Efficient stochastic simulation of systems with multiple time scales via statistical abstraction

Luca Bortolussi123 Dimitrios Milios4 Guido Sanguinetti45

Modelling and Simulation Group, University of Saarland, Germany
Department of Mathematics and Geosciences, University of Trieste
CNR/ISTI, Pisa, Italy
School of Informatics, University of Edinburgh
SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh

16th of September 2015
Computational Methods in Systems Biology
Multiple Time-Scales in Biological Systems

The problem – Stiffness

- Existence of fast and slow time-scales
- Challenge to mathematical and computational treatment of systems

In the literature – Abstraction techniques

- Simplify some scales of the model
- Abstractions are non-trivial and model-specific

We propose:

- Model abstraction based on statistical methodologies
- Learned abstractions automatically from (few) exploratory runs of the models
Stochastic Simulation of Stiff Systems

The Gillespie algorithm is exact

- simulates every single reaction event
- High computational costs in presence of stiffness, where a small number of reactions dominate computations
The Gillespie algorithm is exact

- simulates every single reaction event
- High computational costs in presence of stiffness, where a small number of reactions dominate computations

Enzyme-substrate example:

\[
egin{align*}
E + S & \xrightarrow{f_1(\vec{X})} ES, \quad f_1(\vec{X}) = c_1 X_E X_S \\
ES & \xrightarrow{f_2(\vec{X})} E + S, \quad f_2(\vec{X}) = c_2 X_{ES} \\
ES & \xrightarrow{f_3(\vec{X})} E + P, \quad f_3(\vec{X}) = c_3 X_{ES}
\end{align*}
\]

Assuming \(c_1, c_2 \gg c_3 \):

- too many reaction events for \(R_1 \) and \(R_2 \),
- while \(R_3 \) progresses very slowly
Model Reduction

Reaction partitioning into \(R_{fast} \) and \(R_{slow} \):

 • based on their kinetic constants

System Variables: \(\vec{X} = (\vec{Y}, \vec{Z}) \)

Fast Variables: \(\vec{Y} = Y_1, \ldots, Y_m \)

 • Affected by either fast or slow reactions

Slow Variables: \(\vec{Z} = Z_1, \ldots, Z_s \)

 • Affected by slow reactions only
Model Reduction

Reaction partitioning into $\mathcal{R}_{\text{fast}}$ and $\mathcal{R}_{\text{slow}}$:
- based on their kinetic constants

System Variables: $\vec{X} = (\vec{Y}, \vec{Z})$

Fast Variables: $\vec{Y} = Y_1, \ldots, Y_m$
- Affected by either fast or slow reactions

Slow Variables: $\vec{Z} = Z_1, \ldots, Z_s$
- Affected by slow reactions only

Enzyme-substrate example:
We assume that $c_1, c_2 \gg c_3$
- fast and slow reactions: $\mathcal{R}_{\text{fast}} = \{R_1, R_2\}$ and $\mathcal{R}_{\text{slow}} = \{R_3\}$
- fast variables $\vec{Y} = (X_E, X_S, X_{ES})$ and slow variables $\vec{Z} = (X_P)$
The Fast Subsystem

System State \vec{Y}

- Affected by either R_{fast} or R_{slow}
- Slow reactions rarely occur — can be ignored
- Fast rates may depend on the slow variables
The Fast Subsystem

System State \vec{Y}

- Affected by either R_{fast} or R_{slow}
- Slow reactions rarely occur — can be ignored
- Fast rates may depend on the slow variables

Conditional Fast subsystem:

- Parametrised by the concentration \vec{z} of slow variables
 - $\vec{z} = \vec{Z}/V$ in a volume V
The Fast Subsystem

System State \vec{Y}

- Affected by either R_{fast} or R_{slow}
- Slow reactions rarely occur — can be ignored
- Fast rates may depend on the slow variables

Conditional Fast subsystem:

- Parametrised by the concentration \vec{z} of slow variables
 - $\vec{z} = \vec{Z}/V$ in a volume V

\[
E + S \quad \xrightarrow{f_1(\vec{Y}, \vec{z})} \quad ES, \quad f_1(\vec{Y}, \vec{z}) = c_1 X_E (N - X_{ES} - X_P)
\]

\[
ES \quad \xrightarrow{f_2(\vec{Y}, \vec{z})} \quad E + S, \quad f_2(\vec{Y}, \vec{z}) = c_2 X_{ES}
\]

