the best approximation (by computer assisted linear curve fitting, or by least square 

regression as well) of the evolution of force versus deformation, during loading process. 

It is interesting that the loading cycle can be easily approximated with two lines by curve fitting (as 

Figures 5 and 6 indicate). First line, from linear fit 1 (for a loading range 0÷12N) is defined (with the 

slope-intercept formula F=k1d+F01 of fitting line) by:  

 

F=10032.7·d+0.406                                   (1) 

 

Second line, from linear fit 2 (for loading bigger than 12N) is defined (with the slope-intercept 

formula F=k2d+F02) by: 

 

Figure 5.  The description of 

first mechanical hysteresis loop 

(Elf=4.455·10-4Nm/N, 

Eld=3.2207Nm/m, k1=10032.7 

N/m, k2=6734.5 N/m) 
 

Figure 6.A zoom-in detail on 

Figure 2 (in the area of fitting 

line intersection) 
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F=6734.5·d+4.281                                    (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The residual plot of loading curve from Figure 2 

related to fitting line 2 (±0.25 N) 

 

This means that -with a good approximation- the gripper jaw has two value of stiffness: k1=10032.7 

N/m (for a loading smaller than 12 N) and k2=6734.5 N/m for a loading bigger than 12 N. The intercept 

of first linear fit (the intersection of first fitting line with y-axis) is the remnant force F01=0.406 N. The 

intercept of second linear fit (the intersection of second fitting line with y-axis) is the remnant force 

F02=4.281 N. 

It is also interesting to underline the value of the ratio Eld/Eld=7229.56N/m: it has the same 

measurement unit as the stiffness and is relative close by k2value. 

 

     
 

       Figure 8.  The description of    

        secondmechanical hysteresis loop   

       (Elf=4.161·10-4Nm/N, Eld=3.0250Nm/m,  

      k1=9771.3 N/m, k2=6793.0 N/m) 

          Figure 9.Theresidual plot of loading                  

             curve from Figure 5 related to  

                           fitting line 2 

 

 

It is obvious that the evolution of loading related to linear fit 2 on Figure 5, and the residual plot of 

loading curve from Figure 7 too (here the reference line depicts the line from linear fit 2) proves a good 

linearity (with the variation of residual force of ±0.25 N). 
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An analysis of the other two hysteresis loops from Figure 4 produces similar results. Figure 8 

describes the second hysteresis loop and fitting lines, Figure 9 describes the residual plot of Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The description of third 

mechanical hysteresis loop (Elf=4.277·10-

4Nm/N, Eld=3.1105Nm/m, k1=9398.8 N/m, 

k2=6774.9N/m) 

            Figure 11. The residual plot of       

             loading curve from Figure 7         

          related to fitting line 2 

 

 

Figure 10 describes the second hysteresis loop and fitting lines, Figure 11 describes the residual plot 

of Figure 10. 

The main experimental results for each mechanical hysteresis loop are described in Table 2. 

 

Table 2. Main experimental results for each mechanical hysteresis loop 
Loop # k1 

[N/m] 

k2 

[N/m] 

El 

[N·m] 

Elf 

[m] 

Eld 

[N] 

Eld/Elf 

[N/m] 

r=(Eld/Elf)/ k2 

[ ] 

#1 10032.7 6734.5 0.02285 4.455·10-4 3.2207 7229.56 1.0735 

#2 9771.3 6793.0 0.02149 4.161·10-4 3.0250 7269.01 1.0700 

#3 9398.8 6774.9 0.02153 4.277·10-4 3.1105 7297.41 1.0732 

Average 9734.2 6767.4  4.297·10-4 3.1187 7265.32 1.0722 

 

There are two important observations in Table 2:  

-There are relative small variations of the stiffness k2. The average value of bending stiffness 

k2(6767.4 N/m) should be considered as the best option in gripper jaw behaviour characterization. 

