
BRAID GROUPS ARE LINEARSTEPHEN J. BIGELOWAbstrat. The braid group Bn an be de�ned as the mapping lass groupof the n-puntured disk. A group is said to be linear if it admits a faithfulrepresentation into a group of matries over R. Reently Daan Krammer hasshown that a ertain representation of the braid groups is faithful for the asen = 4. In this paper, we show that it is faithful for all n.1. IntrodutionThe braid group Bn an be de�ned as the group generated by �1; : : : ; �n�1 withde�ning relations� �i�j = �j�i if ji� jj > 1, and� �i�i+1�i = �i+1�i�i+1 for i = 1; : : : ; n� 2.These groups were originally introdued by Emil Artin in 1926. They have manyinterpretations, for example, as the group of geometri braids in R3, as the Artingroup of type An, as the fundamental group of a ertain hyperplane arrangement,as a subgroup of the automorphism group of a free group, and so on. In this paperwe will use the interpretation of Bn as the mapping lass group of an n-timespuntured disk.A group is said to be linear if it admits a faithful representation into GL(m;R) forsome natural number m. The question of whether braid groups are linear probablydates bak to 1935 when Burau [Bur36℄ disovered an n-dimensional representationof Bn. For a long time this was thought to be a possible andidate for a faithfulrepresentation. A simple proof that it is faithful in the ase n = 3 gave somereason for optimism. However in 1991, Moody [Moo91℄ showed that the Buraurepresentation is not faithful for n � 9. This was later brought down to n � 6 andthen n � 5 in the papers [LP93℄ and [Big99℄.It therefore ame as a pleasant surprise when Krammer [Kra99℄ proved thatanother representation of the braid groups is faithful in the ase n = 4. The repre-sentation Krammer used is essentially the same as one used by Lawrene in [Law90℄to give a topologial de�nition of a ertain summand of the Jones representation.We all this representation the Lawrene-Krammer representation. In this paper,we prove the following.Theorem 1.1. The Lawrene-Krammer representation of Bn is faithful for all n.This proves that all braid groups are linear. Our proof an be seen as a sort ofonverse to the onstrution of elements of the kernel of the Burau representationgiven in [Moo91℄, [LP93℄ and [Big99℄. Our methods are topologial, and very dif-ferent from the algebrai methods used by Krammer for the ase n = 4. Reently,1991 Mathematis Subjet Classi�ation. Primary 20F36; Seondary 57M07, 20C15.Key words and phrases. Braid group, linear, representation.1



2 STEPHEN J. BIGELOWKrammer [Kra00℄ has extended his algebrai methods to obtain a new proof of theabove theorem as well as some new ways to read information about a braid fromits Lawrene-Krammer representation.1.1. Outline. In Setion 1 we de�ne a ertain overing spae ~C of the on�gurationspae C of unordered pairs of distint points in the n-times puntured disk. TheLawrene-Krammer representation is de�ned to be the indued ation of the braidgroup Bn on the seond homology group of ~C.In Setion 2 we de�ne forks and noodles. These are one-dimensional objets inthe disk designed to represent elements of the seond homology and ohomologyof ~C . We de�ne an intersetion pairing between a noodle and a fork. We provethat if F is a fork and � is an element of the kernel of the Lawrene-Krammerrepresentation then F and �(F ) have the same pairing with any �xed noodle.In Setion 3 we prove that the pairing between a noodle and a fork detetsgeometri intersetion between the orresponding edges in the disk. We use this toshow that a braid in the kernel of the Lawrene-Krammer representation must betrivial.In Setion 4 we ompute the Lawrene-Krammer representation expliitly interms of generators and basis elements.1.2. De�nitions. Let D be an oriented disk in the omplex plane. Fix a set P � Donsisting of n distint points p1; : : : ; pn in the interior of D. We will all thesepunture points. Let H(D;P ) be the group of all homeomorphisms h : D ! D suhthat h(P ) = P and h �xes �D pointwise. Let I(D;P ) be the group of all suhhomeomorphisms whih are isotopi to the identity relative to �D[P . We de�ne thebraid group Bn to be the group H(D;P )=I(D;P ). This is also alled the mappinglass group of the disk with n punture points. See [Bir74℄ for other equivalentde�nitions of these groups and a good introdution to their basi properties.Let C denote the spae of all unordered pairs of distint points in D n P . Inother words, C = ((D n P )� (D n P )) n f(x; x)g(x; y) � (y; x) :Let d1 and d2 be distint points in �D. Let 0 = fd1; d2g be a basepoint for C. Wenow de�ne a map � from �1(C; 0) to the free Abelian group with basis fq; tg. Let� be a losed urve in C based at 0 representing an element [�℄ of �1(C; 0). Wean write � in the form �(s) = f�1(s); �2(s)gfor some ars �1 and �2 in D n P . Leta = 12�i nXj=1�Z�1 dzz � pj + Z�2 dzz � pj� :Let b = 1�i Z�1��2 dzz :Let �([�℄) = qatb.This de�nition requires some explanation. If �1 and �2 are losed loops then a isthe sum of the winding numbers of �1 and �2 around eah of the punture points,and b is twie the winding number of �1 and �2 around eah other. However �1 and�2 are not neessarily losed loops, but may \swith plaes". In this ase, a is the



