BRAID GROUPS ARE LINEAR

STEPHEN J. BIGELOW

ABSTRACT. The braid group B, can be defined as the mapping class group
of the n-punctured disk. A group is said to be linear if it admits a faithful
representation into a group of matrices over R. Recently Daan Krammer has
shown that a certain representation of the braid groups is faithful for the case
n = 4. In this paper, we show that it is faithful for all n.

1. INTRODUCTION

The braid group B,, can be defined as the group generated by oy,...,0,_1 with

defining relations

e gio; =0j0; if [i —j| > 1, and

® 0;0;410; = 0410041 fori=1,...,n—2.
These groups were originally introduced by Emil Artin in 1926. They have many
interpretations, for example, as the group of geometric braids in R?, as the Artin
group of type A,, as the fundamental group of a certain hyperplane arrangement,
as a subgroup of the automorphism group of a free group, and so on. In this paper
we will use the interpretation of B, as the mapping class group of an n-times
punctured disk.

A group is said to be linear if it admits a faithful representation into GL(m, R) for
some natural number m. The question of whether braid groups are linear probably
dates back to 1935 when Burau [Bur36] discovered an n-dimensional representation
of B,. For a long time this was thought to be a possible candidate for a faithful
representation. A simple proof that it is faithful in the case n = 3 gave some
reason for optimism. However in 1991, Moody [Moo91] showed that the Burau
representation is not faithful for n > 9. This was later brought down to n > 6 and
then n > 5 in the papers [LP93] and [Big99].

It therefore came as a pleasant surprise when Krammer [Kra99] proved that
another representation of the braid groups is faithful in the case n = 4. The repre-
sentation Krammer used is essentially the same as one used by Lawrence in [Law90]
to give a topological definition of a certain summand of the Jones representation.
We call this representation the Lawrence-Krammer representation. In this paper,
we prove the following.

Theorem 1.1. The Lawrence-Krammer representation of B, is faithful for all n.

This proves that all braid groups are linear. Our proof can be seen as a sort of
converse to the construction of elements of the kernel of the Burau representation
given in [Moo091], [LP93] and [Big99]. Our methods are topological, and very dif-
ferent from the algebraic methods used by Krammer for the case n = 4. Recently,
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Krammer [Kra00] has extended his algebraic methods to obtain a new proof of the
above theorem as well as some new ways to read information about a braid from
its Lawrence-Krammer representation.

1.1. Outline. In Section 1 we define a certain covering space C of the configuration
space C' of unordered pairs of distinct points in the n-times punctured disk. The
Lawrence-Krammer representation is defined to be the induced action of the braid
group B, on the second homology group of C.

In Section 2 we define forks and noodles. These are one-dimensional objects in
the disk designed to represent elements of the second homology and cohomology
of C. We define an intersection pairing between a noodle and a fork. We prove
that if F' is a fork and o is an element of the kernel of the Lawrence-Krammer
representation then F' and o(F') have the same pairing with any fixed noodle.

In Section 3 we prove that the pairing between a noodle and a fork detects
geometric intersection between the corresponding edges in the disk. We use this to
show that a braid in the kernel of the Lawrence-Krammer representation must be
trivial.

In Section 4 we compute the Lawrence-Krammer representation explicitly in
terms of generators and basis elements.

1.2. Definitions. Let D be an oriented disk in the complex plane. Fix aset P C D
consisting of n distinct points pi,...,p, in the interior of D. We will call these
puncture points. Let H (D, P) be the group of all homeomorphisms h: D — D such
that h(P) = P and h fixes 9D pointwise. Let Z(D, P) be the group of all such
homeomorphisms which are isotopic to the identity relative to 9 DUP. We define the
braid group B,, to be the group H(D, P)/Z(D, P). This is also called the mapping
class group of the disk with n puncture points. See [Bir74] for other equivalent
definitions of these groups and a good introduction to their basic properties.

Let C denote the space of all unordered pairs of distinct points in D\ P. In

other words,
o= (DA\P) x (D\P)\ {(z,2)}
(:E: y) ~ (y= :U) .
Let d; and dy be distinct points in dD. Let ¢o = {dy,d2} be a basepoint for C. We
now define a map ¢ from 1 (C, ¢g) to the free Abelian group with basis {q,t}. Let
a be a closed curve in C based at ¢o representing an element [@] of 71 (C,cg). We
can write « in the form

a(s) = {ai(s), as(s)}

for some arcs ay and as in D \ P. Let

1 & (/ dz / dz >
a= - + .
2w 5 \Joy 2=DPi Jay 2= Pj

Let,

Let ¢([a]) = q*¢".

This definition requires some explanation. If a; and as are closed loops then a is
the sum of the winding numbers of &1 and @y around each of the puncture points,
and b is twice the winding number of 7 and ay around each other. However a; and
as are not necessarily closed loops, but may “switch places”. In this case, a is the
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sum of the winding numbers of the closed loop a;as around each of the puncture
points. Furthermore, oy — as satisfies

(1 —a2)(1) = —(a1 — a2)(0),

which implies that b is an odd integer.