Assumption: Quickly reaches equilibrium for any \vec{z}
The Slow Subsystem

System State \vec{Z}

- Affected by R_{slow}
- Slow rates may depend on the fast variables
 - Senses the fast system only via its steady state distribution
The Slow Subsystem

System State \vec{Z}

- Affected by \mathcal{R}_{slow}
- Slow rates may depend on the fast variables
 - Senses the fast system only via its steady state distribution

All R_j in \mathcal{R}_{slow} are modified by:

1. removing the fast variables
2. replacing the rate function $f_j(\vec{Y}, \vec{z})$ by:

$$\hat{f}_j(\vec{z}) = \mathbb{E}_{\vec{z}}[f_j(\vec{Y}, \vec{z})]$$

Average out fast variables wrt their steady state distribution
The Slow Subsystem

System State \bar{Z}

- Affected by \mathcal{R}_{slow}
- Slow rates may depend on the fast variables
 - Senses the fast system only via its steady state distribution

All R_j in \mathcal{R}_{slow} are modified by:

1. removing the fast variables
2. replacing the rate function $f_j(\bar{Y}, \bar{z})$ by:

$$\hat{f}_j(\bar{z}) = \mathbb{E}_{\bar{z}}[f_j(\bar{Y}, \bar{z})]$$

Average out fast variables wrt their steady state distribution

$$\emptyset \xrightarrow{\hat{f}_3(\bar{z})} P, \quad \hat{f}_3(\bar{z}) = \mathbb{E}_{\bar{z}}[f_3(\bar{Y}, \bar{z})]$$
Simulation of the slow subsystem:

- Derive expectations $\hat{f}_j(\vec{z})$, $\forall R_j \in \mathcal{R}_{slow}$
- Fast reactions are ignored
Slow-scale Simulation

Simulation of the slow subsystem:
- Derive expectations $\hat{f}_j(\vec{z})$, $\forall R_j \in \mathcal{R}_{\text{slow}}$
- Fast reactions are ignored

In the literature:
- $\hat{f}_j(\vec{z})$ is given by model-dependent expressions
- Applicability is limited
- Required expertise on the modeller side
Slow-scale Simulation

Simulation of the slow subsystem:
- Derive expectations $\hat{f}_j(\vec{z})$, $\forall R_j \in \mathcal{R}_{slow}$
- Fast reactions are ignored

In the literature:
- $\hat{f}_j(\vec{z})$ is given by model-dependent expressions
- Applicability is limited
- Required expertise on the modeller side

A more generic approach:
- Construct a lookup table for the rate expectations
 - Explore the state-space of \vec{Z}
 - Estimate $\hat{f}_j(\vec{z})$ statistically
- **Problem:** The number of states for \vec{Z} could be too large
Approximation of Rate Expectations

Theorem

The equilibrium statistics of the fast variables are a continuous function of the slow variables (rescaled to concentrations)

Our approach:

- Statistical estimate of the continuous function $\hat{f}_j(\vec{z})$
- Use a few samples from the slow state-space
- Interpolate via Gaussian Processes Regression
- Exhaustive state-space exploration is avoided
Gaussian Process Regression

- Place a GP prior over f
 \[p(f) = \mathcal{N}(0, K) \]

- Assume noisy observations $y = f + \epsilon$
 \[p(y \mid f) = \mathcal{N}(f, \sigma^2 I) \]
Gaussian Process Regression

- Place a GP prior over f
 \[p(f) = \mathcal{N}(0, K) \]
- Assume noisy observations $y = f + \epsilon$
 \[p(y \mid f) = \mathcal{N}(f, \sigma^2 I) \]

\[
p(f \mid y) = \frac{1}{Z} \underbrace{p(f)}_{\text{Gaussian Prior}} \underbrace{p(y \mid f)}_{\text{Gaussian Noise}}
\]
Initialisation Phase: For a grid of n states of the slow process:

