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The modified simple equation method is employed to find the exact traveling wave solutions involving 
parameters for nonlinear systems of evolution equations via the (2+1)-dimensional Konopelchneko-
Dubrovsky equations and the (2+1)-dimensional Nizhnik-Novikov-Vesselov equations in two 
dimensions. When these parameters are taken to be special values, the solitary wave solutions are 
derived from the exact traveling wave solutions. It is shown that the modified simple equation method 
provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations 
in mathematical physics. Comparison between our results and the well-known results will be presented. 
 
Key words: Modified simple equation method, Konopelchneko-Dubrovsky equations, Nizhnik-Novikov-
Vesselov equations, exact traveling solutions, solitary wave solutions. 

 
 
INTRODUCTION 
 
In recent years, nonlinear partial differential equations 
(PDEs) are widely used to describe many important 
phenomena and dynamic processes in physics, 
mechanics chemistry, biology, etc. As mathematical 
models of the phenomena, the investigation of exact 
traveling wave solutions of these equations will help one 
to understand these phenomena better. Many powerful 
methods for obtaining the exact traveling wave solutions 
have been presented, such as the inverse scattering 
method (Ablowitz and Clarkson, 1991) the Hirota’s 
bilinear method (Hirota, 1971; Ma, 2011), the Backlund 
transform method (Miura, 1978), the Painleve expansions 
methods (Weiss et al., 1983), the sine-cosine method 
(Yan, 1996), the homotopy perturbation method (He, 
2005a, b; El-Shahed, 2005), the Adomian Pade 
approximation method (Abassy et al., 2004), the 
homogeneous balance method (Wang, 1996), the 
variational iteration method (He, 2004, 2005a, b, c; Liu, 
2004; Liu, 2005, Liu et al., 2013),  the  algebraic   method 

(Hu, 2005), the tanh-function method (Malfliet, 1992; 
Parkes and Duffy, 1997; Fan, 2000; Yan and Zhang, 
2001; Zayed et al., 2004; Abdusalam, 2005; Xie et al., 
2005; Wang and Wei, 2010), the exp-function method 
(He and Wu, 2006; Yusufoglu, 2008; Zhang, 2008; Bekir, 
2009, 2010), the Jacobi-elliptic function method (Liu et 
al., 2001, 2004; Fu et al., 2001; Parkes et al., 2002), the 
F-expansion method (Wang and Li, 2005; Liu and Yang, 
2004; Wang and Zhang, 2005; Chen et al., 2005; Zhang 

and Xia, 2006), the ( / )G G -expansion method (Wang et 
al., 2008; Zhang, 2008; Zayed and Gepreel, 2009; Zayed, 
2009; Bekir, 2008; Ayhan and Bekir, 2012; Kudryashov, 
2010a, b; Aslan, 2010; Li et al., 2010; Zayed and 
Abdelaziz, 2012), the modified simple equation method 
(Jawad et al., 2010; Zayed, 2011; Zayed and Hoda 
Ibrahim, 2012; Zayed and Arnous, 2012), the multiple 
exp-function algorithm (Ma and Zhu, 2012; Ma et al., 
2010), the transformed rational function method (Ma and 
Lee, 2009; Ma et al., 2007; Ma and Fuchssteliner,  1996),
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local fractional variation iteration method (Yang and 
Baleanu, 2013), local fractional series expansion method 
(Yang et al., 2013; Hu et al., 2012) and so on. Based on 
the observation that it has been a successful idea to 
generate exact solutions of nonlinear wave equations by 
reducing PDEs into ordinary differential equations 
(ODEs), Ma and Lee (2009) proposed the transformed 
rational function method for constructing these solutions 
by using the rational function transformations. Ma and 
Lee’s method is more general and will be applied in 
forthcoming articles for some nonlinear wave equations 
with both integer and fractal orders. 