BRAID GROUPS ARE LINEAR 3sum of the winding numbers of the losed loop �1�2 around eah of the punturepoints. Furthermore, �1 � �2 satis�es(�1 � �2)(1) = �(�1 � �2)(0);whih implies that b is an odd integer.Let ~C be the overing spae of C whose fundamental group is the kernel of �.Let � denote the ring Z[q�1; t�1℄. The homology group H2( ~C) an be onsideredas a �-module, where q and t at by overing transformations.Any homeomorphism � 2 H(D;P ) indues a homeomorphism from C to itself,also denoted �. It is easy to hek that � �xes 0 and the indued ation of � on�1(C; 0) satis�es �� = �. Thus � lifts uniquely to a map ~� from ~C to itself whih�xes the �ber over 0 pointwise. Moreover, this lift ~� ommutes with the overingtransformations q and t. It follows that the indued ation ~�� of ~� on H2( ~C) is a�-module automorphism. The Lawrene-Krammer representation is the map fromBn to GL(H2( ~C)) taking [�℄ to ~��.We will see in Setion 4 that H2( ~C) is a free �-module of rank �n2�. Thus theLawrene-Krammer representation an be thought of as a map from Bn to the groupof �n2� by �n2� matries with entries in �. We an obtain a faithful representationinto GL(�n2�;R) by substituting algebraially independent real numbers for q andt. In [Law90℄, Lawrene de�nes a representation by a similar onstrution usingthe spae of ordered k-tuples of distint points in D n P . In the ase k = 2, theresulting representation is the same map from Bn to GL(H2( ~C)) as de�ned above,exept that H2( ~C) is to be onsidered as a module over Z[q�1; t�2℄. As a result,the representation de�ned by Lawrene has rank n(n� 1), whih is double that ofthe Lawrene-Krammer representation. The variable � in [Law90℄ orresponds tot2 in this paper.In [Kra99℄, Krammer de�nes a representation of Bn as the indued ation on amodule of formal �-linear ombinations of forks modulo ertain relations. Theseforks are of entral importane in this paper, and will be de�ned in Setion 2.Krammer's representation is the same as our Lawrene-Krammer representationexept that the variable t in [Kra99℄ orresponds to �t in this paper.1.3. Notation. Throughout this paper, I will denote the interval [0; 1℄.If � and � are ars in D nP suh �(s) 6= �(s) for all s 2 I then denote by f�; �gthe ar in C given by f�; �g(s) = f�(s); �(s)g:If y is a point in D n P and � is an ar in D n (P [ fyg) then denote by f�; yg thear in C given by f�; yg(s) = f�(s); yg:The same ar an also be denoted by fy; �g.If g and h are elements of a group then we use the notationgh = h�1ghand [g; h℄ = g�1h�1gh:Braids ompose from right to left. Ars ompose from left to right.
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Figure 1. A fork F and a parallel opy F 0.2. Forks and NoodlesIn this setion we de�ne forks and noodles and a pairing between them. Theidea of using a fork to represent an element of H2( ~C) is due to Krammer [Kra99℄.A fork is an embedded tree F � D with four verties d1, pi, pj and z suh thatF \ �D = fd1g, F \ P = fpi; pjg, and all three edges have z as a vertex. The edgeontaining d1 is alled the handle of F . The union of the other two edges is a singleedge, whih we all the tine edge of F and denote by T (F ). We orient T (F ) in suha way that the handle of F lies to the right of T (F ).For a given fork F we an de�ne a parallel opy of F to be an embedded treeF 0 as shown in Figure 1. The �ve punture points at the top of the �gure may bereplaed by any number, and any orientation-preserving self-homeomorphism maybe applied to the entire disk. The tine edge T (F 0) of F 0 is de�ned analogously tothat of F .For any fork F , we de�ne a surfae ~�(F ) in ~C as follows. Let F 0 be a parallelopy of F . Let z be the vertex ontained in all three edges of F , and let z0 be thevertex ontained in all three edges of F 0. De�ne a surfae �(F ) in C to be theset of all points whih an be written in the form fx; yg, where x 2 T (F ) n P andy 2 T (F 0) n P . Let �1 be an ar from d1 to z along the handle of F and let �2be an ar from d2 to z0 along the handle of F 0. Let ~� be the lift of f�1; �2g to ~Cbeginning at ~0. Let ~�(F ) be the lift of �(F ) to ~C whih ontains ~�(1).There is an obvious homeomorphism from �(F ) to the interior of the squareT (F )� T (F 0). The orientations on T (F ) and T (F 0) give rise to an orientation onT (F )� T (F 0), and hene on �(F ). This lifts to an orientation on ~�(F ).A noodle is an embedded edge N � D n P with endpoints d1 and d2. Orient Nso that it goes from d1 to d2. For a given noodle N we de�ne the surfae �(N)to be the set of points fx; yg 2 C suh that x and y are distint points in N . Let~�(N) be the lift of �(N) to ~C whih ontains ~0.There is an obvious homeomorphism from �(N) to the subset ofN�N onsistingof those points (x; y) suh that x is loser to d1 along N than y. The orientationon N gives rise to an orientation on N �N , and hene on �(N). This lifts to anorientation on ~�(N).2.1. A pairing. Let N be a noodle and let F be a fork. We use the surfaes ~�(N)and ~�(F ) to de�ne an element hN;F i of � as follows.