- Calculated rate expectations:

 \[\hat{f}_j(z) = \frac{1}{t_f} \int_{t_0}^{t_0 + t_f} f_j(\tilde{Y}, \tilde{z}) dt \]

- t_0: time required to reach equilibrium (estimated by heuristic)
- Train a GP regression model
Stochastic Simulation via Statistical Abstraction
The SA-SSA Approach

Initialisation Phase: For a grid of n states of the slow process:
- Calculated rate expectations:
 \[\hat{f}_j(\vec{z}) = \frac{1}{t_f} \int_{t_0}^{t_0+t_f} f_j(\vec{Y}, \vec{z}) dt \]
 - t_0: time required to reach equilibrium (estimated by heuristic)
 - Train a GP regression model

Simulation Phase:
- Simulate the slow system (ignoring the fast variables/reactions)
- Using the rate expectations as given by the GP regression model
Cost of SA-SSA

Pre-simulation Cost (only during initialisation)
- Few samples of the slow system state-space
- Excessive simulation of the fast system is avoided

Regression Cost (only during initialisation)
- Dominated by the solution of a linear system — $O(n^2)$

Cost of using the Analytical Approximation (during simulation)
- Produce estimation from n training points — $O(n)$
- For higher-dimensional slow state-spaces, sparse schemes are necessary

Note: Can learn rate expectations as functions of the system parameters
- approximate an entire family of stiff systems
Enzyme-substrate system — Parameter exploration

Let c_1 vary in the range $[0.01, 1]$

- The system remains stiff
- Sampled a grid of 1000 values for $X_P \in [0, 3000]$ and $c_1 \in [0.01, 1]$

Table: Relative mean error values for approximating the mean value of X_P, for 10^3 simulation runs.

<table>
<thead>
<tr>
<th>Time</th>
<th>$c_1 = 0.01$</th>
<th>$c_1 = 0.1$</th>
<th>$c_1 = 0.5$</th>
<th>$c_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×10^4</td>
<td>1.83×10^{-3}</td>
<td>9.08×10^{-4}</td>
<td>2.35×10^{-3}</td>
<td>2.17×10^{-3}</td>
</tr>
<tr>
<td>10×10^4</td>
<td>1.20×10^{-3}</td>
<td>1.49×10^{-3}</td>
<td>1.94×10^{-3}</td>
<td>2.87×10^{-3}</td>
</tr>
<tr>
<td>18×10^4</td>
<td>8.04×10^{-4}</td>
<td>3.73×10^{-5}</td>
<td>4.49×10^{-4}</td>
<td>3.05×10^{-4}</td>
</tr>
<tr>
<td>20×10^4</td>
<td>9.13×10^{-4}</td>
<td>4.56×10^{-5}</td>
<td>6.06×10^{-5}</td>
<td>3.26×10^{-5}</td>
</tr>
</tbody>
</table>

Gillespie algorithm: 1911 sec

SA-SSA: 32 sec $+$ 3.562 sec for initialisation

The **Nested Stochastic Simulation Algorithm** (Nested-SSA) is proposed to approximate the steady-state of the fast subsystem
- The fast subsystem is only simulated up to a given step
 - .. assuming that steady-state is reached by then
- Completely transparent wrt the slow process

We have implemented Nested-SSA, to produce comparative results
- The step parameter for Nested-SSA has been explored experimentally such that the efficiency of both simulation approaches has been roughly the same
Enzyme-substrate system — Accuracy results

Initial state: \(\vec{X}_0 = (X_E, X_S, X_{ES}, X_P) = (220, 3000, 0, 0) \).

- The rate expectation for \(R_3 \) has been approximated via GP regression.
- Sampled 1000 states for the slow variable \(P \) between 0 and 3000.

Table: Enzyme-substrate model: histogram distances for \(10^3 \) simulation runs (estimated self-distance: 0.252).