Let C be the covering space of C' whose fundamental group is the kernel of ¢.
Let A denote the ring Z[g*"', t*']. The homology group H,(C) can be considered
as a A-module, where g and ¢ act by covering transformations.

Any homeomorphism o € H(D, P) induces a homeomorphism from C to itself,
also denoted o. It is easy to check that o fixes ¢g and the induced action of ¢ on
71(C, ¢y) satisfies o = ¢. Thus o lifts uniquely to a map & from C to itself which
fixes the fiber over ¢q pointwise. Moreover, this lift & commutes with the covering
transformations ¢ and ¢. It follows that the induced action 6, of & on Hy(C) is a
A-module automorphism. The Lawrence-Krammer representation is the map from
B, to GL(H(C)) taking [0] to &..

We will see in Section 4 that H»(C) is a free A-module of rank (7). Thus the
Lawrence-Krammer representation can be thought of as a map from B,, to the group
of (3’) by (;) matrices with entries in A. We can obtain a faithful representation
into GL((Z’),R) by substituting algebraically independent real numbers for ¢ and
t.

In [Law90], Lawrence defines a representation by a similar construction using
the space of ordered k-tuples of distinct points in D\ P. In the case k = 2, the
resulting representation is the same map from B,, to GL(H,(C)) as defined above,
except that Hs(C) is to be considered as a module over Z[g*!,t+2]. As a result,
the representation defined by Lawrence has rank n(n — 1), which is double that of
the Lawrence-Krammer representation. The variable a in [Law90] corresponds to
2 in this paper.

In [Kra99], Krammer defines a representation of B,, as the induced action on a
module of formal A-linear combinations of forks modulo certain relations. These
forks are of central importance in this paper, and will be defined in Section 2.
Krammer’s representation is the same as our Lawrence-Krammer representation

except that the variable ¢ in [Kra99] corresponds to —t in this paper.

1.3. Notation. Throughout this paper, I will denote the interval [0, 1].
If @ and § are arcs in D\ P such a(s) # S(s) for all s € I then denote by {a, 5}
the arc in C' given by

{a, B}(s) = {a(s), B(s)}-
If y is a point in D\ P and « is an arc in D \ (P U {y}) then denote by {a,y} the
arc in C given by

{a.y}(s) = {als).y}
The same arc can also be denoted by {y,a}.
If g and h are elements of a group then we use the notation

9" =h""gh

and
l9,h] =g~ 'h ™" gh.

Braids compose from right to left. Arcs compose from left to right.
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di  day

F1GurE 1. A fork F and a parallel copy F".

2. FORKS AND NOODLES

In this section we define forks and noodles and a pairing between them. The
idea of using a fork to represent an element of H,(C) is due to Krammer [Kra99).

A fork is an embedded tree F' C D with four vertices dy, p;, p; and z such that
FNoD ={di}, FNP = {pi,p;}, and all three edges have z as a vertex. The edge
containing d; is called the handle of F'. The union of the other two edges is a single
edge, which we call the tine edge of F' and denote by T'(F'). We orient T'(F) in such
a way that the handle of F' lies to the right of T'(F).

For a given fork F' we can define a parallel copy of F' to be an embedded tree
F' as shown in Figure 1. The five puncture points at the top of the figure may be
replaced by any number, and any orientation-preserving self-homeomorphism may
be applied to the entire disk. The tine edge T'(F"') of F' is defined analogously to
that of F.

For any fork F, we define a surface ¥(F) in C as follows. Let F’ be a parallel
copy of F. Let z be the vertex contained in all three edges of F', and let z’ be the
vertex contained in all three edges of F'. Define a surface X(F') in C to be the
set of all points which can be written in the form {z,y}, where z € T(F) \ P and
y € T(F')\ P. Let 8y be an arc from d; to z along the handle of F' and let 5
be an arc from dy to z' along the handle of F'. Let § be the lift of {1, B2} to C
beginning at &. Let 3(F) be the lift of ¥(F) to C' which contains 5(1).

There is an obvious homeomorphism from X(F) to the interior of the square
T(F) x T(F"). The orientations on T'(F) and T'(F") give rise to an orientation on
T(F) x T(F"), and hence on $(F). This lifts to an orientation on %(F).

A noodle is an embedded edge N C D \ P with endpoints d; and dy. Orient N
so that it goes from d; to ds. For a given noodle N we define the surface X(INV)
to be the set of points {z,y} € C such that z and y are distinct points in N. Let
Y(N) be the lift of £(N) to C' which contains é&.

There is an obvious homeomorphism from (V) to the subset of N x N consisting
of those points (z,y) such that z is closer to d; along N than y. The orientation
on N gives rise to an orientation on N x N, and hence on X(N). This lifts to an
orientation on X (N).