BRAID GROUPS ARE LINEAR 5If neessary, apply a preliminary isotopy so that T (F ) intersets N transversely.Let z1; : : : ; zl denote the points of intersetion between N and T (F ). Let F 0 be aparallel opy of F suh that T (F 0) intersets N transversely at z01; : : : ; z0l where ziand z0i are joined by a short ar in N whih lies in the narrow strip bounded by T (F )and T (F 0). For i; j = 1; : : : ; l, there exists a unique monomial mi;j = qai;j tbi;j suhthat mi;j ~�(N) intersets ~�(F ) at a point lying over fzi; z0jg 2 C. Let �i;j be thesign of that intersetion. Then we de�ne the pairing between N and F as follows.hN;F i = lXi=1 lXj=1 �i;jqai;j tbi;j :We need to prove that this does not depend on our hoie of preliminary isotopyof F . First we desribe how to expliitly ompute the pairing.2.2. Computing the Pairing. We ompute mi;j as follows. De�ne the followingembedded ars in D n P .� �1 from d1 to z along the handle of F ,� �2 from d2 to z0 along the handle of F 0,� �1 from z to zi along T (F ),� �2 from z0 to z0j along T (F 0),� 1 from zi to dk along N , where k 2 f1; 2g is suh that 1 does not passthrough z0j ,� 2 from z0j to dk0 along N , where k0 2 f1; 2g is suh that 2 does not passthrough zi.Consider the following ar in C.Æi;j = f�1; �2gf�1; �2gf1; 2g:Let ~Æi;j be the lift of Æi;j beginning at ~0. This goes from ~0 to the lift of fzi; zjgwhih lies in ~�(F ), and hene in mi;j ~�(N), then to the lift of 0 whih lies inmi;j ~�(N). Thus ~Æi;j goes from ~0 to mi;j~0, somi;j = �(Æi;j):We now alulate �i;j . This is the sign of the intersetion of �(N) with �(F ) atthe point fzi; z0jg. A diret omputation using our hoie of orientations for �(N)and �(F ) shows that �i;j = �ab, where� a is the sign of the intersetion of N and T (F ) at zi,� b is the sign of the intersetion of N and T (F 0) at z0j ,�  is 1 if zi is loser to d1 along N than z0j , and �1 otherwise.Now bi;j is odd if and only if the two points swith plaes in the path Æi;j .This happens if and only if z0j is loser than zi to d1 along N . Thus  = (�1)bi;j .Similarly, bi;i is odd if and only if z0i is loser than zi to d1 along N . This happens ifand only if the intersetion betweenN and T (F ) at zi is negative. Thus a = (�1)bi;i .Similarly b = (�1)bj;j . We onlude that(1) �i;j = �(�1)bi;i+bj;j+bi;jThe following formula will be useful later.Lemma 2.1. ai;j = (ai;i + aj;j)=2.



6 STEPHEN J. BIGELOWProof. For i = 1; : : : ; l let �i be the ar in D n P whih goes from d1 to zi in F andthen bak to d1 in N . Let ai be the sum of the winding numbers of �i around eahof the punture points. Let � be the ar in D nP whih goes from d1 to d2 along Nand then bak to d1 ounterlokwise around �D. Let a be the sum of the windingnumbers of � around eah of the punture points. I laim that ai;j = ai + aj + a.Let Æi;j = f�1; �2gf�1; �2gf1; 2g be as above. If �1�11 and �2�22 are losedars then �1�11 = �i and �2�22 is freely homotopi to �j�. On the other hand, if�1�11�2�22 is a single losed loop then it is freely homotopi to �i��j . In eitherase, the exponent of q in �(Æi;j is the sum of the winding numbers of �i, �j and �around eah of the punture points. Thus ai;j = ai + aj + a.Similarly, ai;i = 2ai + a and aj;j = 2aj + a. Thus ai;j = (ai;i + aj;j)=2. �2.3. The Pairing is Well-de�ned. We now prove the following lemma.Lemma 2.2. Suppose F1 and F2 are isotopi relative to �D [ P suh that T (F1)and T (F2) interset N transversely. Then hN;F1i = hN;F2i.A generi isotopy of F1 an be split into a �nite sequene of moves of two types:� isotopies keeping T (F ) transverse to N ,� isotopies pushing a small subar of T (F ) aross a subar of N so that apair of intersetion points is either added to or removed from N \ T (F ).. The �rst type has no e�et on the omputation of hN;F i. It suÆes to onsiderthe ase in whih a pair of intersetion points zl+1 and zl+2 is added to N\T (F1) =fz1; : : : ; zlg.There are now two ases to onsider. First, suppose z0l+1 and z0l+2 lie betweenzl+1 and zl+2 on N . It follows from the de�nitions and the disussion above that fori = 1; : : : ; l + 2 we have mi;l+1 = mi;l+2 and �i;l+1 = ��i;l+2. Also, for j = 1; : : : ; lwe have ml+1;j = ml+2;j and �l+1;j = ��l+2;j . Thus we have omplete anellationof the terms �i;jmi;j for whih either i or j are equal to either l + 1 or l + 2. Asimilar argument works if zl+1 and zl+2 lie between z0l+1 and z0l+2 on N . Thereforethe alulation of hN;F1i gives the same answer before and after the move.2.4. The Basi Lemma. We now prove the following lemma, whih explains whythe pairing between noodles and forks is a useful tool for