In the present article, we will apply the modified simple 
equation method (Jawad et al., 2010; Zayed, 2011; 
Zayed and Hoda Ibrahim, 2012; Zayed and Arnous, 
2012) to find the exact solutions for two coupled systems 
of nonlinear evolution equations via the (2+1)-
dimensional nonlinear Konopelchneko-Dubrovsky 
equations (Wang and Zhang, 2005; Zhang and Xia, 2006; 
Xia et al., 2004; Zhang, 2007; Wang and Wei, 2010) and 
the (2+1)- dimensional nonlinear Nizhnik-Novikov-
Vesselov equations (Ren and Zhang, 2006; Xia et al., 
2001; Zayed and Abdel Rahman, 2011) which play an 
important role in mathematical physics. The main idea of 
this method is that we choose a suitable wave 
transformation to reduce the nonlinear partial differential 
equations (PDEs) to nonlinear ordinary differential 
equations (ODEs). Then, we assume that the formal 
solutions of these nonlinear equations can be expressed 
by polynomials in [ ( ) / ( )]    where ( )  is an unknown 

function such that ( ) 0    and the dash denotes the 

derivative with respect to x y ct     where c is a 

constant. The degrees of these polynomials can be 
determined by considering the homogeneous balance 
between the highest order derivatives and the nonlinear 
terms appearing in the given nonlinear equations. The 
coefficients of these polynomials as well as the unknown 
function ( )  can be obtained as follows: Substituting the 

formal solutions into the given ODEs, we have other 

polynomials in , ( 0,1,2,...).j j    Equating with zero all 

the coefficients of these polynomials, we get a system of 
equations which can be solved easily without using the 
Maple or Mathematica to find the required unknowns and 
hence we derive the exact solutions. 

The rest of this article is organized as follows: First is a 
description of the modified simple equation method. This 
is followed by an application of this method to solve the 
nonlinear Konopelchneko-Dubrovsky equations and the 
nonlinear Nizhnik-Novikov-Vesselov equations. Thereafter 
some conclusions are presented. 
 
 

DESCRIPTION OF THE MODIFIED SIMPLE EQUATION 
METHOD 
 

Suppose we have a nonlinear evolution equation in the 
form 

 
 
 
 

( , , , , , ,...) 0,t x y xx yyF u u u u u u    (1) 

 

where F is a polynomial in ( , , )u x y t and its partial 

derivatives in which the highest order derivatives and 
nonlinear terms are involved. In the following, we give the 
main steps of this method (Jawad et al., 2010; Zayed, 
2011; Zayed and Hoda Ibrahim, 2012; Zayed and 
Arnous, 2012) as follows: 
 
Step 1: We use the wave transformation 
 

( , , ) ( ), ,u x y t u x y ct       (2) 

 
where c is a constant, to reduce Equation (1) to the 

following ODE: 
 

( , , ,...) 0,P u u u  
   

 (3) 

 

where P is a polynomial in u and its total derivatives, 

while the primes denote the derivatives with respect to .  

 
Step 2: We suppose that Equation (3) has the formal 
solution 
 

0

( )
( ) ,

( )

k
N

k

k

u A
 


 

 
  

 


  

 (4) 

 

where 
kA are constants to be determined, such that 

0.NA   The function ( )   
is an unknown function to be 

determined later, such that ( ) 0.    

 

Step 3: We determine the positive integer N in (4) by 

considering the homogeneous balance between the 
highest order derivatives and the nonlinear terms in 
Equation (3). 
 

Step 4: We substitute (4) into (3), we calculate all the 

necessary derivatives , , ,...u u u   of the function ( )u  and 

we account the function ( )  . As a result of this 

substitution, we get a polynomial of , ( 0,1,...)j j   . In this 

polynomial, we gather all the terms of the same power of 

, ( 0,1,...)j j   , and we equate with zero all the 

coefficients of this polynomial. This operation yields a 

system of equations which can be solved to find 
kA and 

( )  . Consequently, we can get the exact solutions of 

Equation (1). 
 