2.1. A pairing. Let N be a noodle and let F' be a fork. We use the surfaces %(NV)
and X(F) to define an element (N, F') of A as follows.
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If necessary, apply a preliminary isotopy so that T'(F') intersects N transversely.
Let z1,...,2 denote the points of intersection between N and T'(F). Let F' be a

3

parallel copy of F' such that T'(F"') intersects N transversely at z1,..., 2, where z;
and z; are joined by a short arc in N which lies in the narrow strip bounded by T'(F')
and T'(F'). For i,j = 1,...,l, there exists a unique monomial m; ; = ¢%it%. such

that m; ;3(N) intersects $(F) at a point lying over {zi,2j} € C. Let € ; be the
sign of that intersection. Then we define the pairing between N and F' as follows.

1 1
(NLF) =3 e gt
i=1 j=1

We need to prove that this does not depend on our choice of preliminary isotopy
of F. First we describe how to explicitly compute the pairing.

2.2. Computing the Pairing. We compute m; ; as follows. Define the following
embedded arcs in D \ P.

a1 from d; to z along the handle of F,

as from ds to 2’ along the handle of F”,

b1 from z to z; along T'(F),

B2 from 2’ to 2 along T'(F'),

v from z; to dy along N, where k£ € {1,2} is such that y; does not pass
through 27,

e v, from 2} to di along N, where k' € {1,2} is such that v, does not pass
through z;.

Consider the following arc in C.

8ij = {o, e H{B1, Ba i, 12}

Let Si,j be the lift of d; ; beginning at . This goes from é& to the lift of {z;,z2;}
which lies in X(F), and hence in m; ;2(N), then to the lift of ¢, which lies in
mMZN}(N). Thus §; ; goes from é to m; jco, so

m;j = ¢(dij)-

We now calculate €; j. This is the sign of the intersection of X(N) with X(F) at
the point {2;,2;}. A direct computation using our choice of orientations for ¥(N)
and X(F) shows that €; ; = —abc, where

e ¢ is the sign of the intersection of N and T'(F') at z;,
e b is the sign of the intersection of N and T'(F") at z;,
e cis 1if z; is closer to d; along N than zg-, and —1 otherwise.

Now b; ; is odd if and only if the two points switch places in the path d; ;.
This happens if and only if 2} is closer than z; to di along N. Thus ¢ = (=1)%.
Similarly, b; ; is odd if and only if 2} is closer than z; to di along N. This happens if
and only if the intersection between N and T'(F) at z; is negative. Thusa = (—1)%.
Similarly b = (—1)%4. We conclude that

(1) €ig = (=)
The following formula will be useful later.

Lemma 2.1. a;; = (ai; +aj;)/2.
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Proof. Fori=1,...,11let & be the arc in D \ P which goes from d; to z; in F and
then back to dy in N. Let a; be the sum of the winding numbers of ¢; around each
of the puncture points. Let £ be the arc in D\ P which goes from d; to dy along N
and then back to d; counterclockwise around 0D. Let a be the sum of the winding
numbers of ¢ around each of the puncture points. I claim that a; ; = a; + a; + a.

Let (;,;d = {Ozl, Ozg}{ﬁl,ﬁg}{’yl,’)@} be as above. If Oqﬂl’yl and Ozgﬂg’}/g are closed
arcs then a; 8171 = & and @322 is freely homotopic to ;£. On the other hand, if
a1 f17100 82772 is a single closed loop then it is freely homotopic to &;£€;. In either
case, the exponent of ¢ in ¢(d; ; is the sum of the winding numbers of §;, &; and &
around each of the puncture points. Thus a; ; = a; + a; + a.

Similarly, a; ; = 2a; + a and a;; = 2a; + a. Thus a; ; = (a;; + a;;)/2. O

2.3. The Pairing is Well-defined. We now prove the following lemma.

Lemma 2.2. Suppose Fy and Fy are isotopic relative to 0D U P such that T (Fy)
and T (Fy) intersect N transversely. Then (N, Fy) = (N, Fy).

A generic isotopy of F} can be split into a finite sequence of moves of two types:

e isotopies keeping T'(F) transverse to N,
e isotopies pushing a small subarc of T'(F) across a subarc of N so that a
pair of intersection points is either added to or removed from N NT(F).

. The first type has no effect on the computation of (N, F'). It suffices to consider
the case in which a pair of intersection points z;41 and 249 is added to NNT'(Fy) =
{z1,..., 21}

There are now two cases to consider. First, suppose Zl’+1 and zl’+2 lie between
2141 and 242 on N. It follows from the definitions and the discussion above that for
i=1,...,1+ 2 we have Mi+1 = Mg 142 and €il+1 = —E€14+2- Also, for j =1,...,1
we have my 1 j = myy2; and €41 ; = —€42 ;. Thus we have complete cancellation
of the terms €; jm; ; for which either i or j are equal to either I+ 1 or 1+ 2. A
similar argument works if 2,41 and 249 lie between 2;, and 2/, on N. Therefore
the calculation of (N, F}) gives the same answer before and after the move.

