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Simple Summary: Bama minipigs are a local pig breed that is unique to China and possess several
negative features, including high fat content, low feed utilization rate, and slow growth rate. The
iroquois homeobox 3 (IRX3) gene has been implicated in human obesity and controls body mass
and composition in mouse. In this study, we successfully generated IRX3 biallelic knockout Bama
minipigs using CRISPR/Cas9-mediated gene editing combined with somatic cell cloning. The results
show that the use of IRX3-/- cells as donor cells for the production of somatic cell-cloned pigs induces
a significant decrease in the average live litter size and a significant increase in the average number of
stillbirths. Moreover, the birth weight of surviving IRX3-/- somatic cell-cloned pigs is significantly
lower, and viability is poor such that all piglets die shortly after birth. Therefore, the preliminary
results of this study suggest that IRX3 may have important biological functions in pigs, and IRX3
should not be used as a gene editing target to reduce fat content in Bama minipigs.

Abstract: Bama minipigs are a local pig breed that is unique to China and has a high development
and utilization value. However, its high fat content, low feed utilization rate, and slow growth rate
have limited its popularity and utilization. Compared with the long breeding cycle and high cost
of traditional genetic breeding of pigs, clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated (Cas) endonuclease 9 system (CRISPR/Cas9)-mediated gene editing
can cost-effectively implement targeted mutations in animal genomes, thereby providing a powerful
tool for rapid improvement of the economic traits of Bama minipigs. The iroquois homeobox 3
(IRX3) gene has been implicated in human obesity. Mouse experiments have shown that knocking
out IRX3 significantly enhances basal metabolism, reduces fat content, and controls body mass and
composition. This study aimed to knock out IRX3 using the CRISPR/Cas9 gene editing method to
breed Bama minipigs with significantly reduced fat content. First, the CRISPR/Cas9 gene editing
method was used to efficiently obtain IRX3-/- cells. Then, the gene-edited cells were used as donor
cells to produce surviving IRX3-/- Bama minipigs using somatic cell cloning. The results show that the
use of IRX3-/- cells as donor cells for the production of somatic cell-cloned pigs results in a significant
decrease in the average live litter size and a significant increase in the average number of stillbirths.
Moreover, the birth weight of surviving IRX3-/- somatic cell-cloned pigs is significantly lower, and
viability is poor such that all piglets die shortly after birth. Therefore, the preliminary results of
this study suggest that IRX3 may have important biological functions in pigs, and IRX3 should
not be used as a gene editing target to reduce fat content in Bama minipigs. Moreover, this study
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shows that knocking out IRX3 does not favor the survival of pigs, and whether targeted regulation
of IRX3 in the treatment of human obesity will also induce severe adverse consequences requires
further investigation.

Keywords: CRISPR/Cas9-mediated gene editing; Iroquois homeobox 3 (IRX3); obesity; Bama minipig;
somatic cell cloning

1. Introduction

Bama minipigs are an excellent local pig breed unique to China. Their characteristics include
small size, tolerance to rough feed, and strong adaptability, and disease resistance [1]. They have thin
skin and are fleshy with a delicious taste, and thus, are utilized in local products with high economic
value. Bama minipigs play an important role in poverty alleviation through industrial development at
its place of origin. However, Bama minipigs also have significant defects such as high body fat content,
low feed conversion rate, and slow growth speed, which limit their popularity and utilization.

The traditional genetic improvement of pigs generally involves long cycles and high costs,
which, in turn, slows down the genetic breeding process for Bama minipigs. In recent years, the
application of gene editing technology using clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated (Cas) endonuclease 9 system (CRISPR/Cas9) in pigs has brought
opportunities for the rapid improvement of economic traits of Bama pigs [2–5]. CRISPR/Cas9-mediated
gene editing is a third-generation gene editing technology following the zinc finger endonuclease
(ZFN) and transcription activator-like effector nuclease (TALEN) that allows gene knockout, insertion,
and replacement at specific gene loci through homologous recombination (HR) and non-homologous
end-joining (NHEJ), thereby achieving the purpose of site-specific modification [6]. The CRISPR/Cas9
gene editing technology is highly efficient and convenient for operation. Since its invention, it has been
successfully used for gene editing in Drosophila [7], zebrafish [8], mouse [9,10], rat [11], rabbit [12,13],
dog [14,15], pig [1,16–22], and cynomolgus monkey [23–25] and has demonstrated enormous advantages
and potentials in animal disease models [26,27] and trait improvement [28,29]. Our research group had
previously used CRISPR/Cas9 gene editing and somatic cell cloning technology to prepare gene-edited
Bama minipigs [1], thereby laying a foundation for the improvement of productive traits of Bama
minipigs by gene editing.