studying the Lawrene-Krammer representation.Lemma 2.3 (The Basi Lemma). If [�℄ lies in the kernel of the Lawrene-Krammerrepresentation then hN;F i = hN; �(F )ifor every noodle N and fork F .Let [�℄ be an element of the kernel of the Lawrene-Krammer representation.We an assume that the tine edges of F and �(F ) interset N transversely. Then�(F ) intersets �(N) transversely. Thus ~�(F ) intersets any lift qatb ~�(N) trans-versely. Let (qatb ~�(N); ~�(F )) denote the algebrai intersetion number betweenthese surfaes. Then an equivalent de�nition of the pairing between N and F is asfollows. hN;F i = Xa;b2Z(qatb ~�(N); ~�(F ))qatb:We must show that ~�(F ) and �(~�(F )) have the same algebrai intersetion numberwith qatb ~�(N). The diÆulty omes from the fat that the surfaes ~�(N) and ~�(F )
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Figure 2. Some ars in D.are not losed, but are only properly embedded. The algebrai intersetion betweento properly embedded surfaes an be problemati, sine it may be possible to pushintersetions o� to in�nity. To solve this problem, we will prove the existene ofan immersed losed surfae ~�2(F ) whih is equal to (1� q)2(1+ qt)~�(F ) outside asmall neighborhood of the punture points.Let F be a fork. Let the endpoints of T (F ) be pi and pj . Let �(pi) and �(pj)be disjoint �-neighborhoods of pi and pj respetively suh that �(pk) \ P = fpkgfor k = i; j. Let U be the set of fx; yg 2 C suh that at least one of x and y lies in�(pi)[ �(pj). Fix a basepoint u0 = fu1; u2g 2 U , where u1 2 �(pi) and u2 2 �(pj).Let ~U be the pre-image of U in ~C. Choose a lift ~u0 of u0 to ~C . Note that ~U isonneted.Now ~�(F ) represents an element of the relative homology group H2( ~C; ~U). Ourgoal is to �nd a orresponding element of the homology group H2( ~C). To do this,we start by analyzing �1(U; u0). This will give us information about the subgroup�1( ~U; ~u0). This in turn will give us information about H1( ~U). Finally, we willuse the long exat sequene of relative homology to obtain the required element ofH2( ~C).Using the ars shown in Figure 2, we de�ne the following elements of �1(U; u0).a1 = f1; u2g;a2 = fu1; 2g;b1 = f�1; �1�2�3gf�2�3; u1g;b2 = f�1�2�3; �1gfu2; �2�3g:Note that b1 and b2 are homotopi in C, but not in U .The following relations hold in �1(U; u0).[a1; a2℄ = 1;(2) [a1; b1a1b1℄ = 1;(3) [a2; b2a2b2℄ = 1:(4)The �rst of these is obvious. The seond follows from the fat that b1a1b1 is equalin �1(U; u0) to fu1; Æg, where Æ is a urve based at u2 whih passes ounterlokwisearound p1 and u1. The third follows by a similar argument.



8 STEPHEN J. BIGELOWWe now analyze �1( ~U; ~u0), onsidered as a subgroup of �1(U; u0). Let i : U ! Cbe the inlusion map and let i� be the indued map on fundamental groups. Then�1( ~U; ~u0) is the kernel of the map �i�. We de�ne the following elements of �1( ~U; ~u0).a = a�12 a1;b = b�12 b1; = a�11 b�11 a1b1;d = a�12 b�12 a2b2:If x 2 �1( ~U; ~u0) and y 2 �1(U; u0) then the onjugate xy = y�1xy is also an elementof �1( ~U; ~u0). The following relations hold in �1( ~U; ~u0).aa1 = a;(5) b1a1 = 1;(6) db2a2d = 1;(7) dbab1 = aba1:(8)To see this, rewrite these relations in terms of a1, a2, b1 and b2. The �rst threetranslate into equations (2) to (4). The fourth translates into a trivial identity.If x 2 �1( ~U; ~u0), let [x℄ denote the orresponding element of H1( ~U). Note thatif x 2 �1( ~U; ~u0) and y 2 �1(U; u0) then [xy℄ = �(y)�1[x℄. The relations given inequations (5) to (8) give rise to the following relations in H1( ~U).(q�1 � 1)[a℄ = 0;(q�1t�1 + 1)[℄ = 0;(q�1t�1 + 1)[d℄ = 0;(q�1 � 1)[b℄ = (t�1 � 1)[a℄� [℄ + [d℄:Combining these relations, we obtain the following.(1� q)2(1 + qt)[b℄ = 0:Let [~�(F )℄ be the element of H2( ~C; ~U) represented by ~�(F ). The long exatsequene of relative homology gives us the following exat sequene of �-modulesH2( ~C) j�! H2( ~C; ~U) �! H1( ~U):But �[~�(F )℄ = [b℄. It follows that(1� q)2(1 + qt)[~�(F )℄ = j�[~�2(F )℄for some [~�2(F )℄ 2 H2( ~C) represented by some immersed losed surfae ~�2(F ).Then ~�2(F ) is setwise equal to (1� q)2(1 + qt)~�(F ) outside U .Let N be a noodle whih intersets T (F ) transversely. Choose �(pi) and �(pj)small enough so as not to interset N . Then(1� q)2(1 + qt)hN;F i = Xa;b2Z(qatb ~�(N); ~�2(F ))qatb:Now � is an element of the kernel of the Lawrene-Krammer representation, soats as the identity on H2( ~C). Thus the surfaes ~�2(F ) and �(~�2(F )) representthe same element of homology, so have the same algebrai intersetion with anyqatb ~�(N). Sine � is a domain, it follows that hN; �(F )i = hN;F i.