2.4. The Basic Lemma. We now prove the following lemma, which explains why
the pairing between noodles and forks is a useful tool for studying the Lawrence-
Krammer representation.

Lemma 2.3 (The Basic Lemma). If [o] lies in the kernel of the Lawrence-Krammer
representation then

(N, F) = (N,o(F))
for every noodle N and fork F.

Let [0] be an element of the kernel of the Lawrence-Krammer representation.
We can assume that the tine edges of F' and o(F') intersect N transversely. Then
Y (F) intersects £(N) transversely. Thus X(F) intersects any lift ¢*tS(N) trans-
versely. Let (¢“tS(N),(F)) denote the algebraic intersection number between
these surfaces. Then an equivalent definition of the pairing between N and F' is as
follows.

(NF) = (¢"t"E(N), £(F))q"t".
a,beEZ
We must show that ¥(F) and ¢(3(F)) have the same algebraic intersection number
with ¢?t*%(N). The difficulty comes from the fact that the surfaces ¥ (N) and X (F)



BRAID GROUPS ARE LINEAR 7

v(pi) v(pj)
Ba
=D

FIGURE 2. Some arcs in D.

are not closed, but are only properly embedded. The algebraic intersection between
to properly embedded surfaces can be problematic, since it may be possible to push
intersections off to infinity. To solve this problem, we will prove the existence of
an immersed closed surface ¥, (F) which is equal to (1 — ¢)%(1 + ¢t)X(F) outside a
small neighborhood of the puncture points.

Let F be a fork. Let the endpoints of T'(F') be p; and p;. Let v(p;) and v(p;)
be disjoint e-neighborhoods of p; and p; respectively such that v(py) N P = {ps}
for k =1i,j. Let U be the set of {z,y} € C such that at least one of z and y lies in
v(p;) Uv(p;). Fix a basepoint ug = {u1,u2} € U, where uy € v(p;) and us € v(p;).
Let U be the pre-image of U in C. Choose a lift g of ug to C. Note that U is
connected.

Now X(F) represents an element of the relative homology group Hy(C,U). Our
goal is to find a corresponding element of the homology group HZ(C') To do this,
we start by analyzing m; (U, ug). This will give us information about the subgroup
71 (U, o). This in turn will give us information about H,;(U). Finally, we will
use the long exact sequence of relative homology to obtain the required element of
Hy(C).

Using the arcs shown in Figure 2, we define the following elements of 71 (U, uy).

ar = {m,u},
az = {U1=72}7
by = {1, BiB20sH{azas, ui},

by = {aiasas,f1}{us, B8}

Note that b; and by are homotopic in C', but not in U.
The following relations hold in 7 (U, ug).

(2) [a1 ) GQ] = 1
(3) [(],17 bl(llbl] = 1,
(4) [(],27 bg(lzbg] = 1.

The first of these is obvious. The second follows from the fact that biaqb; is equal
in 71 (U, ug) to {uy,d}, where § is a curve based at u2 which passes counterclockwise
around p; and u;. The third follows by a similar argument.
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We now analyze m; (U, i), considered as a subgroup of 71 (U, ug). Leti: U — C
be the inclusion map and let 7, be the induced map on fundamental groups. Then
71 (U, dp) is the kernel of the map ¢i,. We define the following elements of 7 (U, g ).

a = a;]al,
b = b, b,
c = af]bf]mbh
d = a;lbflang.

Ifz € 771(U iip) and y € m1 (U, uo) then the conjugate z¥ =y -1

of 1 (U, ). The following relations hold in 7 (U, ).

zy is also an element

ai

(5) a" = a,
(6) e = 1,
(7) d»=2q = 1,
(8) dba® = ab™ec.

To see this, rewrite these relations in terms of a1, as, by and bs. The first three
translate into equations (2) to (4). The fourth translates into a trivial identity.

If £ € m (U, 1), let [2] denote the corresponding element of H;(U). Note that
if z € m(U,ip) and y € m (U, up) then [2¥] = ¢(y) *[z]. The relations given in
equations (5) to (8) give rise to the following relations in H, (U).

(¢ =Dia = o,
(¢ 't '+ = o,
(@'t +1d = o

(@' =P = " =Dla - [c] +[d].

Combining these relations, we obtain the following.
(19’1 +qt)[b] =0.

Let [S(F)] be the element of Hy(C,U) represented by X(F). The long exact
sequence of relative homology gives us the following exact sequence of A-modules

Hy(C) 53 Hy(C,0) S H,y (D).
But 9[X(F)] = [b]. It follows that
(1 q)°(1+ gt)[S(F)] = ju[22(F)]

for some [S5(F)] € Hy(C) represented by some immersed closed surface o (F).
Then X, (F) is setwise equal to (1 — ¢)2(1 + ¢t)X(F) outside U.