 

APPLICATIONS 
 

Here, we will apply the modified simple equation method 
to find the exact traveling  wave  solutions  and   then  the  



 
 
 
 
solitary wave solutions for the following nonlinear 
systems of evolution equations in two-dimensions: 
 
 

Example 1: The (2+1)-dimensional nonlinear 
Konopelchneko-Dubrovsky equations 
 

These equations are well known and have the following 
forms: 
 

2 23
6 3 3 0,

2
t xxx x x y xu u uu u u v u v                 (5) 

 

     ,x yv u       (6) 

 

where  and   are real nonzero parameters. Many 

methods were used to find the exact traveling wave 
solutions of Equations (5) and (6) (Wang and Zhang, 
2005; Zhang and Xia, 2006; Xia et al., 2004; Zhang, 
2007; Wang and Wei, 2010). Here, we solve Equations 
(5) and (6) using the proposed method. To this end, we 
use the wave transformation (2) to reduce Equations (5) 
and (6) to the following ODE: 
 

2 23
6 3 3 0,

2
cu u uu u u v u v                      (7) 

 

     .u v          (8) 
 

From (7) and (8) we deduce that 
 

2 2

1

3
[3 ( 3)] 6 3 0,

2
k c u u uu u u uu             

     

(9) 

 

where 
1v u k  , and 

1k  is an arbitrary constant of 

integration. Integrating (9) once with respect to   and 

vanishing the constant of integration, we have the 
equation 
 

2 2 3

1

3 1
[3 ( 3)] 3 0.

2 2
k c u u u u   

 
       

 
        (10) 

 

Balancing u with 
3u yields 1N  . Consequently, we 

have the formal solution 
 

0 1

( )
( ) ,

( )
u A A

 


 

 
   

 
          (11) 

 

where 
0A  and 

1A  are constants to be determined such 

that 
1 0.A 

 
Consequently, it is easy to see that 

 
2

1 2
,u A

 

 

  
   

 
           (12) 
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3

1 2 3
3 2 .u A

   

  

    
    

 

          (13) 

 
Substituting (11)-(13) into (10) and equating all the 

coefficients of 
0 1 2 3, , ,     

 
to zero, we respectively 

obtain 
 

2
0 2 3

1 0 0 0

3
:[3 ( 3)] 3 0,

2 2
k c A A A


   

 
      

 
        (14) 

 

 
2

1 2

1 1 0 1 0 1 1

3
:[3 ( 3)] 3 6 0,

2
k c A A A A A A


                   (15) 

 

 2 2

1 1 0 1: [ 2 2 ] 0,A A A A              
        

(16) 

 
3 3 2 2

1 1: ( 4) 0.A A                (17) 

 
From Equations (14) and (17) we deduce that 
 

2 2

0 0 0 1 1

1 3 2
0, 3 [3 ( 3)] 0, .

2 2
A A A k c A   



 
         

 

 (18) 

 
Let us now discuss the following cases: 
 
 
Case 1 
 

If 
0 0,A   

1 0,A   0    then we deduce from Equations 

(15) and (16) that 
 

1[3 ( 3)] 0,k c                (19) 

 

1( 2 ) 2 0.A                       (20) 

 
Consequently, Equations (19) and (20) yield 
 

1

1

2( 3) 6
/ ,

( 2 )

c k

A


 

 

 
  

       

       (21) 

 

where 
12 , 3 3 .c k      

 
Integrating (21) and using (20) we have  
 

1 1

1 1

2 2( 3) 6
exp ,

( 2 ) ( 2 )

c c k

A A


 

   

   
   

  

               (22) 

 
and then we have 
 

1 1
2

1 1

2( 3) 6
exp ,

( 3) 3 ( 2 )

c c k
c

c k A


 

  

  
   

   
        (23) 
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where 
1c  and 

2c are arbitrary constants of integration. 

From Equations (11), (22) and (23) we have the exact 
solution 
 

1 1
0

1

1
2 0

1

2( 3) 6 2( 3) 6
exp ( )

2 ( 2 )
( ) ,

2( 3) 6
exp ( )

( 2 )

c k c k

A
u

c k
c

A

 
 

   



 

 

     
   

    


  
  

 

    (24) 

 

where 1
1 1 0

1

2( 3) 6
[( 3) 3 ]exp

( 2 )

c k
c c k

A


 

 

  
    

 

 and 
0  is a 

constant. 
 