The production of transgenic cloned pigs with the aid of somatic cell nuclear transfer (SCNT),
also named as somatic cell-cloning, is characterized by a disappointingly low efficiency. Therefore,
significant improvement of pig cloning efficiency is required for practical applying SCNT strategies to
various biomedical and biotechnological research fields [30–35]. Recent investigations have indicated
a number of factors that bring about the generation of transgenic or non-transgenic cloned embryos,
conceptuses and offspring in pigs. These factors encompass, among others: (1) the provenance of nuclear
donor cells [36–39]; (2) nuclear, epigenomic and cytoplasmic maturity of enucleated metaphase II-stage
oocytes [40–43]; (3) the methods used for artificially activating porcine SCNT-derived oocytes [44–47];
(4) capability of donor cell nuclear genome to be epigenetically reprogrammed in a cytoplasm of
SCNT-derived oocytes and descendant blastomeres of cloned embryos [48–53]; (5) intergenomic
communication between nuclear and mitochondrial DNA fractions in SCNT-derived oocytes and
resultant cloned embryos [54–57]; and (6) initiation and progression of apoptosis processes in the ex
vivo expanded nuclear donor cells and the cloned pig embryos generated [58–64].

In view of the high fat content of Bama minipigs, this study intended to target the obesity gene
through CRISPR/Cas9 gene editing to reduce its fat content. To date, only a few functional genes
directly related to porcine obesity have been reported. Therefore, we decided to identify relevant
target genes that may be used for reference from known human obesity-associated genes. Iroquois
homeobox 3 gene (IRX3) is a human obesity-related gene that has recently been identified [65,66].



Animals 2020, 10, 501 3 of 19

Studies have shown that its up-regulation is significantly associated with human obesity, and mice
with biallelic knockout mutations of IRX3 knockout did not significantly reduce their viability after
birth and can significantly enhance basal metabolism, reduce fat content, and ultimately reduce body
weight, suggesting that IRX3 is a major gene that controls body mass and composition in human and
mouse [65,66]. However, the role of IRX3 in pig has not been examined to date. This study knocked
out bama pig IRX3 using CRISPR/Cas9 gene editing technology to explore the relationship between
IRX3 and body weight and obesity in pig.

2. Materials and Methods

2.1. Animal Ethics

All the animal procedures used in this study were conducted in accordance with the Guide for
Care and Use of Laboratory Animals (8th edition, released by the National Research Council, USA) and
were approved by the Animal Care & Welfare Committee of Foshan University (approve no. 2019020).
Pig ovaries used for producing in vitro maturated oocytes used as SCNT recipients were collected from
a slaughterhouse. All animal surgical procedures were performed under anesthesia by a veterinarian,
and all efforts were made to minimize animal suffering.

2.2. Reagents and Chemicals

Unless otherwise stated, all organic and inorganic reagents were purchased from Sigma-Aldrich
Co. (St. Louis, MO, USA). Self-made solutions were filtered through a 0.22-µm filter (Millipore,
Bedford, MA, USA) and stored at 4 ◦C or −20 ◦C until use. Pipette tips, centrifuge tubes, and petri
dishes were purchased in aseptic packages and were all disposable.

2.3. Construction of CRISPR/Cas9 Plasmid

Design and construction of CRISPR/Cas9 plasmid were performed according to our previous
study [1]. Two sgRNAs, namely sgRNA1 (CCCAGCTCGGATACCAGTACATC) and sgRNA2
(CCCCAGCTCGGATACCAGTACAT) (the protospacer adjacent motif (PAM) sequence was underlined),
used for targeting exon 1 of IRX3 (NCBI gene ID: 100518611) was designed by the CRISPR Design
Tool (http://crispor.tefor.net). The pSpCas9(BB)-2A-Puro (PX459) V2.0 plasmids (Addgene #62988)
were linearized by BsbI restriction enzyme digestion, and linked with the annealed sgRNAs using a T4
DNA Ligase (TaKaRa, Dalian, China). The constructed CRISPR/Cas9 plasmid was confirmed by DNA
sequencing (BGI, Shenzhen, China).

2.4. Cell Transfection and Selection of Gene-Edited Cell Colonies

Procedures used for the isolation, cultivation, and transfection of newborn Bama minipig kidney
fibroblasts were based on our previous studies [1,41,67–70]. After establishing deep anesthesia, the
piglet was euthanized and its bilateral kidneys were collected and minced in Dulbecco’s phosphate
buffered saline (DPBS; Gibco, Grand Island, NY, USA). Tissue fragments were washed several times
with DPBS and digested in 0.25% (w/v) trypsin-EDTA solution for 30 min at 37 ◦C. Isolated cells were
cultured for 1 to 2 passages in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented
with 15% (v/v) fetal bovine serum (FBS; Gibco) and then stored frozen in liquid nitrogen.

Two days before transfection, the frozen cells at passages 1 to 2 were thawed and cultured in 4-well
cell culture plates (NUNC, Shanghai, China) without antibiotics until cells reached approximately
50% confluency. The medium was replaced with fresh cell culture medium. Transfection mixtures
were prepared with 1.5 µL Lipofectamine 3000 (Life Technologies, Carlsbad, CA, USA) plus 500 ng
CRISPR/Cas9 plasmid, added to the cells, and then incubated overnight at 37 ◦C in a humidified
atmosphere of 5% (v/v) CO2 in air. At 24 h post-transfection, cells were split into eight 6-well cell culture
plates (NUNC). After 24 h of recovery, the transfected cells were selected with 0.75 µg/mL puromycin
(Solarbio, Beijing, China) for 3 days. Then, puromycin was withdrawn and the cells were further
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cultured for 7 to 10 days. Individual cell colonies were picked out and cultured in 4-well cell culture
plates. When confluency was achieved, the cell colonies were subcultured and a part of these was
collected for genotyping. Positive gene-edited cell colonies were expanded and then cryopreserved.