Let N be a noodle which intersects T'(F') transversely. Choose v(p;) and v(p;)
small enough so as not to intersect V. Then

(1=’ +gt)(N,F) = > (q"t"S(N), 5o(F))q"t".
a,beZ
Now ¢ is an element of the kernel of the Lawrence-Krammer representation, so
acts as the identity on Hy(C'). Thus the surfaces ¥o(F) and o(35(F)) represent
the same element of homology, so have the same algebraic intersection with any
¢“t*(N). Since A is a domain, it follows that (N, o(F)) = (N, F).
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2.5. Alternative proofs. There are many possible approaches to proving the Ba-
sic Lemma. The proof given above is a compromise of sorts, since it proves the
existence of an appropriate element of HQ(é), but does so in a non-constructive
way.

It is possible to give a more constructive proof which uses an explicit computation
of Hy(C). One obtains a concrete description of an immersed genus two surface
which can be seen to be the same as (1 — ¢)2(1 + ¢t)S(F) away from the puncture
points. This is perhaps best done in private, since the details are only convincing to
the person who figures them out. Some details of a computation of H,(C) will be
given in Section 4. See also [Law90], where similar methods are used to calculate
the middle homology of a covering space of the space of ordered k-tuples of distinct
points in the n-times punctured disk, where k can be any positive integer.

It is tempting to seek a less constructive proof which makes no reference to
Yo (F). It is intuitively obvious that the problem of pushing intersections off to
infinity does not arise in the context of forks and noodles. However this line of
reasoning runs into some technical difficulties which I feel distract from the true

nature of the problem at hand. A proof that B,, acts faithfully on H2(C) should
refer to an element, of Hy(C).

It is possible to prove that braid groups are linear without reference to C, let
alone Hy(C'). The Lawrence-Krammer representation can be defined to be the
action of B, on a A-module consisting of formal linear combinations of forks subject
to certain relations, as described by Krammer in [Kra99]. The pairing (N, F') can
be defined solely in terms of winding numbers. One must check that this pairing
respects the relations between forks. The Basic Lemma then follows immediately.
The rest of the proof that the Lawrence-Krammer representation is faithful proceeds

virtually unchanged.

3. THE REPRESENTATION IS FATTHFUT

In this section, we prove that the Lawrence-Krammer representation is faithful.
We start by reviewing some of the basic theory of curves on surfaces.

3.1. Curves on Surfaces. The following well-known lemma means that we don’t
need to worry about the difference between homotopy and isotopy.

Lemma 3.1. If a and B are embedded arcs in a surface ¥ which are homotopic
relative to endpoints then they are isotopic relative to endpoints.

Definition 3.2. Let o and 8 be embedded arcs or simple closed curves on an
orientable surface ¥.. A digon cobounded by a and 3 is an embedded disk B in ¥
whose boundary consists of one subarc of a and one subarc of 3.

Note that B is not required to satisfy BN (e« U 8) = dB. However if a and
cobound a digon then it is easy to show that they cobound an “innermost digon”
with this property.

Lemma 3.3. Let a and 8 be simple closed curves in an orientable surface ¥ which
intersect transversely. The following are equivalent.

e « is isotopic to a simple closed curve which intersects B at fewer points,
e a and 3 cobound a digon.
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A proof can be found in [PR99, Proposition 3.7], or [FLP91, Proposition 3.10].

Note that this lemma as stated does not apply to the case of a noodle and
the tine edge of a fork, since these are embedded edges and not simple closed
curves. However these edges can be easily extended to simple closed curves by
attach handles to the surface D\ P. We will therefore use the above lemma in the
context of noodles and forks without further comment.

Lemma 3.4. Let a and B be embedded arcs in an orientable surface ¥ which
intersect transversely and are isotopic relative to endpoints. Then a and § cobound
a digon.

Proof. Let o' be the “double” of a, that is the boundary of a small regular neigh-
borhood of . Similarly, let 5’ be the double of 5. Let X/ be the surface ¥ with the
endpoints of a removed. Then o' and ' are simple close curves which are isotopic
in ¥'. Thus #' is isotopic to a curve which does not intersect o'. But o’ and 3’ do
intersect. By Lemma 3.3, o’ and ' cobound a digon in ¥/. Thus o and 8 cobound
a digon in X. O

3.2. The Key Lemma. We now prove the following lemma.

Lemma 3.5 (The Key Lemma). Let N be a noodle and let F' be a fork. Then
(N,FY =0 if and only if T(F) is isotopic relative to 0D U P to an arc which is
disjoint from N.

Let N be a noodle and let F' be a fork. By applying a preliminary isotopy,
we can assume that T'(F) intersects N transversely at z1,..., 2, where [ is the
minimal possible number of points of intersection. Let F' be a parallel copy of F
such that T'(F') intersects N transversely at zi,..., 2], where z; and 2] are joined
by a short arc in N which lies in the narrow strip bounded by T'(F) U T'(F").

