SIGNAL SEPARATION IN THE WIGNER DISTRIBUTION DOMAIN USING FRACTIONAL FOURIER TRANSFORM

O. A. Alkishriwo, L. F. Chaparro1, and A. Akan2
1Department of Electrical and Computer Engineering, University of Pittsburgh
15213, Pittsburgh, USA
Phone: +(1)4126249665, Fax: +(1)4126248003
2Department of Electronics Engineering, Istanbul University Avcilar, Istanbul, 34850, Turkey

ABSTRACT

In this paper we propose an algorithm based on the fractional Fourier transform to separate the different components of a signal in the Wigner time-frequency domain. The aim is to obtain a compressed representation for such a signal containing a minimal number of parameters. The proposed procedure gets rid of the noise and the cross-terms after separating the signal components. Assuming the signals under consideration have chirps and sinusoids, the fractional Fourier transform is used to rotate the components to obtain a sinusoidal or impulsive sparse representation. The procedure relies on filtering or windowing after obtaining the order of the fractional Fourier transform for each of the components. Simulation results show the effectiveness of this approach in extracting the linear chirps and sinusoids from the noise and in eliminating the cross-terms from the Wigner distribution.

1. INTRODUCTION

Signals that display a minimal time-frequency product are sparse in either time or frequency. Such is the case of sinusoids and impulses, and of signals that can be represented exactly by these functions. A signal that is composed of chirps is thus not sparse, as its time-frequency product is not minimal. The Wigner distribution is appropriate for a joint time-frequency representation of a signal consisting of linear chirps and sinusoids, although it suffers from cross-terms [1,2]. Although, methods using the fractional Fourier transform have been proposed (see for instance [3]) to isolate and subtract these cross terms, such methods are computationally expensive. The sparseness of the signal is made less clear by the additive noise. Thus noise and cross-terms need to be eliminated before achieving a sparse representation of a noisy signal composed of sinusoids and linear chirps.

The separation and denoising of linear chirps with the fractional Fourier transform (FrFT) it is not a new problem and a lot of work has been done on this subject [4-7]. A recent work, [6], uses the FrFT and windowing to separate overlapped linear chirps by transforming them into impulses. An issue of interest that was not considered is whether the chirp components should be transformed into impulses or into sinusoids. Considering a signal that is composed of sinusoids and linear chirps and is affected by additive white noise, we propose a procedure based on time-frequency using the Wigner distribution and the FrFT. To separate the sinusoidal and the linear chirp components we need to get rid of the noise and the cross-terms in the Wigner time-frequency representation of the signal. If the signal has a chirp representation, the FrFT can be used to determine the number of chirps and sinusoids present in the signal and to find the corresponding order that would allow us to change the signal into a sparse representation of it. Depending on the signal, it might be more appropriate to obtain an impulse or a sinusoidal sparse representation.

The rest of this paper is organized as follows. In section 2 background information about the fractional Fourier transform is given. The proposed scenario and simulation results are illustrated in section 3. Finally, the paper is concluded in section 4.

2. FRACTIONAL FOURIER TRANSFORM

The fractional Fourier transform (FrFT) is defined as [8]:

\[X_a(u) = \int_{-\infty}^{\infty} x(t)K_a(t, u) dt \]

where

\[K_a(t, u) = \sqrt{\frac{1 - j \cot \alpha}{2\pi}} \exp \left(j \frac{t^2 + u^2}{2\pi} \cot \alpha - jut \csc \alpha \right) \]

and

\[0 < \alpha < \pi/2 \]

When \(\alpha = 0 \) the FrFT of the signal \(x(t) \) is the signal itself, and if \(\alpha = \pi/2 \) the FrFT becomes the Fourier transform of the signal. That is why it is considered a generalization of the Fourier transform. Similar to the classical Fourier transform which has a discrete version, the discrete Fourier transform (DFT), there are many representations in literature that have been proposed to implement the FrFT in the discrete domain. In this analysis we choose the one that depends on the DFT because it satisfies all the desired properties of the continuous FrFT [9]. The discrete fractional Fourier transform (DFrFT) is shown below:
The basic idea is to represent the signal as a summation of linear chirps and then to look for values of that convert each chirp into a sinusoidal or an impulse signal. The benefit of going through this process is to get the minimum time-frequency product as shown in Fig. 1(a) and (b). By following the same procedure with the rest of the chirps we can separate all of them from each other.

3. SYSTEM MODEL AND SIMULATION

The proposed system is shown in Fig. 1(c) and (d). If the signal is a combination of chirps each with a slope , then each of them will have an optimal order for the FrFT that rotates it to a sinusoidal or an impulse while the other components are ignored. Therefore, we can choose the chirp that corresponds to that optimal order and separate it from the others. By following the same procedure with the rest of the chirps we can separate all of them from each other.