2.5. Genotyping and Detection of Exogenous Genes Integration in Gene-Edited Cell Colonies

Genotyping of CRISPR/Cas9-mediated gene editing in pig cells was conducted according to our
previous studies [1,70]. Genomic DNA was extracted from cell colonies and tail tissues of newborn
cloned piglets using a TIANamp Genomic DNA Kit (Tiangen, Beijing, China). One pair of primers (PF:
5′-AGCAGATCAATAGGCGAACG-3′; PR2: 5′-TGTGACTGCGGAACCAAAAC-3′) were designed to
amplify across the gene editing site, resulting in 617-bp amplicons. PCR reactions were conducted with
2 µL of genomic DNA, 0.5 µL forward primer (10 µM), 0.5 µL reverse primer (10 µM), 10 µL PrimeSTAR
Max (TaKaRa, Dalian, China), and deionized water to a total volume of 20 µL. PCR amplification
conditions were as follows: 1 cycle at 95 ◦C for 5 min; followed by 35 cycles at 98 ◦C for 10 s, 56 ◦C for
5 s, and 72 ◦C for 5 s; and then 72 ◦C for 5 min. The PCR products were examined by 1.5% (w/v) agarose
gel electrophoresis containing 0.01% (v/v) Andy Gold™Nucleic Acid Gel Stain (Applied BioProbes,
Davis, CA, USA). The PCR amplicons were collected and ligated to an 18T vector (TaKaRa) for Sanger
sequencing (BGI).

Detection of CRISPR/Cas9 plasmid integration in gene-edited cell colonies was conducted
by PCR. One pair of specific primers (PF: 5′-CGGAGACTACAAGGATCATG-3′ and PR:
5′-TATCCTCTTCCACCAGGAAG-3′) was used for amplification of CRISPR/Cas9 plasmid, resulting
in 428-bp amplicons. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used
as reference using primers PF: 5′-TCTGCATCAGTGCTCCTTGA-3′ and PR: 5′-AAGAGGTGAT
GAAGCTCCGA-3′, resulting in 650-bp amplicons. Cell colonies integrated any of CRISPR/Cas9
plasmid were not used in generating somatic cell-cloned pigs.

2.6. Off-Target Detection in Gene-Edited Cell Colonies

Potential off-target sites (OTSs) were predicted by the CRISPR Design Tool (http://crispor.tefor.net)
according to our previous studies [1,70]. Four sites with potential off-target effects (Table 1) were
selected for detection of off-targets occurred in gene-edited cell colonies. Specific primers were used
for PCR reaction, and the products were sequenced to confirm whether off-targeting mutations existed.
Off-targets were identified by alignment of sequenced alleles to wild-type allele. Cell colonies harboring
any off-targets were not used in generating somatic cell-cloned pigs.

http://crispor.tefor.net
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Table 1. Off-target sites (OTS) and corresponding primers used for analysis of off-targets.

OTS No. Chr. Strand Position Sequence * Score Gene Primers for PCR and Sequencing Amplicon (bp)

sgRNA2 Chr6 −1 31046354 ATGTACTGGTATCCGAGCTGGGG 100 NCBI Gene ID:
100518611

PF: AGCAGATCAATAGGCGAACG
PR: CTGTCCTTCAGCTCATACTG 617

OTS1 Chr13 1 116315529 TTGGACTGGGATCCGAGCAGAAG 0.49 NCBI Gene ID:
106505748

PF: TCAACTTCTCGCATGGTGTG
PR: TGACTAGCAACTTCAGAGGC 505

OTS2 Chr14 −1 34640565 AGTTGCTGGTATCCTAGCTGCAG 0.40 NCBI Gene ID:
100153965

PF: TCTCCAGGTATTATCAGGAGT
PR: CACATCCTATAAAGCTCAGTC 347

OTS3 Chr12 1 53174151 ATGTCCACGTATCCCAGCTGGAG 0.27 NCBI Gene ID:
100523637

PF: AAGTCGGAGAGGTTGGTATC
PR: TTCCTACAGAGCAGAAACCG 500

OTS4 Chr17 1 56522870 TTGTCCTGGCATCCCAGCTGGGG 0.38 None PF: AACCTAGAGCTGTGGACAAC
PR: CTCCAACACTTGTAGCCTTG 451

* Underlined letters are the mismatched nucleotides in off-target sequences aligned to sgRNA. PAM sequences are marked in bold.
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2.7. Production of Gene-Edited Bama Minipigs by Somatic Cell Cloning