<table>
<thead>
<tr>
<th>Time</th>
<th>Nested-SSA</th>
<th>SA-SSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (\times) 10^4</td>
<td>0.290</td>
<td>0.246</td>
</tr>
<tr>
<td>10 (\times) 10^4</td>
<td>0.250</td>
<td>0.204</td>
</tr>
<tr>
<td>18 (\times) 10^4</td>
<td>1.016</td>
<td>0.160</td>
</tr>
<tr>
<td>20 (\times) 10^4</td>
<td>0.940</td>
<td>0.142</td>
</tr>
</tbody>
</table>
Viral Infection model

Reactions: $\mathcal{R}_{\text{fast}} = \{R_3, R_5\}$ and $\mathcal{R}_{\text{slow}} = \{R_1, R_2, R_4, R_6\}$

Fast variables $\vec{Y} = (X_S)$, and slow variables $\vec{Z} = (X_G, X_T)$

- $\emptyset \xrightarrow{f_3(\vec{Y}, \vec{z})} S,$ \hspace{1em} $f_3(\vec{Y}, \vec{z}) = k_3 X_T$
- $S \xrightarrow{f_5(\vec{Y}, \vec{z})} \emptyset,$ \hspace{1em} $f_5(\vec{Y}, \vec{z}) = k_5 X_S$
- $T \xrightarrow{f_1(\vec{z})} G + T,$ \hspace{1em} $f_1(\vec{z}) = k_1 X_T$
- $G \xrightarrow{f_2(\vec{z})} T,$ \hspace{1em} $f_2(\vec{z}) = k_2 X_G$
- $T \xrightarrow{f_4(\vec{z})} \emptyset,$ \hspace{1em} $f_4(\vec{z}) = k_4 X_T$
- $G \xrightarrow{\hat{f}_6(\vec{z})} V,$ \hspace{1em} $\hat{f}_6(\vec{z}) = \mathbb{E}_{\vec{z}}[f_6(\vec{Y}, \vec{z})]$

The rate $\hat{f}_6(\vec{z})$ depends on X_G directly, and on X_T indirectly

- T affects the steady-state of the fast process
Viral Infection model — Accuracy results

Random grid of 256 uniformly distributed population values for G and T,
• given upper bounds of 500 and 100 molecules correspondingly
Naïve exploration of the rate expectation would require 50000 evaluations

Table: Viral infection model: histogram distances for 10^3 simulation runs
(estimated self-distance: 0.252).

<table>
<thead>
<tr>
<th>Time</th>
<th>G</th>
<th></th>
<th>T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nested-SSA</td>
<td>SA-SSA</td>
<td>Nested-SSA</td>
<td>SA-SSA</td>
</tr>
<tr>
<td>50</td>
<td>0.988</td>
<td>0.308</td>
<td>0.548</td>
<td>0.242</td>
</tr>
<tr>
<td>100</td>
<td>0.244</td>
<td>0.414</td>
<td>0.154</td>
<td>0.226</td>
</tr>
<tr>
<td>200</td>
<td>0.388</td>
<td>0.406</td>
<td>0.156</td>
<td>0.204</td>
</tr>
<tr>
<td>500</td>
<td>0.346</td>
<td>0.432</td>
<td>0.198</td>
<td>0.238</td>
</tr>
</tbody>
</table>
Viral Infection model — Accuracy results

Distribution of X_G at $t = 50$
Efficiency results

Table: Execution times in seconds for 10^3 simulation runs.

<table>
<thead>
<tr>
<th>Method</th>
<th>Enzyme-substrate</th>
<th>Viral model</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-SSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-simulation</td>
<td>0.291</td>
<td>26.11</td>
</tr>
<tr>
<td>Hyperparam. opt.</td>
<td>1.484</td>
<td>1.68</td>
</tr>
<tr>
<td>Training</td>
<td>0.080</td>
<td>0.05</td>
</tr>
<tr>
<td>Total initialisation</td>
<td>1.855</td>
<td>27.84</td>
</tr>
<tr>
<td>Simulation</td>
<td>153</td>
<td>316</td>
</tr>
<tr>
<td>Exact SSA</td>
<td>6947</td>
<td>2410</td>
</tr>
</tbody>
</table>
Conclusions

Time-scale separation

- In the literature: exploit structure to produce estimations for the rate expectations for the slow process
- We proposed SA-SSA: rate expectations are approximated via machine learning
- Learn the rate expectations as functions of the parameters as well
- Similar or better accuracy than Nested-SSA

Future Work

- Efficient simulation in presence of multiple spatio-temporal scales
- Abstraction of intra-cellular dynamics for cell population models
Acknowledgements...