Let m; ; = q%t%i be such that m; ;% (N) intersects X(F) at a point lying over
{2i,25} € C. Let ¢ ; be the sign of that intersection. Recall

[
(9) (N, F) = ZZQ,jq“"’jtbi’j.

i=1 j=1

If I = 0 then clearly (N, F) = 0. We now assume | > (0 and show that (N, F') # 0.
We use the following lexicographic ordering on the set of monomials ¢%¢°.

Definition 3.6. We say ¢%t® < ¢” t" if and only if either

e a<ada, or
ea=a and b<V.

For i,j € {1,...,1} we say that m;; is mazimal if m; ; > my j for all i',j' €

Claim 3.7. If m; ; is mazimal then m;; = m;; = m; ;.

By equation (1) we have that €; ; = —m; ;m; jm; ;|(¢ = 1,t = —1). The above
claim implies that if m; ; is maximal then €; ; = —m; ;|(¢ = 1,¢ = —1). Thus all
maximal monomials occur with the same sign in equation (9). Therefore (N, F')
cannot equal zero. It remains only to prove the above claim.

Suppose m; ; is maximal. Then a; ; is maximal among all the integers a; ;. By
Lemma 2.1 it follows that Qi = Q55 = Qj j.
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We now show that b; ; = b; j. Since m; ; is maximal and a, ; = a; ; it follows that
bii < b;j. Suppoqe seeking a contradiction, that b; ; < b; ;. Let a be an embedded
arc from z; to z} along T'(F'). Let 8 be an embedded arc from z} to z; along N.

If g does not pass through the point z;, let § = af and let w be the winding
number of § around z;. I claim that b; ; — b;; = 2w. To see this, consider the arc

= {z;,6} in C. Let &' be the lift of fh1§ which starts in £(F). Then &' goes from
mmZ(N) to m; j3(N). Thus m; jm;; = ¢(d'). Taking the exponent of ¢ in both
sides gives the required equality.

If 8 does pass through z;, first modify £ in a small neighborhood of z; so that
z; lies to its left. Next let § = af and let w be the winding number of ¢ around z;.
I claim that 1+b; ; — b;; = 2w. We use a similar argument to that of the previous
case. However /8 deviates from N to pass around z; in a counterclockwise (positive)
direction. As a result, &' goes from m;;3(N) to tm; j3(N). The extra factor of t
accounts for the addition of one to the left-hand side of the equation.

In either case, our assumption that b; ; < b; ; implies that w is greater than zero.

Let D1 = D\ {zi}. Let m: D, — Dy be the universal (infinite cyclic) cover. Let
@ be a lift of a to D;. Let B be the lift of 3 to D, which starts at a(1). Let vy be a
loop in D; based at z} which winds w times around z; in the clockwise (negative)
direction such that « is null-homotopic in D \ P. Let 4 be the lift of v to an arc
from (1) to @(0). Choose v so that 4 is an embedded arc which intersects & and
B only at its endpoints.

Let Z, be the first point on & which intersects 3 (possibly @(1)). Then 7(2}) =

2'(k) for some k= 1,...,1. Let & be ‘rhe initial segment of & ending at Zj. Let Jed
be the final segment of B starting at z,. Let §' = &'3'7.

Now &' is a simple closed curve in Dl, so by the Jordan curve theorem it must
bound a disk B. Since 7 passes clockwise around z;, there is a non-compact region
to the right of &'. Thus §’ must pass counterclockwise around B.

Let o', 8" and & be the projections of &, 8" and &' to D;. Then Qi g — Qi
is equal to the sum of the winding numbers of ¢’ around each of the points in P.
This is equal to the cardinality of B N7~ '(P). Since a;; is maximal among all
integers ay j, we must have a; = a;;. Thus Bn 7 Y(P) = 0. It follows that
the arc ' = a'f'y is null-homotopic in D \ P. But 8’ is homotopic relative to
endpoints to a subarc of N, and y was chosen to be null-homotopic in D \ P. Thus
o' is homotopic relative to endpoints to a subarc of N in D \ P. By Lemmas 3.1
and 3.4, @ and N cobound a digon in D \ P. But o' is a subarc of T'(F'). This
contradicts the fact that T'(F") intersects N a minimal number of times. Therefore
our assumption that b; ; > b; ; must have been false, so b; ; = b; ;.

The proof that b; ; = b; ; is similar. This completes the proof of the claim, and
hence of the Key Lemma.

3.3. Proof of the Theorem. We now use the Basic Lemma and the Key Lemma
to prove that the Lawrence-Krammer representation is faithful.

Suppose o € H(D, P) is a homomorphism representing an element of the kernel
of the Lawrence-Krammer representation. We will show that ¢ is isotopic relative
to 0D U P to the identity map.