-There are also relative small variations of the ratio Eld/Elf. As it proved in the last column from Table 

2, this ratio seems to be strictly related by the bending stiffness k2 (here with average value of the 

dimensionless ratio r=(Eld/Elf)/k2=1.0722). The value of the ratio Eld/Elf (having the same unit of 

measurement as bending stiffness k2) seems to be a type of stiffness involved in gripper jaw 

characterization(or any other mechanical part tested in the same way). A future approach will be focused 

on this topic. Also the signification of the ratio r will be privileged in a future research. 
In order to characterize the behaviour of the 3D printed gripper jaws a finite element analysis was 

performed, considering the experimental input force values of 52N and the experimental used measuring 

scheme. 

The definition of ABSplus-P430 material, used by the Stratsys 250 mc printer, in the ANSYS 

software, a generic acrylonitrile butadiene styrene (ABS) material, from the information database, was 

selected and the values for ABSplus-P430 were introduced, the main difference was the values of Young 

module 2200 MPa [12], and flexural modulus is 1.6 GPa.  

The loading scheme is presented in Figure 12. The areas represented in blue represent Fixed Support 
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(or recess), and the force of 52 N. was applied at the top of the part in the direction given by the blue 

arrow (according to the experiment).  

Figure 13 presents the Equivalent Stress (Von Mises) distribution for a modulus of 1.5 GPa. 

 

 
Figure 12.  FEA loading and support 

 
Figure 13. Equivalent Stress (Von Mises) distribution 

 

From the current research the printing parameters have a large impact on the mechanical properties 

of the 3D printed parts. From the current research the mechanical properties of the 3D printed parts are 

usually lower by 15-26% from the manufacturer datasheet specification of the material [6, 9, 10, 11]. 

According to Stratasys the 3D printed prototype has up to 80% of the strength of injection moulded ABS 

material [12]. 

Considering the current research on the mechanical properties of the materials FDM, several finite 

element analysis were done by varying Young modulus in accordance with the experimental results 

presented in the literature - 1.5 GPa ,1.57 GPa, 1.6 GPa, 1.7 GPa, 1.8 GPa, 2 GPa, 2.15 GPa. 

Figure 14 presents FEA displacement results in the measuring area. 

 

 
Figure 14. FEA displacement results in the measuring area for a modulus of 1.8 GPa 
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The FEA results for 52N load and variation of Young module are presented in Figure 15. The FEA 

value that is the closest to the experimental values is corresponding to a Young modulus of 1.8 GPa, 

resulting a deformation of 7.11 mm. 

 
Figure 15. Evolution of deformations (stiffness) for the gripper jaw, 

considering different Young module, for 0.052 kN load 

 

4. Conclusions  
The paper presents the measured values for displacement of 3D printed gripper jaws – soft jaws, 

considering normal working conditions of type of parts. In the performed experiment a modified jaw, in 

order to clamp a soda can, was 3D printed with 100% infill, from a De-sta-co gripper model De-sta-co 

84A3-3300AAAA. 

Several loading – unloading cycles were made and the stiffness value was determined. An analysis 

of the hysteresis loops indicate that loading cycle can be easily approximated with two lines by curve 

fitting and two values of the stiffness can be calculated, thus proving a nonlinear behaviour of the 3D 

printed jaws. The area of the hysteresis cycle between the loading curve and the unloading curve 

represents the mechanical work not recovered from the system.  

A finite element analysis was performed considering the experimental loading and support conditions 

and the Young modulus was varies considering the values proposed in the literature between 1.5 GPa to 

2.15 GPa. The values for displacement that are closer to the experimental values are corresponding to a 

value of 1.8 GPa for Young modulus, value that is 18 % lower that Young modulus for a part obtained 

by injection moulding. 

Printing parameters can be selected in order to maximize the mechanical properties of the parts, but 

when working with complex parts the distribution of loads and stress varies during the work process.  

For complex parts FEA is a fast and reliable method for determining the strain and stress but in order to 

safely design and simulate the behaviour of 3D printed parts, lower values for Young modulus must be 

considered. From the specialized literature and perform experiments, Young modulus for 3D printed 

parts when designing a complex parts with complex working conditions, should be 20 - 25% lower that 

the injection moulding. 
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