Procedures used for donor cell preparation, in vitro maturation of porcine oocytes, somatic cell
nuclear transfer (SCNT), and embryo transfer were according to our previous studies [1,41,68,69].
Briefly, gene-edited cell colonies that did not have exogenous genes integrated and did not harbor
any off-targets were used for producing mutant minipigs. To prepare nuclear transfer donor cells,
cryopreserved mutant cells were thawed and cultured for 2 days, followed by serum starvation (DMEM
supplemented with 0.5% FCS) for 48 h. The cells were then harvested and resuspended with 1 mL
micromanipulation medium (10 mM HEPES-buffered TCM-199 containing 0.3% [w/v] bovine serum
albumin [BSA]; pH = 7.3). This cell suspension was maintained at room temperature and used as SCNT
donor cells. Cumulus-oocyte complexes (COCs) were aspirated from the follicles, and washed twice
in PVA-TL-HEPES medium. The COCs were transferred into 200 µL drops of preheated maturation
medium (bicarbonate-buffered TCM-199 supplemented with 0.1% [w/v] polyvinyl acetate [PVA],
3.05 mM D-glucose, 0.91 mM sodium pyruvate, 0.57 mM cysteine, 10 ng/mL epidermal growth factor
[EGF], 0.5 µg/mL follicle-stimulating hormone [FSH], 0.5 µg/mL luteinizing hormone [LH], 0.0750 g/L
penicillin G, 0.0500 g/L streptomycin and 10% [v/v] porcine follicular fluid), covered with mineral oil,
and then incubated for 20 to 22 h at 38.5 ◦C in a humidified atmosphere of 5% (v/v) CO2 in air. Then, the
COCs were cultured for an additional 20 h in the same medium without the gonadotropins. Following
maturation, expanded cumulus cells were removed from the oocytes by vigorous pipetting in presence
of 0.1% (w/v) hyaluronidase. Oocytes with an evenly granulated ooplasm and an extruded first polar
body were selected and placed into the micromanipulation medium drop (containing donor cells and
7.5 µg/mL cytochalasin B) on a 60-mm cell culture dish (NUNC) and overlayed with mineral oil.

Matured oocytes were enucleated by aspirating the first polar body plus a portion of the adjacent
cytoplasm (presumably containing the metaphase II plate) using a sharp-beveled glass pipette (WPI,
Sarasota, FL, USA) with a diameter of 20 to 25 µm. After enucleation, a donor cell was carefully
injected into the perivitelline space, maximizing the amount of cell membrane contact between the
donor cell and the oocyte. The fusion and activation of nuclear transferred embryos were performed
simultaneously using electrical pulses (2 successive DC pulses of 1.2 kV/cm for 30 µs; BTX2000, BTX
Inc., San Diego, CA, USA) in a fusion medium [0.3 M mannitol, 1.0 mM CaCl2, 0.1 mM MgCl2, 0.5 mM
HEPES plus 0.3% (w/v) BSA]. After fusion and activation, the reconstructed embryos were placed into
PZM-3 containing 0.3% (w/v) BSA and cultured at 38.5 ◦C in a humidified atmosphere of 5% (v/v) CO2

in air. Fusion was checked 40 to 60 min later. Fused embryos were cultured until embryo transfer.
For embryo transfer, 200 to 300 cloned embryos were cultured 0 to 1 day in vitro, and then

surgically transferred into the oviductal ampullary-isthmic junction of surrogate sows exhibiting
natural estrus (within one day of the onset of estrus). Pregnancy was diagnosed by ultrasonography.
Pregnant surrogate sows were delivered by natural parturition on days 114 to 120 of gestation (SCNT
was performed on Day 0).

2.8. Identification of IRX3 Knockouts in Somatic Cell-Cloned Bama Minipigs

Tail biopsies were collected from newborn somatic cell-cloned piglets. One part of the tissue was
used for extraction of genomic DNA, followed by PCR for identification of CRISPR/Cas9-mediated
gene editing of the IRX3 locus. The remaining tissue was used for extraction of total protein, which
was used in western blot (WT) analysis for detecting the disruption of IRX3 protein expression. Briefly,
tissue samples were homogenized in cell lysis buffer, and 30 µg of isolated total protein were analyzed
by sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel electrophoresis. Then, the distributed
protein were immunoblotted onto a polyvinylidene fluoride membrane (Millipore Corp, MA, Bedford,
USA). The primary mouse monoclonal antibodies against IRX3 (1:500; sc-166877, Santa Cruz) and
GAPDH (1:500; sc-47724, Santa Cruz) were used and were detected with a horseradish peroxidase
(HRP)-conjugated rabbit anti-mouse IgG secondary antibody (1:1000; sc-358914, Santa Cruz). The
immuno-stained membranes were imaged using a Gel Doc EZ system (Bio-rad, Hercules, CA, USA)
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with immunochemiluminescent substrate (Tiangen) for detection of HRP. Positive WB results for the
detection of IRX3 and GAPDH should appear at molecular weights of 60 and 38 kDa, respectively.

2.9. Statistical Analysis

Body weight and litter size data were expressed as the mean ± standard deviation (SD) and
analyzed using independent sample, two-tailed student’s t-test. Statistical analysis was conducted
with GraphPad Prism 5 software (La Jolla, CA, USA), and differences with a p-value < 0.05 were
considered statistically significant.