From (24) we deduce respectively the following kink-
shaped solitary wave solutions: 
 

(i) If 
2 1c    and 1

1

( 3) 3
0,

( 2 )

c k

A



 

 



 we obtain 

 

1 1
1 0

1

( 3) 3 ( 3) 3
( ) 1 tanh ( ) ,

2 ( 2 )

c k c k
u

A

 
  

   

      
    

    

  (25) 

 

1 1
2 0

1

( 3) 3 ( 3) 3
( ) 1 coth ( ) ,

2 ( 2 )

c k c k
u

A

 
  

   

      
    

       

(26) 

 

(ii) If 
2 1c    and 1

1

( 3) 3
0,

( 2 )

c k

A



 

 



 we obtain 

 

1 1
3 0

1

( 3) 3 ( 3) 3
( ) 1 tanh ( ) ,

2 ( 2 )

c k c k
u

A

 
  

   

      
    

        

(27) 

 

1 1
4 0

1

( 3) 3 ( 3) 3
( ) 1 coth ( ) ,

2 ( 2 )

c k c k
u

A

 
  

   

      
    

       

(28) 

 
 

Case 2 
 

If 
0 10, 0, 0A A    

 
then we deduce from Equations 

(15) and (16) that 
 

2 2

0 0 1

3
(3 6 ) 3 ( 3) ,

2
A A k c     

 
       

 
        (29) 

 

2

0 12 2 0.A A          
         (30) 

 

With the help of (18), we can simplify Equation (29) to 
take the form 
 

2 2

0 0

3
3 .

2
A A    

  
     

  
         (31) 

 
 
 
 
From (30) and (31) we have 
 

/ / ,A B               (32) 

 
where, 2 2

0 02 (3 6 )A A A      and 2

1 0 1( 2 ) .B A A A      
Integrating (32) and using (30) we deduce that  
 

12
exp ,

c A

B B
 

 
    

 
           (33) 

 
and then 
 

1
2

2
exp ,

c A
c

A B
 

 
   

 
          (34) 

 

where 
1c  and 

2c  are constants of integration. From (11), 

(33) and (34), we have the exact solution  
 

1
0

0

2 0

exp ( )

( ) ,

exp ( )

AA A

B B
u A

A
c

B

 



 

   
    
  

 
 

   
 

         (35) 

 

where 
1 0exp

2

A A
c

B


 
  

 

 and 

2 2

1

0 2

(3 6 ) (3 6 ) 8 [( 3) 3 ]
.

2

c k
A

     



      
  

From (35) we deduce the following kink-shaped solitary 
wave solutions: 
 

(i) If 
2 1c    and / 0,A B   we get 

 

1
1 0 0( ) 1 tanh ( ) ,

2 2

AA A
u A

B B
  

  
     

  
       (36) 

 

1
2 0 0( ) 1 coth ( ) ,

2 2

AA A
u A

B B
  

  
     

  

       (37) 

 
respectively. 
 

(ii) If 
2 1c    and / 0,A B   we get 

 

1
3 0 0( ) 1 tanh ( ) ,

2 2

AA A
u A

B B
  

  
     

           

(38) 

 

1
4 0 0( ) 1 coth ( ) ,

2 2

AA A
u A

B B
  

  
     

    

       (39) 

 
respectively. 



 
 
 
 
Example 2: The (2+1)-dimensional nonlinear Nizhnik-
Novikov-Vesselov equations 
 
These equations are well known and have the following 
forms: 
 

3 ( ) 3 ( ) ,t xxx yyy x y x yu ku ru su qu k uv r uw     
  
(40) 

 

, ,x y y xu v u w             (41) 

 

where , ,k r s and q  are real parameters. Many methods 

were used to find the exact traveling wave solutions of 
Equations (40) and (41) (Ren and Zhang, 2006; Xia et al., 
2001; Zayed and Abdel Rahman, 2011). Here, we solve 
these equations using the modified simple equation 
method previously described. To this end, we use the 
wave transformation (2) to reduce these equations to the 
following ODEs: 
 

( ) ( ) 3 ( ) 3 ( ) 0,q s c u k r u k uv r uw         
       

(42) 

 

, .u v u w                (43) 

 

Integrating (43), we get 
 

1 2  and  ,v u k w u k              (44) 

 

where 
1k  and 

2k  are arbitrary constants of integration. 