Let be a linear chirp and additive white Gaussian noise. Then, the noisy signal is given in (1). As an example, consider the signals and are shown in Fig. 2(a) and (b) respectively.

\[v(t) = x(t) + \eta(t) \]

where

\[x(t) = \exp(-\alpha t^2 + j \frac{\beta t^2}{2} + \omega_0 t) \]

The FrFT of order for is which is shown in Fig. 2(c). The order of the FrFT that transforms the linear chirp into a sinusoid is . The computation of (C. of) can be obtained by taking the FrFT of the signal for and then taking the FFT of the resulted signal. This signal is a two dimensional and its marginal is...
shown in Fig. 2(d). Then the value of α can be obtained by finding the value that corresponds to the $\max|\text{FFT}\{V_c(t)\}|$. These results were computed when there is no noise. In general, the optimal order can be obtained analytically according to [4]:

$$
\alpha = \tan^{-1}\left(\frac{N\beta}{2\pi f_s^2}\right)
$$

where: N is the number of samples, β is the slope of chirp, f_s is the sampling frequency.

This angle, between the chirp and the horizontal axis, corresponds to the slope of instantaneous frequency of the chirp. The clean signal $x(t)$ and its Wigner distribution are shown in Figs 3(a) and (b). Figs. 3(c) and (d) show the signal $v(t)$ with signal-to-noise ratio ($S/N = 0 \text{ dB}$) and its Wigner distribution while Figs. 5(e) and (f) present the filtered signal $\hat{x}(t)$ with its Wigner distribution. The windowed signal $x'(t)$ and its Wigner distribution are given in Figs. 5(g) and (h). The error of the reconstructed signals $\hat{x}(t)$ and $x'(t)$ is shown in Figs 3(i) and (j).

It is not clear from Figs 3(i) and (j) which approach gives better results. Figures 4(a,b,c, and d) explain the performance of our approach (filtering) with the approach (windowing). A linear chirp that has different values of β is used for this comparison. The average linear error is calculated as shown below:

$$
\hat{E} = \text{avg}(|x(t) - \hat{x}(t)|)
$$

and

$$
E' = \text{avg}(|x(t) - x'(t)|)
$$

From these figures, we can conclude that the intersection of the error of the two approaches is a function of β (in more general is a function of the slope of the linear chirp, meaning a function of $(N, \beta, \text{and } f_s)$). If β has a small value (i.e. $\alpha < \pi/4$), then the filtering approach gives better results than windowing approach and vice versa.
taking the Wigner distribution of each chirp after separating signals from the rotation that corresponds to each order are shown in Figs. 6 (c) and (d). This shows clearly how the FrFT can detect the signal and denoise it. The separated signals are shown in Figs. 6 (e) and (f).

The proposed approaches attenuate the cross-terms on the Wigner distribution as given in Fig. 5. This can be done by taking the Wigner distribution of each chirp after separating them using our filtering/windowing approaches and then synthesizing the results together. The resolution of the time-frequency distribution of the proposed model is better than the Wigner distribution of the original signal, but the cost for this improvement will be the marginals are not satisfied anymore.

Fig. 4. (a) The error of $x(t)$ and $\tilde{x}(t)$, $S/N = 0$ dB, (b) the error of $x(t)$ and $x'(t)$, $S/N = 0$ dB, (c) mean linear error $\beta = 9$, (d) mean linear error $\beta = 50$, (e) Mean linear error $\beta = 80$, (f) mean linear error $\beta = 90$.

Finally, an actual noisy sound signal of a canary bird is denoised and separated into its components. The original signal, noisy signal, and denoised signal are shown in Fig. 7.

Fig. 5. The multi-component signal with $S/N = -5$ dB, (a) the Wigner distribution of $x(t)$, (b) the Wigner distribution of $v(t)$, (c) the Wigner distribution of the separated chirps, (d) E''.

The process of separation of the cross-components is illustrated in Fig. 6. The optimal orders are $\alpha_1 = \pi/21$ and $\alpha_2 = \pi/93$ as shown in Figs 6 (a) and (b). The resulted signals from the rotation that corresponds to each order are shown in Figs. 6 (c) and (d). This shows clearly how the FrFT
4. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a procedure that combines the Wigner distribution with the fractional Fourier transform to separate signal components, get rid of the cross-terms, and denoise them. The filtering and the windowing procedures are presented and explored to represent the signal by a sinusoidal or an impulse. The simulation results show the advantages of our model in attenuating the noise and the cross terms as well. Also, the filtering scenario gives better performance over the windowing one when the projection of the slope of the linear chirp on the frequency axis is smaller than the projection of the slope of the signal on the time axis (i.e. \(\alpha < \pi/4 \)). An interesting direction for future research could be to determine how we can use this method to improve the theory of compressive sensing especially for signals represented as combination of chirps.

5. REFERENCES