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Fig. 2. EGF causes prolonged induction of Cox-2. 1483 cells were treated with vehicle
(0.01% DMSO) or EGF (1 ng/ml) for 4.5 h (Lanes I and 2), 8 h (Lanes 3 and 4), 14 h
(Lanes S and 6), or 24 h (Lanes 7 and 8). Odd-numbered lanes represent controls;
e bered lanes EGF- d cells. Cellular lysate protein (25 ug/lane) was
loaded onto a 10% SDS-polyacrylamide gel, electrophoresed and subsequently transferred
onto nitrocellulose. Immunoblots were probed with antibody specific for Cox-2. Results
of densitometry expressed in arbitrary units were as follows: Lane 1, 579; Lane 2, 963;
Lane 3, 589; Lane 4, 876; Lane 5, 360. Lane 6, 583; Lane 7, 335; and Lane 8, 618.
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Fig. 3. Retinoids suppress EGF-mediated increases in production of PGE,. 1483 cells
were treated with 1 um all-trans-RA (ATRA), 13-cis-RA, retinyl acetate, 9-cis-RA, or
vehicle (0.01% DMSO). Twenty-four h later, the medium was replaced with DMEM/F-12
with or without EGF (1 ng/ml) for 5 h. Production of PGE, was determined by enzyme
immunoassay as described in “Materials and Methods.” Columns, means; bars, SD; n = 3.
*, P < 0.01 versus EGF treatment.

mRNA. To further define the mechanism by which EGF and retinoids
modulated Cox-2 expression, transient transfections were performed
using a human Cox-2 promoter construct containing 1432 bases of
5’-flanking region DNA ligated to luciferase. Treatment with EGF led
to approximately a 100% increase in Cox-2 promoter activity, an
effect that was suppressed by retinoids (Fig. 9). This last result could
potentially be explained if retinoids blocked EGF-mediated signal
transduction. Thus, we determined the effects of EGF and retinoids on
MAP kinase activity. As shown in Fig. 104, EGF caused a nearly
10-fold increase in MAP kinase activity, which was not inhibited by
retinoids. Western blot analysis was performed on the same cell
lysates to determine levels of EGFR (Fig. 10B). Retinoids did not
decrease EGFR levels, consistent with the lack of effect on MAP
kinase activity.

DISCUSSION

Up-regulation of EGFR and its ligands, e.g., transforming growth
factor a, occurs early in the development of head and neck cancers

(21, 34, 35). The precise mechanism(s) by which this autocrine
growth pathway promotes cancer is unclear. Our data show that EGF
induces Cox-2, which suggests that activation of the EGFR signaling
pathway may contribute to the increased levels of prostaglandins
found in head and neck cancers (2).

Induction of Cox-2 can potentially predispose to carcinogenesis via
several different mechanisms. In extrahepatic tissues in which cyto-
chrome P-450 content is low, such as those of the head and neck (36),
Cox is likely to be important for metabolism of carcinogens. Cox
converts a broad array of carcinogens, including benzo(a)pyrene-7,8-
diol, to reactive metabolites that form DNA adducts (37, 38). The
potential importance of this mechanism is highlighted by the recent
observation that benzo(a)pyrene-diol epoxide, a mutagen formed by
Cox, causes adducts along exons of the p53 gene that correspond to
pS3 mutational hotspots in lung cancer (39). The metabolism of
carcinogens by Cox may be important, therefore, for understanding
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Fig. 4. Retinoids inhibit basal production of PGE,. 1483 cells were treated with 1 um
all-trans-RA (ATRA), 13-cis-RA, retinyl acetate, 9-cis-RA, or vehicle (0.01% DMSO).
Twenty-four h later, the cells were harvested, and production of PGE, was determined by
enzyme immunoassay as described in “Materials and Methods.” Columns, means; bars,
SD; n = 4. **, P < 0.05 compared with control treatment; *, P < 0.01 compared with
control treatment.
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Fig. 5. Retinoids inhibit EGF-mediated induction of Cox-2. 1483 cells were treated
with vehicle (0.01% DMSO; Lanes 2 and 3) or | um all-trans-RA (ATRA), 13-cis-RA,
retinyl acetate, 9-cis-RA (Lanes 4-7) for 24 h. The medium was replaced with DMEM/
F-12 (Lane 2) or DMEM/F-12 and EGF (1 ng/ml; Lanes 3-7) for 5 h. Lane 1, ovine Cox-2
that was used as a standard. Lysate protein (25 pg/lane) was loaded onto a 10%
SDS-polyacrylamide gel, electrophoresed, and subsequently transferred onto nitrocellu-
lose. Immunoblots were probed with antibody specific for Cox-2. Results of densitometry
in arbitrary units were as follows: Lane 2, 24 * 11; Lane 3,73 + 9; Lane 4, 45 + 3*; Lane
5,48 * 6% Lane 6, 42 + 2% Lane 7, 34 * 2°. Values are means * SD;n = 3.* P < 0.01
compared with EGF treatment; ® P = 0.01 compared with EGF treatment.
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Fig. 6. Basal levels of Cox-2 are down-regulated by retinoids. 1483 cells were treated
with vehicle (0.01% DMSO; Lane 1) or 1 um all-trans-RA, 13-cis-RA, retinyl acetate, or
9-cis-RA for 24 h. Lysate protein (25 ug/lane) was loaded onto a 10% SDS-polyacryl-
amide gel, electrophoresed, and subsequently transferred onto nitrocellulose. Immunob-
lots were probed with antibody specific for Cox-2. Results of densitometry in arbitrary
units were as follows: Lane 1, 57 * 6; Lane 2, 33 * 3 Lane 3, 36 + 6° Lane 4, 33 + 3%
and Lane 5, 27 * 9°. Values are means + SD; n = 3.™ P < 0.01 compared with control;