From (42) and (44) we get the equation 
 

2

1 2[( ) 3( )] ( ) 3( )( ) 0.q s c kk rk u k r u k r u          
 
(45) 

 

Integrating Equation (45) once with respect to   and 

vanishing the constant of integration, we have 
 

2

1 2[( ) 3( )] ( ) 3( ) 0.q s c kk rk u k r u k r u        
  
46) 

 

Balancing u   with 
2u  yields 2.N   Consequently, we 

get the formal solution 
 

2

0 1 2

( ) ( )
( ) ,

( ) ( )
u A A A

   


   

    
     

   
               (47) 

 

where 
0 1,A A  and 

2A are constants to be determined, 

such that 
2 0.A   It is easy to see that 

 
2 3

1 22 2 3

2 2
,u A A

    

   

       
       

   

               (48) 

 
3 2 2 4

1 22 3 2 2 3 4

3 2 5 3
2 .u A A

         

      

            
          

   

 (49) 
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Substituting (47) and (49) into (46) and equating all the 

coefficients of 0 1 2 3 4, , , ,       

 
to zero, we deduce 

respectively that 
 

0 2

1 2 0 0:[( ) 3( )] 3( ) 0,q s c kk rk A k r A          (50) 

 
1

1 2 1 0 1 1:[( ) 3( )] 6( ) ( ) 0,q s c kk rk A k r A A k r A              
 
(51) 

 
2 2 2 2 2

1 2 2 1 0 2

2

1 2

:[( ) 3( )] 3( ) 6( )

3( ) 2( ) ( ) 0,

q s c kk rk A k r A k r A A

k r A k r A

   

    

          

           

(52) 

 
3 3 3 2

1 2 1 2: 6( ) 2( ) 10( ) 0,k r A A k r A k r A                (53) 

 
4 2 4 4

2 2: 3( ) 6( ) 0.k r A k r A        
 
               (54) 

 
From (50) and (54), we have the following results: 
 

1 2
0 0 2

( ) 3( )
0, , 2,

3( )

q s c kk rk
A A A

k r

   
  


        (55) 

 

provided 0k r   and 
1 23( ).q s c kk rk   

 
Let 

us now discuss the following cases: 
 
 
Case 1 
 

If 
0 0,A   

1 0A   and 0,    then we deduce from 

Equations (51), (52) and (53) that  
 

1 2[( ) 3( )] ( ) 0,q s c kk rk k r                   (56) 

 

 2 2

1 2 1

2

1

2( ) 6( ) 3 ( )

3( ) 4( )[ ] 0,

q s c kk rk A k r

k r A k r



    

      

        
        (57) 

 

1 2 0.A                      (58) 

 

From (56) and (58) we have 
 

1 2 1

( ) 2
,

( ) 3( )

k r

q s c kk rk A

 


   
  

   
         (59) 

 

and consequently we get 
 

1 2

1

2( ) 6( )
/ .

( )

q s c kk rk

A k r
 

   
  


        (60) 

 

Integrating (60), we get 
 

1 2
1

1

2( ) 6( )
exp ,

( )

q s c kk rk
c

A k r
 

    
   

 

       (61) 
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and substituting from (61) into (59), we have 
 

1 1 2

1 1

2 2( ) 6( )
exp .

( )

c q s c kk rk

A A k r
 

     
   

 

       (62) 

 
Integrating (62), we have 
 

1 1 2
2

1 2 1

( ) 2( ) 6( )
exp ,

( ) 3( ] ( )

c k r q s c kk rk
c

q s c kk rk A k r
 

     
   

     

(63) 

 

where 
1c  and 

2c are arbitrary constants of integration. 