3. Results

3.1. Design and Test of CRISPR/Cas9-Mediated IRX3 Gene Editing Target in Bama Minipig

The Bama minipig IRX3 gene has four exons, and exon 1 was used as the gene editing target in
this study (Figure 1). Using the sgRNA online design tool (http://crispor.tefor.net), two targets with
high scores were identified (recorded as sgRNA1 and sgRNA2, respectively) (Figure 1). CRISPR/Cas9
gene editing vectors that target sgRNA1 and sgRNA2 (referred to as Cas9-IRX3-sgRNA1 and
Cas9-IRX3-sgRNA2, respectively) were constructed and tested in the kidney fibroblasts of Bama
minipig. The two CRISPR/Cas9 vectors were separately transfected into Bama minipig kidney
fibroblasts, the cells were harvested, and genomic DNA was extracted two days after transfection.
The results of PCR and DNA sequencing showed that sgRNA2 caused a higher frequency of targeted
mutations (Figure 1). Therefore, sgRNA2 was selected as the target to prepare IRX3 gene-edited Bama
minipig kidney fibroblasts.
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Figure 1. Design and assessment of sgRNAs targeting Bama minipig IRX3. Two potential sgRNAs
(sgRNA1 and sgRNA2) were designed for targeting exon 1 of the Bama minipig IRX3. Two
CRISPR/Cas9 vectors were individually introduced into cultured Bama minipig kidney fibroblast cells
by Lipofectamine transfection to assess targeted DNA cleavage efficacy. The DNA sequencing results
show that sgRNA2 caused a much higher proportion of targeted mutations than sgRNA1. The sgRNAs
and protospacer adjacent motif (PAM) sequences are marked with the black and blue lines, respectively.
The predicted cleavage sites are indicated by the blue arrowheads.

3.2. Preparation of IRX3 Gene-Edited Bama Minipig Somatic Cells

Cas9-IRX3-sgRNA2, which is capable of efficient gene cleavage of the target sequence of IRX3
in Bama minipig somatic cells, was used for the preparation of gene-edited cells. The plasmid
was transfected into Bama minipig kidney fibroblasts using a liposome transfection method. After

http://crispor.tefor.net
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puromycin resistance screening and continuous culture, a total of eight single-cell colonies with good
morphology were selected and expanded in culture. A fraction of the cells was used for genetic
identification, and the remaining cells were frozen for later use.

The IRX3 target sequence of the transfected cells was obtained by PCR and ligated to an 18T vector
for Sanger sequencing. The results showed that seven out of eight single cell colonies (87.5%) had
mutations on both alleles (Table 2). After analyzing the results of gene mutations, we found that the
two IRX3 alleles of single-cell colony #2-2 had frameshift mutations due to a deletion and insertion of
one base, respectively. In view of its minimal genetic changes and good cell morphology and viability,
we selected this single-cell colony for subsequent analysis.

The integration of foreign gene editing plasmids into the cell genome affects the phenotypic
analysis of gene-edited animals. Therefore, we performed PCR amplification of single-cell colony #2-2
to detect the presence of foreign gene integration. PCR analysis showed no integration of CRISPR/Cas9
plasmid into single-cell colony #2-2 (Figure 2A,B).

CRISPR/Cas9 editing of the genome of a cell may also result in off-target effects. We selected four
highly active potential OTSs from the off-target prediction provided by the sgRNA online design tool
(http://tools.genome-engineering.org) for testing (Table 1). DNA sequencing results showed no genetic
mutations in these four OTS regions in single-cell colony #2-2 (Figure 2C–F).

In summary, using the CRISPR/Cas9-mediated gene editing method, we obtained single-cell
colony #2-2 that carried biallelic frameshift mutations of IRX3 and confirmed that no foreign gene
integration and off-target effects occurred, and the cells demonstrated good morphology and viability.
Therefore, these cells were used for the production of cloned pigs from gene-edited somatic cells.

Table 2. Summary of IRX3 genotypes of single-cell colonies generated by CRISPR/Cas9-mediated
gene editing.

Colony No. Allele IRX3 Genotypes * Indels

Wild type 1/2 ATGTCCTTCCCCCAGCTCGGATACCAGTACATCCGCCCGATCTACCCGCCCGAGC WT/WT
#2-1 1 ATGTCCTTCCCCCAG————TACATCCGCCCGATCTACCCGCCCGAGC -12

2 ATGTCCTTCCCCCAGCCTCGGATACCAGTACATCCGCCCGATCTACCCGCCCGAG +1
#2-2 1 ATGTCCTTCCCCCAG-TCGGATACCAGTACATCCGCCCGATCTACCCGCCCGAGC -1

2 ATGTCCTTCCCCCAGTCTCGGATACCAGTACATCCGCCCGATCTACCCGCCCGAG +1
#2-3 1/2 ATGTCCTTCCCCCAG————TACATCCGCCCGATCTACCCGCCCGAGC -12/-12
#2-4 1/2 ATGTCCTTCCCCCAG————TACATCCGCCCGATCTACCCGCCCGAGC -12/-12
#2-5 1/2 ATGTCCTTCCCCCAGCTCGGATACCAGTACATCCGCCCGATCTACCCGCCCGAGC WT/WT
#2-6 1 ATGTCCTTCC——TCGGATACCAGTACATCCGCCCGATCTACCCGCCCGAGC -6

2 ATGTCCTTCC———GATACCAGTACATCCGCCCGATCTACCCGCCCGAGC -9
#2-7 1/2 ATG——-——TCGGATACCAGTACATCCGCCCGATCTACCCGCCCGAGC -13/-13
#2-8 1 ATGTCCTTCCCCCAG–CGGATACCAGTACATCCGCCCGATCTACCCGCCCGAGC -2