BRAID GROUPS ARE LINEAR 92.5. Alternative proofs. There are many possible approahes to proving the Ba-si Lemma. The proof given above is a ompromise of sorts, sine it proves theexistene of an appropriate element of H2( ~C), but does so in a non-onstrutiveway.It is possible to give a more onstrutive proof whih uses an expliit omputationof H2( ~C). One obtains a onrete desription of an immersed genus two surfaewhih an be seen to be the same as (1� q)2(1 + qt)~�(F ) away from the punturepoints. This is perhaps best done in private, sine the details are only onvining tothe person who �gures them out. Some details of a omputation of H2( ~C) will begiven in Setion 4. See also [Law90℄, where similar methods are used to alulatethe middle homology of a overing spae of the spae of ordered k-tuples of distintpoints in the n-times puntured disk, where k an be any positive integer.It is tempting to seek a less onstrutive proof whih makes no referene to~�2(F ). It is intuitively obvious that the problem of pushing intersetions o� toin�nity does not arise in the ontext of forks and noodles. However this line ofreasoning runs into some tehnial diÆulties whih I feel distrat from the truenature of the problem at hand. A proof that Bn ats faithfully on H2( ~C) shouldrefer to an element of H2( ~C).It is possible to prove that braid groups are linear without referene to C, letalone H2( ~C). The Lawrene-Krammer representation an be de�ned to be theation of Bn on a �-module onsisting of formal linear ombinations of forks subjetto ertain relations, as desribed by Krammer in [Kra99℄. The pairing hN;F i anbe de�ned solely in terms of winding numbers. One must hek that this pairingrespets the relations between forks. The Basi Lemma then follows immediately.The rest of the proof that the Lawrene-Krammer representation is faithful proeedsvirtually unhanged. 3. The representation is faithfulIn this setion, we prove that the Lawrene-Krammer representation is faithful.We start by reviewing some of the basi theory of urves on surfaes.3.1. Curves on Surfaes. The following well-known lemma means that we don'tneed to worry about the di�erene between homotopy and isotopy.Lemma 3.1. If � and � are embedded ars in a surfae � whih are homotopirelative to endpoints then they are isotopi relative to endpoints.De�nition 3.2. Let � and � be embedded ars or simple losed urves on anorientable surfae �. A digon obounded by � and � is an embedded disk B in �whose boundary onsists of one subar of � and one subar of �.Note that B is not required to satisfy B \ (� [ �) = �B. However if � and �obound a digon then it is easy to show that they obound an \innermost digon"with this property.Lemma 3.3. Let � and � be simple losed urves in an orientable surfae � whihinterset transversely. The following are equivalent.� � is isotopi to a simple losed urve whih intersets � at fewer points,� � and � obound a digon.



10 STEPHEN J. BIGELOWA proof an be found in [PR99, Proposition 3.7℄, or [FLP91, Proposition 3.10℄.Note that this lemma as stated does not apply to the ase of a noodle andthe tine edge of a fork, sine these are embedded edges and not simple losedurves. However these edges an be easily extended to simple losed urves byattah handles to the surfae D n P . We will therefore use the above lemma in theontext of noodles and forks without further omment.Lemma 3.4. Let � and � be embedded ars in an orientable surfae � whihinterset transversely and are isotopi relative to endpoints. Then � and � obounda digon.Proof. Let �0 be the \double" of �, that is the boundary of a small regular neigh-borhood of �. Similarly, let �0 be the double of �. Let �0 be the surfae � with theendpoints of � removed. Then �0 and �0 are simple lose urves whih are isotopiin �0. Thus �0 is isotopi to a urve whih does not interset �0. But �0 and �0 dointerset. By Lemma 3.3, �0 and �0 obound a digon in �0. Thus � and � obounda digon in �. �3.2. The Key Lemma. We now prove the following lemma.Lemma 3.5 (The Key Lemma). Let N be a noodle and let F be a fork. ThenhN;F i = 0 if and only if T (F ) is isotopi relative to �D [ P to an ar whih isdisjoint from N .Let N be a noodle and let F be a fork. By applying a preliminary isotopy,we an assume that T (F ) intersets N transversely at z1; : : : ; zl, where l is theminimal possible number of points of intersetion. Let F 0 be a parallel opy of Fsuh that T (F 0) intersets N transversely at z01; : : : ; z0l, where zi and z0i are joinedby a short ar in N whih lies in the narrow strip bounded by T (F ) [ T (F 0).Let mi;j = qai;j tbi;j be suh that mi;j ~�(N) intersets ~�(F ) at a point lying overfzi; z0jg 2 C. Let �i;j be the sign of that intersetion. Reall(9) hN;F i = lXi=1 lXj=1 �i;jqai;j tbi;j :If l = 0 then learly hN;F i = 0. We now assume l > 0 and show that hN;F i 6= 0.We use the following lexiographi ordering on the set of monomials qatb.De�nition 3.6. We say qatb � qa0tb0 if and only if either� a < a0, or� a = a0 and b � b0.For i; j 2 f1; : : : ; lg we say that mi;j is maximal if mi;j � mi0;j0 for all i0; j0 2f1; : : : ; lg.Claim 3.7. If mi;j is maximal then mi;i = mj;j = mi;j .By equation (1) we have that �i;j = �mi;imi;jmj;j j(q = 1; t = �1). The abovelaim implies that if mi;j is maximal then �i;j = �mi;j j(q = 1; t = �1). Thus allmaximal monomials our with the same sign in equation (9). Therefore hN;F iannot equal zero. It remains only to prove the above laim.Suppose mi;j is maximal. Then ai;j is maximal among all the integers ai0;j0 . ByLemma 2.1 it follows that ai;i = aj;j = ai;j .