Let D be the unit disk centered at the origin in the complex plain. Let p1,...,p,
lie on the real axis and satisfy —1 < p; < -+ < p, < 1. Let dy and d5 lie in the lower
half plane, with d; to the left of ds. For i = 1,...,n — 1, let E; be the horizontal
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di da

FiGURE 3. The edge E; and the noodle Ny.

edge from p; to p;y1. For i =1,...,n, let N; be the noodle which winds around p;
and no other puncture points, intersecting the real axis twice. See Figure 3.

Let F be a fork such that T(F) = E;. Then (N3, F) = 0. By the Basic Lemma,
(N3,0(F)) = 0. By the Key Lemma, it follows that o(E;) is isotopic relative to
0D U P to an arc which is disjoint from N3. By composing o with an element of
Z(D, P) if necessary, we can assume that o(F;) is disjoint from Nj.

Similarly, o(FE;) can be isotoped so as to be disjoint from N,. By Lemma 3.3,
this isotopy can be performed by a sequence of moves which consist of eliminating
digons, and hence do not introduce any new intersections with N3. Thus we can
assume that o(E;) is disjoint from both N3 and Ny.

Continuing in this way, we can assume that o(FE;) is disjoint from N; for all
i =3,...,n. By applying one final isotopy relative to 0D U P, we can assume that
o(Ey) = Ey, (although we have not yet eliminated the possibility that o reverses
the orientation of Ej).

We can repeat the above procedure to isotope o(FE2) to E2 while leaving E fixed.
Continuing in this way, we can assume that o(E;) = E; foralli=1,...,n— 1. It
follows that o must be isotopic relative to 8D U P to (A?)* for some k € Z, where
A? is a Dehn twist about a curve which is parallel to dD.

Let F' be a fork with tine edge E; whose handle is a straight line from d; to E;.
Then (Ny, F) = —q. But one can easily check that (N, (A2)*(F)) = —q(¢g*>"t?)*.
By the Basic Lemma, it follows that k£ = 0, so ¢ represents the trivial braid.

4. MATRICES FOR THE LAWRENCE-KRAMMER REPRESENTATION

In this section we give an explicit description of the Lawrence-Krammer repre-
sentation in terms of matrices.

Theorem 4.1. Hy(C) is a free A-module of rank (%). There is a basis

{vjr:1<j<k<n}
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on which the braid o; acts as follows.

U.77k Z€{3_17J:k_1:k}7
QUi +(¢° = Quig + (1 —qQuje  i=j—1,
o _ Vj41,k 7::]'75]‘7*1:
7i(vjr) = quji+ (1 —q@ujr+ (1 —qg)gtvir, i=k—1%#j,
Vj k+1 i=k
—tq*vjk i=j=k-1

We prove this theorem by constructing a two-complex which is homotopy equiv-
alent to C. Our methods require some geometric intuition (read: “hand-waving”),
and some details are left to the reader.

We describe a set of generators for m (C). For j = 1,...,n, let & be a closed
curve in D based at d; and passing counterclockwise around p;, and let z; be the
arc {{;,d»} in C. Let 7 be an arc from d; to d» and 7 an arc from dy to d; such
that 77 is a simple closed curve which is oriented counterclockwise and encloses
no puncture points. Let y be the arc {71, 72} in C. Let G = {z1,...,z,,y}.

We now describe some relations between these generators. For 1 < 5 < n, let

rig = T, y259]-
For1<j <k <n,let
rik = T, yrey .
LetR:{rj,k:lngkSn}.

We will see that (G|R) is a presentation for m; (C). In fact, we will show some-
thing stronger. Let K be the Cayley complex of the presentation (G|R). In other
words, K has one vertex, one edge for each g € G, and one face f, for each r € R,
where Jf, is attached to the 1-skeleton according to the word r. We will show that
C is homotopy equivalent to K.

Let C be the set of ordered pairs of distinct points in D\ P. This is the double
cover of C' whose fundamental group is normally generated by z1,...,z, and y>.

Let X; = yzjy ', Let Y = y2. Let G = {m1,...,2n,X1,...,X,,Y}. For
1< 35 <n,let

rii = [z, X;Y],
r; = X5 Yl
For 1 <j<k<mn,let
Tk = [, Xk,
e o= (X5, Y Y

Let

R={fr:1<j<k<npuU{r,:1<j<k<n}
Let K be the Cayley complex of (G|R). Then K is homotopy equivalent to the
double cover of K whose fundamental group is normally generated by zi,...,z,
and y2. To show that C is homotopy equivalent to K, it suffices to show that C is
homotopy equivalent to K.

Let 7: C — D\ P be the map obtained by projection onto the first coordinate.
When restricted to the interior of C, this is a fiber bundle over the interior of D\ P
whose fiber is an (n 4+ 1)-times punctured open disk.