> P = 0.0l compared with control.
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Fig. 7. Retinoids inhibit EGF-mediated induction of Cox-2 mRNA. 1483 cells were
treated with vehicle (0.01% DMSO; Lanes I and 2) or | um all-trans-RA, 13-cis-RA,
retinyl acetate, or 9-cis-RA (Lanes 3-6) for 24 h. The medium was replaced with
DMEM/F-12 (Lane 1) or DMEM/F-12 and EGF (1 ng/ml; Lanes 2-6) for 3 h. Total
cellular RNA was isolated. Each lane contained 6 ug of RNA. The Northern blot was
probed sequentially with probes that recognized Cox-2 mRNA and 18S rRNA. Results of
densitometry expressed in arbitrary units were as follows: Lane I, 20; Lane 2, 796, Lane
3, 281; Lane 4, 133; Lane 5, 178; and Lane 6, 179.

the high incidence of cancer among tobacco smokers. Additionally,
Cox may predispose to carcinogenesis via mechanisms other than
activation of carcinogens. Prostaglandins formed by Cox impair im-
mune surveillance and the killing of malignant cells (40). Overex-
pression of Cox-2 inhibits apoptosis (41), which could prolong the
survival of cells containing damaged DNA. Consequently, com-
pounds that inhibit Cox may decrease the formation of mutagens and
enhance processes such as apoptosis and immune surveillance, which
tend to destroy initiated cells. Indeed, it is noteworthy that retinoids
and NSAIDs inhibit both Cox-mediated metabolism of arachidonic
acid and carcinogenesis.

Cox possesses both cyclooxygenase and peroxidase functions. The
peroxidase function contributes to the activation of procarcinogens
(38). NSAIDs inhibit the cyclooxygenase but not the peroxidase
activity of Cox, which potentially limits the effectiveness of this
therapy. Because transcription of Cox-2 is enhanced in transformed
cells (11, 42), these cells may synthesize functional enzyme despite
NSAID treatment. Our results demonstrate, however, the potential of
retinoids to suppress basal levels of Cox-2 and EGF-mediated induc-
tion of Cox-2. This is important because agents that down-regulate
levels of Cox-2 will inhibit both the peroxidase and Cox activities of
the enzyme. In the future, it will be important to determine whether
combining agents that suppress the transcription of Cox-2, e.g., reti-
noid, with agents that inhibit Cox activity, e.g., NSAID, is more
effective than either alone in preventing cancer.

Retinoids are effective in treating oral leukoplakia (24) and pre-
venting second primary malignancies in patients with a history of
head and neck cancer (25). The basis for these effects is uncertain,
although RA down-regulates EGFR and transforming growth factor a
(43), inhibits cellular proliferation (44), and induces apoptosis (45). In
fact, retinoids were recently reported to induce apoptosis in the 1483
cell line used in this study (45). Cyclooxygenases and their end
products inhibit apoptosis (41, 46). The results of this study suggest
that one possible way that retinoids induce programmed cell death is

by suppressing the expression of Cox-2. Additionally, chronic inflam-
mation increases the risk of epithelial malignancy (47). Our data
suggest that retinoids may be anti-inflammatory, at least in part, by
suppressing the expression of Cox-2 and prostaglandin synthesis. It is
possible, therefore, that the anti-inflammatory properties of retinoids
also contribute to their chemopreventive activity.