BRAID GROUPS ARE LINEAR 11We now show that bi;i = bi;j . Sine mi;j is maximal and ai;i = ai;j it follows thatbi;i � bi;j . Suppose, seeking a ontradition, that bi;i < bi;j . Let � be an embeddedar from z0i to z0j along T (F 0). Let � be an embedded ar from z0j to z0i along N .If � does not pass through the point zi, let Æ = �� and let w be the windingnumber of Æ around zi. I laim that bi;j � bi;i = 2w. To see this, onsider the arÆ0 = fzi; Æg in C. Let ~Æ0 be the lift of this whih starts in ~�(F ). Then ~Æ0 goes frommi;i ~�(N) to mi;j ~�(N). Thus mi;jm�1i;i = �(Æ0). Taking the exponent of t in bothsides gives the required equality.If � does pass through zi, �rst modify � in a small neighborhood of zi so thatzi lies to its left. Next let Æ = �� and let w be the winding number of Æ around zi.I laim that 1+ bi;j � bi;i = 2w. We use a similar argument to that of the previousase. However � deviates from N to pass around zi in a ounterlokwise (positive)diretion. As a result, ~Æ0 goes from mi;i ~�(N) to tmi;j ~�(N). The extra fator of taounts for the addition of one to the left-hand side of the equation.In either ase, our assumption that bi;i < bi;j implies that w is greater than zero.Let D1 = D n fzig. Let � : ~D1 ! D1 be the universal (in�nite yli) over. Let~� be a lift of � to ~D1. Let ~� be the lift of � to ~D1 whih starts at ~�(1). Let  be aloop in D1 based at z0i whih winds w times around zi in the lokwise (negative)diretion suh that  is null-homotopi in D n P . Let ~ be the lift of  to an arfrom ~�(1) to ~�(0). Choose  so that ~ is an embedded ar whih intersets ~� and~� only at its endpoints.Let ~z0k be the �rst point on ~� whih intersets ~� (possibly ~�(1)). Then �(~z0k) =z0(k) for some k = 1; : : : ; l. Let ~�0 be the initial segment of ~� ending at ~z0k. Let ~�0be the �nal segment of ~� starting at ~z0k. Let ~Æ0 = ~�0 ~�0~.Now ~Æ0 is a simple losed urve in ~D1, so by the Jordan urve theorem it mustbound a disk ~B. Sine  passes lokwise around zi, there is a non-ompat regionto the right of ~Æ0. Thus ~Æ0 must pass ounterlokwise around ~B.Let �0, �0 and Æ0 be the projetions of ~�0, ~�0 and ~Æ0 to D1. Then ai;k � ai;iis equal to the sum of the winding numbers of Æ0 around eah of the points in P .This is equal to the ardinality of ~B \ ��1(P ). Sine ai;i is maximal among allintegers ai0;j0 , we must have ai;k = ai;i. Thus ~B \ ��1(P ) = ;. It follows thatthe ar Æ0 = �0�0 is null-homotopi in D n P . But �0 is homotopi relative toendpoints to a subar of N , and  was hosen to be null-homotopi in D nP . Thus�0 is homotopi relative to endpoints to a subar of N in D n P . By Lemmas 3.1and 3.4, � and N obound a digon in D n P . But �0 is a subar of T (F 0). Thisontradits the fat that T (F 0) intersets N a minimal number of times. Thereforeour assumption that bi;j > bi;i must have been false, so bi;j = bi;i.The proof that bi;j = bj;j is similar. This ompletes the proof of the laim, andhene of the Key Lemma.3.3. Proof of the Theorem. We now use the Basi Lemma and the Key Lemmato prove that the Lawrene-Krammer representation is faithful.Suppose � 2 H(D;P ) is a homomorphism representing an element of the kernelof the Lawrene-Krammer representation. We will show that � is isotopi relativeto �D [ P to the identity map.Let D be the unit disk entered at the origin in the omplex plain. Let p1; : : : ; pnlie on the real axis and satisfy �1 < p1 < � � � < pn < 1. Let d1 and d2 lie in the lowerhalf plane, with d1 to the left of d2. For i = 1; : : : ; n � 1, let Ei be the horizontal
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Figure 3. The edge E1 and the noodle N4.edge from pi to pi+1. For i = 1; : : : ; n, let Ni be the noodle whih winds around piand no other punture points, interseting the real axis twie. See Figure 3.Let F be a fork suh that T (F ) = E1. Then hN3; F i = 0. By the Basi Lemma,hN3; �(F )i = 0. By the Key Lemma, it follows that �(E1) is isotopi relative to�D [ P to an ar whih is disjoint from N3. By omposing � with an element ofI(D;P ) if neessary, we an assume that �(E1) is disjoint from N3.Similarly, �(E1) an be isotoped so as to be disjoint from N4. By Lemma 3.3,this isotopy an be performed by a sequene of moves whih onsist of eliminatingdigons, and hene do not introdue any new intersetions with N3. Thus we anassume that �(E1) is disjoint from both N3 and N4.Continuing in this way, we an assume that �(E1) is disjoint from Ni for alli = 3; : : : ; n. By applying one �nal isotopy relative to �D [ P , we an assume that�(E1) = E1, (although we have not yet eliminated the possibility that � reversesthe orientation of E1).We an repeat the