2 ATGTCCTTCCCCCAG—–ATACCAGTACATCCGCCCGATCTACCCGCCCGAGC -5

Notes: * The sgRNA2 sequences are underlined, protospacer adjacent motif (PAM) sequences are labeled with bold
fonts. Deletions in the targeted sequences are replaced with “-”.

http://tools.genome-engineering.org
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Figure 2. Detection of CRISPR/CAS9 plasmid integration and off-target in gene-edited single-cell
colony. PCR amplification confirmed no integration of CRISPR/Cas9 plasmid in single-cell colony #2-2
(A). PCR amplification of glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) was used to
confirm the presence of genomic DNA in all the samples (B). Four sites with potential off-target effects
(OTS) were selected for detection of off-targets occurred in gene-edited cell colonies. DNA sequencing
results showed no genetic mutations in these four OTS regions in single-cell colony #2-2 (C–H). The
sample collected from a wild-type (WT) Bama minipig was used as a control.

3.3. Biallelic Knockout of IRX3 Significantly Reduces the Production and Survival of Somatic Cell-Cloned Bama
Minipigs

Single-cell colony #2-2 cells were used as donor cells for the production of cloned pigs. A total
of 1,000 cloned embryos were transplanted into four surrogate sows (Table 3), of which two were
pregnant (Figure 3A,B) and three live cloned pigs were later born (Figure 3C), indicating an overall
cloning efficiency of 0.3%.
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Table 3. Production of gene-edited and un-gene-edited somatic cell-cloned Bama minipigs.

Recipient
Sow Donor Cells Gender No. of Embryos

Transferred
Day 40 Pregnancy

Status *
Gestational
Period(day)

No. of Piglets
Delivered(Alive/Stillborn)

Cloning
Efficiency(%) ** Birth Weight(Kg)

#8024 IRX-/- ♂ 250 -
#8025 IRX-/- ♂ 250 -
#8022 IRX-/- ♂ 250 + 117 1/6
#8023 IRX-/- ♂ 250 + 116 2/7
Sum ♂ 1000 3/13 0.3% 0.3; 0.4; 0.5

#1757 WT ♂ 280 + N/A 9/0
0.6; 1.0; 0.6; 0.6;
0.7; 1.0; 0.5; 0.6;

1.2

#0205 WT ♂ 230 + N/A 7/1 1.0; 0.5; 0.6; 0.9;
0.7; 0.5; 0.5

#4993 WT ♂ 230 + N/A 5/2 N/A
#0207 WT ♂ 212 + N/A 8/0 N/A
#2020 WT ♂ 246 + N/A 10/2 N/A
#4998 WT ♂ 243 + N/A 12/1 N/A
#4990 WT ♂ 240 + N/A 12/0 N/A
#2021 WT ♂ 230 + N/A 9/0 N/A
#0706 WT ♂ 230 + N/A 8/2 N/A
#7388 WT ♂ 235 + N/A 7/1 N/A
#1801 WT ♂ 220 + N/A 5/0 N/A
#1123 WT ♂ 220 + N/A 9/0 N/A
#1215 WT ♂ 220 + N/A 5/5 N/A
#1802 WT ♂ 220 + N/A 5/3 N/A
#0207 WT ♂ 280 + N/A 8/0 N/A
#0208 WT ♂ 280 + N/A 5/3 N/A
#0307 WT ♂ 280 + N/A 5/2 N/A
Sum 4096 129/23 N/A

Notes: * Pregnancy status: +, pregnant; -, not pregnant; ** Cloning efficiency: No. of live piglets born / No. of embryos transferred × 100%. WT, wild type, means non-gene-edited somatic
cells. WT and IRX-/- cells are from the same donor animal origin. N/A, Not Applicable.
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Figure 3. Production of IRX3 knockout Bama minipigs. Two surrogate sows became pregnant, which
was identified using B-ultrasound scanning (A,B; the red arrows indicate the gestational sacs), and
successfully gave birth to three alive piglets (C). The Bama minipigs were in poor condition after
birth and had difficulty with feeding that even after careful care, all died within three days after birth
(panel (D) shows one of them). Western blotting revealed that all of the gene-edited Bama minipigs
did not express the IRX3 protein, indicating that a complete knockout of IRX3 was achieved (E).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as reference. The sample collected
from a wild-type (WT) piglet was used as control.

Tail tissues of cloned piglets were collected for genotyping and protein expression analysis. Gene
sequencing results showed that the genotype of the cloned Bama minipigs were the same as that of
single-cell colony #2-2, all of which harbored biallelic frameshift mutations (Figure 4). Western blotting
revealed that all of the gene-edited Bama minipigs did not express the IRX3 protein indicating that a
complete knockout of IRX3 was achieved (Figure 3E).

The IRX3-/- Bama minipigs at birth were abnormally small and weak, with birth weights of roughly
0.4 ± 0.1 kg, which was significantly lower than the weight of non-gene-edited somatic cell-cloned
Bama minipigs produced during the same period (0.7 ± 0.2 kg; p < 0.05) (Figure 5A). In addition, the
IRX3-/- Bama minipigs were in poor condition after birth and had difficulty with feeding that even
after careful care, all died within three days after birth (Figure 3D).