EGF activates the tyrosine kinase activity of its receptor and ini-
tiates a signaling cascade, resulting in the transactivation of target
genes. Retinoids down-regulate the expression of certain genes by
blocking this signaling pathway. For example, retinoids decrease
levels of EGFR and thereby block EGF-mediated transcription of
ornithine decarboxylase in keratinocytes (48). In our study, EGF
induced a nearly 10-fold increase in MAP kinase activity; this re-
sponse was not blocked by pretreatment with retinoids. As expected
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Fig. 8. All-trans-RA inhibits EGF-mediated induction of Cox-2. 1483 cells were
treated with vehicle (0.01% DMSO; Lanes I and 2) or a range of concentrations of
all-trans-RA (0.01, 0.1, 1, or 10 um; Lanes 3-6) for 24 h. The medium was replaced with
DMEM/F-12 (Lane 1) or DMEM/F-12 and EGF (1 ng/ml; Lanes 2-6) for 3 h. Total
cellular RNA was isolated. Each lane contained 6 ug of RNA. The Northern blot was
probed sequentially with probes that recognized Cox-2 mRNA and 18S rRNA. Results of
densitometry expressed in arbitrary units were as follows: Lane 1, 33; Lane 2, 1285; Lane
3, 531; Lane 4, 400; Lane 5, 100; and Lane 6, 105.
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Fig. 9. Retinoids inhibit EGF-mediated induction of Cox-2 promoter activity. 1483
cells were transfected with 2 ug of human Cox-2 promoter construct containing 1432
bases S’ of the transcription start site. After transfection, cells were treated with vehicle
(0.01% DMSO) or 1 um all-trans-RA (ATRA), 13-cis-RA, retinyl acetate, or 9-cis-RA.
Twenty-four h later, this medium was replaced with DMEM/F-12 with or without EGF (1
ng/ml). Luciferase activity was measured in cellular extract 6 h later. Six wells were used
for each of the conditions. Columns, means; bars, SD. *, P < 0.001 compared with EGF
treatment.
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Fig. 10. Effect of retinoids on EGFR and MAP kinase activity. 1483 cells were treated
with vehicle (0.01% DMSO; Lanes 1 and 2) or 1 uM all-trans-RA. 13-cis-RA, retinyl
acetate, or 9-cis-RA (Lanes 3-6) for 24 h. The medium was replaced with DMEM/F-12 12
(Lane 1) or DMEM/F-12 and EGF (1 ng/ml; Lanes 2-6) for 30 min. In A, MAP kinase
activity was measured as described in “Materials and Methods.” Results of densitometry
expressed in arbitrary units were as follows: Lane 1, 75; Lane 2, 657; Lane 3, 761; Lane
4, 863; Lane 5, 791; and Lane 6, 565. In B, lysate protein (50 pg/lane) was loaded onto 13
a 10% SDS-polyacrylamide gel, electrophoresed, and transferred onto nitrocellulose.
Immunoblots were probed with a monoclonal anti-EGFR antiserum. Results of densitom-
etry in arbitrary units were as follows: Lane 1, 75; Lane 2, 54; Lane 3, 84; Lane 4, 90,
Lane 5, 84; and Lane 6, 90. 14
15
from this result, retinoids failed to decrease levels of EGFR in these 16
same cells. In this context, it is important to point out that the
inhibitory effects of retinoids on EGF-mediated induction of Cox-2 17
occur within 3 h of treatment, whereas down-regulation of EGFR
generally requires prolonged treatment (43). An important next step 18
will be to determine the transcription factor(s) and promoter ele-
ment(s) that mediate Cox-2 induction by EGF. One possible mecha-
nism is that EGF induces Cox-2 expression by modulating AP-1
activity. This idea fits with the previous observation that v-src up- 12
regulates Cox-2 expression via activation of AP-1 (49). The finding
that EGF caused more than a 10-fold increase in amounts of Cox-2
mRNA but only a doubling of Cox-2 promoter activity raises the 20.
possibility that EGF increased the stability of Cox-2 mRNA in addi-
tion to activating the transcription of Cox-2. ’
Retinoids elicit their biological response by binding to two '
classes of nuclear receptors, RA receptors and retinoid X receptors,
both of which are expressed in 1483 cells (50). Upon ligand ”
binding, these nuclear receptors regulate the transcription of genes '
containing RA-responsive elements or AP-1 sites. Although the
Cox-2 promoter does not contain nucleotide sequences resembling 23
RA-responsive elements, it does contain a cyclic AMP response
element that is activated by AP-1 factors (49). Retinoids antago- 24
nize AP-1-mediated transactivation of other genes (51, 52); there-
fore, it is possible that this is the mechanism by which retinoids
inhibit EGF-mediated induction of Cox-2. In support of this idea, 25
RA decreases AP-1 binding activity and inhibits phorbol ester-
mediated induction of Cox-2 in head and neck squamous carci-
noma cells (53, 54). Experiments with AP-1-selective retinoids 2%
(55) should provide further insight into the mechanism by which
retinoids suppress Cox-2 expression.
27.
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