above proedure to isotope �(E2) to E2 while leaving E1 �xed.Continuing in this way, we an assume that �(Ei) = Ei for all i = 1; : : : ; n� 1. Itfollows that � must be isotopi relative to �D [ P to (�2)k for some k 2 Z, where�2 is a Dehn twist about a urve whih is parallel to �D.Let F be a fork with tine edge E1 whose handle is a straight line from d1 to E1.Then hN1; F i = �q. But one an easily hek that hN; (�2)k(F )i = �q(q2nt2)k.By the Basi Lemma, it follows that k = 0, so � represents the trivial braid.4. Matries for the Lawrene-Krammer representationIn this setion we give an expliit desription of the Lawrene-Krammer repre-sentation in terms of matries.Theorem 4.1. H2( ~C) is a free �-module of rank �n2�. There is a basisfvj;k : 1 � j < k � ng



BRAID GROUPS ARE LINEAR 13on whih the braid �i ats as follows.�i(vj;k) = 8>>>>>><>>>>>>: vj;k i 62 fj � 1; j; k � 1; kg;qvi;k + (q2 � q)vi;j + (1� q)vj;k i = j � 1;vj+1;k i = j 6= k � 1;qvj;i + (1� q)vj;k + (1� q)qtvi;k i = k � 1 6= j;vj;k+1 i = k�tq2vj;k i = j = k � 1:We prove this theorem by onstruting a two-omplex whih is homotopy equiv-alent to C. Our methods require some geometri intuition (read: \hand-waving"),and some details are left to the reader.We desribe a set of generators for �1(C). For j = 1; : : : ; n, let �j be a losedurve in D based at d1 and passing ounterlokwise around pj , and let xj be thear f�j ; d2g in C. Let �1 be an ar from d1 to d2 and �2 an ar from d2 to d1 suhthat �1�2 is a simple losed urve whih is oriented ounterlokwise and enlosesno punture points. Let y be the ar f�1; �2g in C. Let G = fx1; : : : ; xn; yg.We now desribe some relations between these generators. For 1 � j � n, letrj;j = [xj ; yxjy℄:For 1 � j < k � n, let rj;k = [xj ; yxky�1℄:Let R = frj;k : 1 � j � k � ng.We will see that hGjRi is a presentation for �1(C). In fat, we will show some-thing stronger. Let K be the Cayley omplex of the presentation hGjRi. In otherwords, K has one vertex, one edge for eah g 2 G, and one fae fr for eah r 2 R,where �fr is attahed to the 1-skeleton aording to the word r. We will show thatC is homotopy equivalent to K.Let �C be the set of ordered pairs of distint points in D n P . This is the doubleover of C whose fundamental group is normally generated by x1; : : : ; xn and y2.Let Xj = yxjy�1. Let Y = y2. Let �G = fx1; : : : ; xn; X1; : : : ; Xn; Y g. For1 � j � n, let �rj;j = [xj ; XjY ℄;�r0j;j = [Xj ; Y xj ℄:For 1 � j < k � n, let �rj;k = [xj ; Xk℄;�r0j;k = [Xj ; Y xkY �1℄:Let �R = f�rj;k : 1 � j � k � ng [ f�r0j;k : 1 � j � k � ng:Let �K be the Cayley omplex of h �Gj �Ri. Then �K is homotopy equivalent to thedouble over of K whose fundamental group is normally generated by x1; : : : ; xnand y2. To show that C is homotopy equivalent to K, it suÆes to show that �C ishomotopy equivalent to �K.Let � : �C ! D nP be the map obtained by projetion onto the �rst oordinate.When restrited to the interior of �C, this is a �ber bundle over the interior of D nPwhose �ber is an (n+ 1)-times puntured open disk.The base D n P is homotopy equivalent to a graph with one vertex and n edgesorresponding to x1; : : : ; xn. The �ber is homotopy equivalent to a graph with



14 STEPHEN J. BIGELOWone vertex and n+ 1 edges orresponding to X1; : : : ; Xn and Y . The �ber bundlestruture of �C implies that it is homotopy equivalent to the Cayley omplex of apresentation h �Gj �R0i, where �R0 is a set of relations equating Y xk and Xxkj to wordsin fX1; : : : ; Xn; Y g, for j; k 2 f1; : : : ; ng. One an ompute these relations �R0 byexpliitly manipulating ars in �C. They are as follows.Y xk = XkY X�1k ;Xxkj = 8<: XjY XjY �1X�1j ; j = kXkY X�1k Y �1XjY XkY �1X�1k ; j < kXj j > k:One an transform the relations �R0 to �R using moves whih an be realized byisotopy of the attahing maps of the faes in the Cayley omplex. Thus �C ishomotopy equivalent to �K, and hene C is homotopy equivalent to K.We are now ready to ompute H2( ~C). Let C1 and C2 be the free �-modules withbases f[g℄ : g 2 Gg and ffr : r 2 Rg respetively. For any word w in G we de�ne[w℄ 2 C1 indutively aording to the following rules[1℄ = 0;[gw℄ = [g℄ + �(g)[w℄;[g�1w℄ = �(g)�1([w℄� eg);for any g 2 G. Then H2( ~C) is the kernel of the map � : C2 ! C1 given by �fr = [r℄.We alulate the following.