Substituting (59) into (57), we have  
 

1 2
1

3( ) ( )
2 ,

kk rk q s c
A

k r

   
 


         (64) 

 
provided 
 

1 23( ) ( )
0.

kk rk q s c

k r

   



 

 
Now, the exact solution of the system (40) and (41) in this 
case has the form 
 

2

1 2
0

1 2

1 2
2 0

1 2
0

1 2

1
2 0

3( ) ( )
exp ( )

6( ) 2( )
( )

3( ) ( )
exp ( )

3( ) ( )
exp ( )

6( ) 2( )

3(
exp ( )

kk rk q s c

k rkk rk q s c
u

k r kk rk q s c
c

k r

kk rk q s c

k rkk rk q s c

k r kk rk
c

 



 

 

 

     
   

      
  

            

    
  

     


 
   2

,
) ( )q s c

k r

 
 
 
 

    
      

(65) 

 

where 1 2 1 2
1 0

3( ) ( ) 3( ) ( )
exp .

kk rk q s c kk rk q s c
c

k r k r


        
  

    
 

If we set 
2 1c  

 
we have respectively the bell-shaped 

solitary wave solutions: 
 

21 2 1 2
1 0

[3( ) ( )] 3( ) ( )1
( ) sec ( ) ,

2( ) 2

kk rk q s c kk rk q s c
u h

k r k r
  

         
  

    

(66) 

 

21 2 1 2
2 0

[3( ) ( )] 3( ) ( )1
( ) s c ( ) .

2( ) 2

kk rk q s c kk rk q s c
u co e h

k r k r
  

        
  

  

(67) 

 
 
Case 2 
 

If 
0 0A   

1 0,A   and 0,    then we deduce from 

Equations (51) to (53) that 

 
 
 
 

1 2[3( ) ( )] ( ) 0,kk rk q s c k r               (68) 

 
2 2

1 2 1

2

1

{6( ) 2( ) 3( ) }

3 ( ) 4( )[ ] 0,

kk rk q s c k r A

A k r k r



    

      

         
      (69) 

 

1 2 0.A             (70) 

 
Consequently, we deduce from Equations (68) and (70) 
that 
 

1 2 1

( ) 2
,

3( ) ( )

k r

kk rk q s c A

 


   
  

   
       (71) 

 
and thus, we get 

 

1 2

1

6( ) 2( )
/ .

( )

kk rk q s c

A k r
 

   
  


       (72) 

 
Integrating (72), we have 

 

1 2
1

1

6( ) 2( )
exp ,

( )

kk rk q s c
c

A k r
 

    
   

 
      (73) 

 
From (71) and (73), we get 

 

1 1 2

1 1

2 6( ) 2( )
exp ,

( )

c kk rk q s c

A A k r
 

     
   

 
       (74) 

 
Integrating (74), we have 

 

1 1 2
2

1 2 1

( ) 6( ) 2( )
exp ,

3( ) ( ) ( )

c k r kk rk q s c
c

kk rk q s c A k r
 

     
   

     

(75) 

 

where 
1c  and 

2c are arbitrary constants of integration 

and 0,k r   
1 23( ).q s c kk rk     Consequently, 

we conclude from Equation (69) that 
 

1 2
1

3( ) 9( )
2 ,

q s c kk rk
A

k r

   
 


       (76) 

 
provided that 
 

1 2( ) 3( )
0.

q s c kk rk

k r

   


  
 
Now, the exact solution of Equations (40) and (41) in this 
case has the form: 
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2

1 2
0

1 2

1 2
2 0

1 2
0

1 2

2

( ) 3( )
exp ( )

3( )2[( ) 3( )]
( )

3( ) ( ) 3( )
exp ( )

3( )

( ) 3( )
exp ( )

3( )2[( ) 3( )]

ex

q s c kk rk

k rq s c kk rk
u

k r q s c kk rk
c

k r

q s c kk rk

k rq s c kk rk

k r
c

 



 

 

     
   

      
  

            

    
  

     





0

1 2
0

.
( ) 3( )

p ( )
3( )

A
q s c kk rk

k r
 

 
 
 

 
          

   (77) 

 

where 1 2 1 2
1 0

( ) 3( ) ( ) 3( )
exp .