The base D \ P is homotopy equivalent to a graph with one vertex and n edges
corresponding to x1,...,z,. The fiber is homotopy equivalent to a graph with
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one vertex and n + 1 edges corresponding to Xi,..., X, and Y. The fiber bundle
structure of C' implies that it is homotopy equivalent to the Cayley complex of a
presentation (G|R'), where R’ is a set of relations equating Y** and X7+ to words
in {X;,...,X,,Y}, for j,k € {1,...,n}. One can compute these relations R' by

3

explicitly manipulating arcs in C'. They are as follows.

Vo = XpY X
XY Xy X j=k
X o= O YXJYOIXGY XY LYY, <k
X; j>k.

One can transform the relations R’ to R using moves which can be realized by
isotopy of the attaching maps of the faces in the Cayley complex. Thus C is
homotopy equivalent to K, and hence C' is homotopy equivalent to K.

We are now ready to compute HQ(é) Let C; and Cs be the free A-modules with
bases {[g] : g € G} and {f,. : r € R} respectively. For any word w in G we define

[w] € C; inductively according to the following rules

(1] = o,
[gw] = [g] + ¢(g)[w],
[97'w] = ¢(9) " ([w] —ey),

for any g € G. Then Hy(C) is the kernel of the map 9: C2 — C; given by df, = [r].
We calculate the following.

f, = { (M +¢ ')A =Dz]+ (@ - Dly])  ifr=rj,
. (07" = a7 ) (=[z] + tzx] = (@ = Dly])  if r =rj, where j < k.

It is now an exercise in linear algebra to compute the kernel of this map. It is a
free A-module with bases {v;; : 1 < j < k < n}, where

Uj’k = (q — l)ijj — (q - ].)tfk,k + (1 — f)(l + qt)fj’k.

We now define certain forks Fj; which will correspond to the basis vectors v; .
Let D be the unit disk centered at the origin in the complex plain. Let pq,...,p,
lie on the real axis and satisfy —1 < p; < -+ < p, < 1. Let d; and dy lie in the
lower half plane, with d; to the left of d>. For each 1 < j < k < n, let Fj} be a fork
which lies entirely in the closed lower half plane such that the endpoints of T'(F)
are p; and pg. Such an F}; is uniquely determined up to isotopy by j and &, and
will be called a standard fork.

Let D' C D be a disk containing F} ;, such that D'NP = {p;,pr}. Let C' be the
set of unordered pairs of distinct points in D’. Let C’ be the pre-image of C" in C.
We can consider v; 4 as an element of Hy(C"), in which case it generates Hy(C") as
a A-module. The surface ig(FM) lies in C", so must represent the homology class
Avj i for some A € A. The value of A does not depend on j and k. (Actually A =1,
but we will not need this fact.)

To write 0;(vj 1) in terms of basis vectors, we must find a A-linear combination
of standard forks which represents the same element of Hy(C) as the fork o;(F} ).

In the cases i & {j — 1,4,k — 1,k}, i = j # k, and i = k, there is no problem
because 0;(F} ) is a standard fork.

In the case i = j = k — 1, the fork o;(F} ;) has the same tine edge as Fj .

It follows that it represents the same surface in C, up to a change in orientation
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and application of a covering transformation. With some thought, or by pairing
with an appropriate noodle, it is not hard to check that the correct formula is
0i(Vjk) = —tq°vj k-

The remaining cases are i = j —1 and i = k — 1 # j. We will use the following
claim.

Claim 4.2. 0;(v;) is a linear combination of basis vectors vj j which satisfy
JK € {ivi+ 1 k).

Proof. There exists a disk D’ C D such that D' contains o(F} ), D' contains Fj/ 4
for all j', k" € {i,i+ 1,7, k} with j' < k', and D' NP = {p;, pi+1,pj,pr}. Let C'
be the set of unordered pairs of distinct points in D’. Let C' be the pre-image of

C"in C. Then H,(C") is a free A-module with basis consisting of all vjr g with
Jj. k" e {i,i+1,5,k} and j' < k'. But o(v; ) can be considered as an element of

H,(C"), so must be a linear combination of these basis vectors. O

In the case i = j—1, this claim implies that o;(Fj 1) represents the same element

of Hy(C') as some A-linear combination of the three standard forks F; ;, F; j, and
Fj 1. By pairing with some appropriate noodles it is not hard to check that the
correct linear combination is as stated in Theorem 4.1. Similar methods can be used
to verify Theorem 4.1 in the last remaining case, i = k— 1 # j. This completes the
proof of Theorem 4.1.

We conclude with some remarks on the BMW representation of braid groups, de-
fined independently by Birman and Wenzl in [BW89], and by Murakami in [Mur87].

V. Jones noticed a striking resemblance between the matrices described in Theorem
4.1 and those of a certain irreducible summand of the BMW representation. He
asserted that the two representations should be the same after some renormaliza-
tion. The details are worked out by Zinno in [Zin]. At present, there seems to be
no deep explanation for this coincidence.
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