Retrospective analysis of the production data of the somatic cell-cloned pigs showed that compared
with the production of non-gene-edited somatic cell-cloned Bama minipigs that were performed during
the same period and using the same production method and using the same production method, using
IRX3-/- donor cells significantly affected the production of somatic cell-cloned Bama minipigs, with
a significant decrease in average live litter size (7.6 ± 2.4 vs. 1.5 ± 0.7, p < 0.01) (Figure 5B), and a
significant increase in average litter stillbirths (1.4 ± 1.4 vs. 6.5 ± 0.7, p < 0.01) (Figure 5C).

Considering that off-target effects had been ruled out in the donor cells used to produce the IRX3-/-

Bama minipigs, the results of this study suggest that IRX3 might have important biological functions
in pigs, and that biallelic knockout mutations in IRX3 significantly affect the production and survival
of somatic cell-cloned pigs. Therefore, the result of this study indicates that IRX3 is probably not a
suitable gene editing target for reducing fat content in Bama minipigs.
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mutations in CRISPR/CAS9 targeted IRX3 locus due to a deletion and insertion of one base, 

respectively. Symbols as “+” and “-” respectively show the DNA sequences from single allele ligated 
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Figure 4. Genotyping of IRX3 gene-edited Bama minipigs. The gene sequencing results show that all
three live-birth somatic cell-cloned Bama minipigs (#600, #601 and #602) harbored biallelic frameshift
mutations in CRISPR/CAS9 targeted IRX3 locus due to a deletion and insertion of one base, respectively.
Symbols as “+” and “−” respectively show the DNA sequences from single allele ligated to an 18T
vector for Sanger sequencing. Symbols “±” show the DNA sequences from pooled PCR amplicons.
The sample collected from a wild-type (WT) piglet was used as control. The sgRNA2 and protospacer
adjacent motif (PAM) sequences are marked with the black and blue lines, respectively. The predicted
cleavage sites are indicated by the blue arrowheads.
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Figure 5. Biallelic IRX3 knockouts significantly reduces the production and survival of somatic
cell-cloned Bama minipigs. The IRX3-/- Bama minipigs at birth were abnormally small and weak,
with a birth weight significantly lower than the weight of non-gene-edited somatic cell-cloned Bama
minipigs produced during the same period (p < 0.05) (A). In addition, compared with the production
of non-gene-edited somatic cell-cloned Bama minipigs that were performed during the same period,
using IRX3-/- donor cells significantly affected the production of somatic cell-cloned Bama minipigs,
with a significant decrease in average live litter size (p < 0.01) (B), and a significant increase in average
litter stillbirths (p < 0.01) (C). Data were expressed as the mean ± standard deviation (SD) and analyzed
with independent sample, two-tailed student’s t-test. Differences with p-values < 0.05 were considered
statistically significant.

4. Discussion

To date, traditional genetic breeding remains the main means of improving the economic
traits of livestock. The emergence of gene editing technologies as represented by CRISPR/Cas9 has
provided accurate and efficient genetic improvement methods for animals and plants, including
pigs. Currently, CRISPR/Cas9 gene editing technology has been successful in pigs. For example, in
2017, Burkard et al. [20] used CRISPR/Cas9 technology to knock out CD163, a cell receptor involved
in the invasion of porcine reproductive and respiratory syndrome virus, and successfully obtained
gene-edited pigs capable of resisting the infection of reproductive and respiratory syndrome virus.
Moreover, Xie et al. [21] used CRISPR/Cas9-mediated gene knock-in technology to successfully obtain
gene-edited pigs that express interference RNA resisting the classic swine fever virus, and in vivo
and in vitro virus-challenging experiments confirmed that the gene-edited pigs could effectively resist
swine fever virus infection, which thereby significantly reduced the clinical symptoms and pig death
caused by swine fever virus. These cases indicate that the CRISPR/Cas9 gene editing technology has
an important application value in the genetic improvement of pigs.

Historically, China’s pig breeding program has focused on genetic selection towards reducing fat
deposition and increasing lean meat content. In the past a few decades, genes related to economic
traits such as promoting growth, muscle formation, and fat consumption have been identified, and
these economic traits can be improved through gene editing. For example, insulin-like growth factor 2
(IGF2) plays an important role in cell proliferation and differentiation [71]. Using CRISPR/Cas9 gene
editing to upregulate IGF2 gene expression can accelerate the growth of pigs [29,72]. Myostatin (MSTN)
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plays an important negative regulatory role in the proliferation, differentiation, and growth of animal
skeletal muscles. MSTN gene knockout or reduced expression of MSTN will promote pig muscle
growth and increase lean meat proportion [16,18]. Uncoupling protein 1 (UCP1) plays an important
role in energy conversion and maintaining body temperature. The lack of functional UCP1 in pigs thus
results in an increase in fat content. Using CRISPR/Cas9 gene editing to restore UCP1 gene activity in
pigs can promote the consumption of energy materials and fat conversion, which increase lean meat
proportion and at the same time improve cold resistance of pigs [28]. The aforementioned cases all
resulted in reduced fat content in pigs by promoting muscle growth or accelerating fat conversion.
To date, no study directly targeting lipogenesis in pig through gene editing has been conducted.