�fr = � (1 + q�1t�1)((1� t)[xj ℄ + (q � 1)[y℄) if r = rj;j ;(q�1 � q�2)(�[xj ℄ + t[xk℄� (q � 1)[y℄) if r = rj;k ; where j < k:It is now an exerise in linear algebra to ompute the kernel of this map. It is afree �-module with bases fvj;k : 1 � j < k � ng, wherevj;k = (q � 1)fj;j � (q � 1)tfk;k + (1� t)(1 + qt)fj;k:We now de�ne ertain forks Fj;k whih will orrespond to the basis vetors vj;k.Let D be the unit disk entered at the origin in the omplex plain. Let p1; : : : ; pnlie on the real axis and satisfy �1 < p1 < � � � < pn < 1. Let d1 and d2 lie in thelower half plane, with d1 to the left of d2. For eah 1 � j < k � n, let Fj;k be a forkwhih lies entirely in the losed lower half plane suh that the endpoints of T (F )are pj and pk. Suh an Fj;k is uniquely determined up to isotopy by j and k, andwill be alled a standard fork.Let D0 � D be a disk ontaining Fj;k suh that D0\P = fpj ; pkg. Let C 0 be theset of unordered pairs of distint points in D0. Let ~C 0 be the pre-image of C 0 in ~C.We an onsider vj;k as an element of H2( ~C 0), in whih ase it generates H2( ~C 0) asa �-module. The surfae ~�2(Fj;k) lies in ~C 0, so must represent the homology lass�vj;k for some � 2 �. The value of � does not depend on j and k. (Atually � = 1,but we will not need this fat.)To write �i(vj;k) in terms of basis vetors, we must �nd a �-linear ombinationof standard forks whih represents the same element of H2( ~C) as the fork �i(Fj;k).In the ases i 62 fj � 1; j; k � 1; kg, i = j 6= k, and i = k, there is no problembeause �i(Fj;k) is a standard fork.In the ase i = j = k � 1, the fork �i(Fj;k) has the same tine edge as Fj;k.It follows that it represents the same surfae in ~C , up to a hange in orientation



BRAID GROUPS ARE LINEAR 15and appliation of a overing transformation. With some thought, or by pairingwith an appropriate noodle, it is not hard to hek that the orret formula is�i(vj;k) = �tq2vj;k.The remaining ases are i = j � 1 and i = k � 1 6= j. We will use the followinglaim.Claim 4.2. �i(vj;k) is a linear ombination of basis vetors vj0;k0 whih satisfyj0; k0 2 fi; i+ 1; j; kg.Proof. There exists a disk D0 � D suh that D0 ontains �(Fj;k), D0 ontains Fj0;k0for all j0; k0 2 fi; i + 1; j; kg with j0 < k0, and D0 \ P = fpi; pi+1; pj ; pkg. Let C 0be the set of unordered pairs of distint points in D0. Let ~C 0 be the pre-image ofC 0 in ~C. Then H2( ~C 0) is a free �-module with basis onsisting of all vj0;k0 withj0; k0 2 fi; i+ 1; j; kg and j0 < k0. But �(vj;k) an be onsidered as an element ofH2( ~C 0), so must be a linear ombination of these basis vetors. �In the ase i = j�1, this laim implies that �i(Fj;k) represents the same elementof H2( ~C) as some �-linear ombination of the three standard forks Fi;j , Fi;k, andFj;k. By pairing with some appropriate noodles it is not hard to hek that theorret linear ombination is as stated in Theorem 4.1. Similar methods an be usedto verify Theorem 4.1 in the last remaining ase, i = k� 1 6= j. This ompletes theproof of Theorem 4.1.We onlude with some remarks on the BMW representation of braid groups, de-�ned independently by Birman and Wenzl in [BW89℄, and by Murakami in [Mur87℄.V. Jones notied a striking resemblane between the matries desribed in Theorem4.1 and those of a ertain irreduible summand of the BMW representation. Heasserted that the two representations should be the same after some renormaliza-tion. The details are worked out by Zinno in [Zin℄. At present, there seems to beno deep explanation for this oinidene.Referenes[Big99℄ Stephen Bigelow, The burau representation is not faithful for n = 5, Geometry andTopology 3 (1999), 397{404.[Bir74℄ Joan S. Birman, Braids, links, and mapping lass groups, Prineton University Press,Prineton, N.J., 1974, Annals of Mathematis Studies, No. 82.[Bur36℄ W. Burau, �Uber Zopfgruppen und gleihsinnig verdrillte Verkettungen, Abh. Math. Sem.Ham. II (1936), 171{178.[BW89℄ Joan S. Birman and Hans Wenzl, Braids, link polynomials and a new algebra, Trans.Amer. Math. So. 313 (1989), no. 1, 249{273.[FLP91℄ A. Fathi, F. Laudenbah, and V. Po�enaru, Travaux de Thurston sur les surfaes, Soi�et�eMath�ematique de Frane, Montrouge, 1991, S�eminaire Orsay, Reprint of Travaux deThurston sur les surfaes, So. Math. Frane, Paris, 1979 [MR 82m:57003℄, Ast�erisqueNo. 66-67 (1991).[Kra99℄ Daan Krammer, The braid group B4 is linear, (Preprint), 1999.[Kra00℄ Daan Krammer, Braid groups are linear, (Preprint), 2000.[Law90℄ R. J. Lawrene, Homologial representations of the Heke algebra, Comm. Math. Phys.135 (1990), no. 1, 141{191.[LP93℄ D. D. Long and M. Paton, The Burau representation is not faithful for n � 6, Topology32 (1993), no. 2, 439{447.[Moo91℄ John Atwell Moody, The Burau representation of the braid group Bn is unfaithful forlarge n, Bull. Amer. Math. So. (N.S.) 25 (1991), no. 2, 379{384.[Mur87℄ Jun Murakami, The Kau�man polynomial of links and representation theory, Osaka J.Math. 24 (1987), no. 4, 745{758.
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