Hamilton Cycles in Regular 2-Connected Graphs

BILL JACKSON*

University of Waterloo, Waterloo, Ontario, Canada

Communicated by the Editors

Received August 23, 1977

We shall prove the following result.

THEOREM 1. Every 2-connected, k-regular graph on at most 3k vertices is hamiltonian.

This result is best possible for \(k = 3 \) since the Petersen graph is a non-hamiltonian, 2-connected, 3-regular graph on 10 vertices. It is essentially best possible for \(k \geq 4 \) since there exist non-hamiltonian, 2-connected, \(k \)-regular graphs on \(3k + 4 \) vertices for \(k \) even, and \(3k + 5 \) vertices for all \(k \). Examples of such graphs are given in [1, 3]. The problem of determining the values of \(k \) for which all 2-connected, \(k \)-regular graphs on \(n \) vertices are hamiltonian was first suggested by G. Szekeres. Erdős and Hobbs [3] proved that such graphs are hamiltonian if \(n < 2k + ck^{1/2} \), where \(c \) is a positive constant. Subsequently, Bollobás and Hobbs [1] showed that \(G \) is hamiltonian if \(n < \frac{3}{4}k \).

We shall in fact prove a result slightly stronger than Theorem 1.

THEOREM 2. Let \(G \) be a 2-connected graph on \(n \) vertices with minimum degree \(k \). Suppose that \(n < 3k \) and

\[
\sum_{v \in V(G)} (d(v) - k) \leq k - 1.
\]

Then \(G \) is hamiltonian.

Thus the regularity condition of Theorem 1 may be relaxed somewhat. The upper bound for \(\sum_{v \in V(G)} (d(v) - k) \) cannot be increased since \(K_{k+1,k} \) is a non-hamiltonian, 2-connected graph on \(2k + 1 \) vertices, with minimum degree \(k \), and

\[
\sum_{v \in V(K_{k+1,k})} (d(v) - k) = k.
\]