IRX3 is closely related to fat formation and metabolism and ultimately affects body weight. The
elucidation of IRX3 function stems from research on human obesity [65,66]. FTO is the first human
obese gene identified, while subsequent research has shown that resistance to obesity does not come
from FTO. Smemo et al. [66] first revealed that FTO regulates the expression of the IRX3 gene, and
the classic obesity risk site rs9930506 of FTO does not change the mRNA level of the FTO gene in
brain tissues, but is associated with changes in IRX3 expression. In mouse and zebrafish embryos,
adult mouse brain, and human cells, the first intron of FTO is close to the adjacent IRX3 gene in
chromosome conformation and functions as an enhancer to regulate IRX3 expression [66]. Claussnitzer
et al. [65] identified the presence of an enhancer-acting element for IRX3 within a 10-kb gene range
of the first intron of FTO in human cells, which contains a highly conserved variant of rs1421085 in
which wild-type allele is T, whereas mutated allele with obesity risk is C. Under normal circumstance
(wild-type: T), the cis-acting element, AATArITll, binds to the transcription factor ARID5B to inhibit
the expression of IRX3, thereby promoting the expression of UCP1 in white fat tissues, increasing the
basal metabolic rate, and inhibiting the occurrence of obesity [65]. If the cis-acting element is changed
from T to C, AACATF (rsl421085) cannot bind to ARID5B, and no inhibitory effect of ARID5B is elicited,
leading to the upregulation of IRX3 by more than two-fold, thereby inhibiting the expression of UCP1,
reducing basal metabolic rate, and promoting the onset of obesity. Knocking out IRX3 in mouse
adipose tissues increases browning of adipose tissues, enhances basal metabolic rate, and reduces body
weight by 25–30%, suggesting that IRX3 is an important gene that directly controls body weight and is
considered to be a potential target for the treatment of human obesity [66].

Although Bama minipigs have good developmental values, their fat content is too high.
A moderately high intramuscular fat content can improve the taste and flavor of pork, while an
excessively high fat content is not conducive to human health and affects its food value. High
fat content also directly leads to low feed conversion rate, which results in an increase in feeding
costs. This study intended to explore whether IRX3 gene knockout could reduce fat content in pig
using the CRISPR/Cas9 gene editing method to knockout IRX3 in Bama minipigs. In this study,
CRISPR/Cas9-mediated gene editing was used to obtain somatic cells with a biallelic frameshift
mutation of IRX3, and foreign gene integration and off-target effects were excluded. Subsequently,
live somatic cell-cloned Bama minipigs were successfully generated, and biallelic knockout mutations
in IRX3 were achieved at the genome and protein levels, as confirmed by gene sequencing and
western blotting, respectively. At birth, the IRX3-/- Bama minipigs were abnormally thin and weak,
with body weights significantly lower than the control group. In addition, they demonstrated poor
survivability such as feeding difficulties, and all died three days after birth despite providing extensive
care. The production data of somatic cell-cloned pigs also showed that compared with the production
of non-gene-edited somatic cell-cloned Bama minipigs, the use of IRX3-/- donor cells significantly
affected the production of somatic cell-cloned pigs, with specific manifestations of significantly lower
average live litter size and significantly higher average litter stillbirths. This is different from previous
studies in mouse that biallelic knockout mutations in IRX3 did not significantly reduce the viability of
the mice after birth [65]. This may be due to species differences in that IRX3 may have other important
biological functions in pig, so that biallelic knockout of IRX3 directly affects pig health.
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Previous studies have shown that IRX3 plays a key role in regulating intercellular junctions and
cardiac electrophysiological transmission [73]. Under normal heart conditions, the left and the right
ventricles are simultaneously electrically activated. Mice with IRX3 knocked out exhibit abnormal
cardiac electrophysiology, including extended QRS complex duration, extended conduction time
between the atrioventricular bundle and the ventricles, and right bundle branch block (RBBB) [74].
The heart is the driving force of blood circulation throughout the entire body. When heart function
is inadequate, the pumping capacity is reduced, and adequate tissue perfusion pressure cannot be
maintained. Thus, oxygen and nutrients cannot effectively reach the tissues to participate in metabolism,
and at the same time, the waste generated during tissue metabolism are not eliminated immediately,
which can lead to dysfunction of the body and endanger life. The generation of the IRX3 gene-deficient
pigs to comprehensively explore the functional mechanism of IRX3 in pigs, particularly in relation to
cardiac function, is warranted.

In summary, this study successfully generated an IRX3-/- Bama minipig model using CRISPR/Cas9
gene editing and somatic cell cloning technology and observed that IRX3-/- donor cells lead to a
significant decrease in the production of somatic cell-cloned pigs, which was specifically manifested
as a significant reduction in the average live litter size, a marked increase in the average number of
litter stillbirths, significant reduction in birth weight of surviving IRX3-/- somatic cell-cloned pigs, and
poor viability after birth. Therefore, the preliminary results of this study suggest that IRX3 may have
important biological functions in pig, and IRX3 should not be used as a gene editing target to reduce
fat content in Bama minipigs. Moreover, because this study shows that complete knockout of IRX3
is lethal to pigs, whether targeted regulation of IRX3 for the purpose of treating human obesity also
causes severe adverse consequences requires further investigation.
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