3( )

q s c kk rk q s c kk rk
c

k r k r


        
  

    
 

If we set 
2 1c   in (77) we have the following solitary wave solutions: 

 

1 2 1 2
1 0

21 2 1 2
0

[( ) 3( )] ( ) 3( )1
( ) 3 4 tanh ( )

6( ) 2 3( )

( ) 3( ) ( ) 3( )1
tanh ( ) ,

6( ) 2 3( )

q s c kk rk q s c kk rk
u

k r k r

q s c kk rk q s c kk rk

k r k r

  

 

           
    

    

        
  

  

   (78) 

 

while, if 
2 1,c    we have the following solitary wave solutions: 

 

1 2 1 2
2 0

21 2 1 2
0

[( ) 3( )] ( ) 3( )1
( ) 3 4coth ( )

6( ) 2 3( )

( ) 3( ) ( ) 3( )1
coth ( ) .

6( ) 2 3( )

q s c kk rk q s c kk rk
u

k r k r

q s c kk rk q s c kk rk

k r k r

  

 

           
    

    

        
  

  

  (79) 

 
 

Let us now examine Figures 1 to 4 as it illustrates some 
of our results obtained in this article. To this end, we 
select some special values of the parameters obtained, 
for example, in some of the solutions (36) and (37) of the 
system (5), (6) and the solutions (66) and (67) of the 
system (40), (41) to get the following diagrams: 

 
 
Conclusions 

 
In this paper, we have applied the modified simple 
equation method to find some new exact solutions and 
solitary wave solutions of the (2+1)-dimensional 
Konopelchneko-Dubrovsky Equations (5), (6) and the 
(2+1)-dimensional Nizhnik-Novikov-Vesselov Equations 
(40), (41). Let us now compare between our results 
obtained in the present article with the well-known results 
obtained by  other  authors  using  different  methods  as 

follows: Our results (24) and (35) to (39) of the system of 
Equations (5), (6) are new and different from those 
obtained in Wang and Zhang (2005), Zhang and Xia 
(2006), Xia et al. (2004), Zhang (2007), and Wang and 
Wei (2010) using different methods, while after some 
simple calculations our results (25), (26), (27) and (28) 
are in agreement with the results (27) and (28) obtained 
in Wang and Wei (2010) using the extended tanh- 
function method. Also, our results (65), (66) and (77) to 
(79) of the system of Equations (40) and (41) are new 
and different from the results obtained in Zhang (2007), 
Ren and Zhang (2006), Xia et al. (2001), and Zayed and 
Abdel Rahman (2011) using other methods, while after 
some simple calculations our result (67) is in agreement 

with the results 
2 ( , , )u x y t  obtained in Xia et al. (2001, p. 

141) using the hyperbola function method. From these 
observations, we deduce that the proposed method in the 
present  article  is  simple, effective and can be applied to 
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Figure 1. The plot of the solution (36) when 
0 1,A   

1 2,A   

3,A   4,B   
0 7,    1,c   0.y   

 
 
 

 
 

Figure 2. The plot of the solution (37) when 
0 1,A   

1 2,A   

3,A   4,B   
0 7,    1,c   0.y   

 
 
 

 
 

Figure 3. The plot of the solution (66) when 
1 1,k   

2 2,k   3,k   

2,r    3,q    1,s    1,c   
0 1,   0.y   

 
 
 
 

 
 

Figure 4. The plot of the solution (67) when 
1 1,k   

2 2,k   3,k   

2,r    3,q    1,s    1,c   
0 1,   0.y   

 
 
 
many other nonlinear partial differential equations in the 
mathematical physics. With the aid of the Maple or 
Mathematica, we have assured the correctness of our 
solutions by putting them back into the original equations. 
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