
BRAID GROUPS ARE LINEARSTEPHEN J. BIGELOWAbstra
t. The braid group Bn 
an be de�ned as the mapping 
lass groupof the n-pun
tured disk. A group is said to be linear if it admits a faithfulrepresentation into a group of matri
es over R. Re
ently Daan Krammer hasshown that a 
ertain representation of the braid groups is faithful for the 
asen = 4. In this paper, we show that it is faithful for all n.1. Introdu
tionThe braid group Bn 
an be de�ned as the group generated by �1; : : : ; �n�1 withde�ning relations� �i�j = �j�i if ji� jj > 1, and� �i�i+1�i = �i+1�i�i+1 for i = 1; : : : ; n� 2.These groups were originally introdu
ed by Emil Artin in 1926. They have manyinterpretations, for example, as the group of geometri
 braids in R3, as the Artingroup of type An, as the fundamental group of a 
ertain hyperplane arrangement,as a subgroup of the automorphism group of a free group, and so on. In this paperwe will use the interpretation of Bn as the mapping 
lass group of an n-timespun
tured disk.A group is said to be linear if it admits a faithful representation into GL(m;R) forsome natural number m. The question of whether braid groups are linear probablydates ba
k to 1935 when Burau [Bur36℄ dis
overed an n-dimensional representationof Bn. For a long time this was thought to be a possible 
andidate for a faithfulrepresentation. A simple proof that it is faithful in the 
ase n = 3 gave somereason for optimism. However in 1991, Moody [Moo91℄ showed that the Buraurepresentation is not faithful for n � 9. This was later brought down to n � 6 andthen n � 5 in the papers [LP93℄ and [Big99℄.It therefore 
ame as a pleasant surprise when Krammer [Kra99℄ proved thatanother representation of the braid groups is faithful in the 
ase n = 4. The repre-sentation Krammer used is essentially the same as one used by Lawren
e in [Law90℄to give a topologi
al de�nition of a 
ertain summand of the Jones representation.We 
all this representation the Lawren
e-Krammer representation. In this paper,we prove the following.Theorem 1.1. The Lawren
e-Krammer representation of Bn is faithful for all n.This proves that all braid groups are linear. Our proof 
an be seen as a sort of
onverse to the 
onstru
tion of elements of the kernel of the Burau representationgiven in [Moo91℄, [LP93℄ and [Big99℄. Our methods are topologi
al, and very dif-ferent from the algebrai
 methods used by Krammer for the 
ase n = 4. Re
ently,1991 Mathemati
s Subje
t Classi�
ation. Primary 20F36; Se
ondary 57M07, 20C15.Key words and phrases. Braid group, linear, representation.1



2 STEPHEN J. BIGELOWKrammer [Kra00℄ has extended his algebrai
 methods to obtain a new proof of theabove theorem as well as some new ways to read information about a braid fromits Lawren
e-Krammer representation.1.1. Outline. In Se
tion 1 we de�ne a 
ertain 
overing spa
e ~C of the 
on�gurationspa
e C of unordered pairs of distin
t points in the n-times pun
tured disk. TheLawren
e-Krammer representation is de�ned to be the indu
ed a
tion of the braidgroup Bn on the se
ond homology group of ~C.In Se
tion 2 we de�ne forks and noodles. These are one-dimensional obje
ts inthe disk designed to represent elements of the se
ond homology and 
ohomologyof ~C . We de�ne an interse
tion pairing between a noodle and a fork. We provethat if F is a fork and � is an element of the kernel of the Lawren
e-Krammerrepresentation then F and �(F ) have the same pairing with any �xed noodle.In Se
tion 3 we prove that the pairing between a noodle and a fork dete
tsgeometri
 interse
tion between the 
orresponding edges in the disk. We use this toshow that a braid in the kernel of the Lawren
e-Krammer representation must betrivial.In Se
tion 4 we 
ompute the Lawren
e-Krammer representation expli
itly interms of generators and basis elements.1.2. De�nitions. Let D be an oriented disk in the 
omplex plane. Fix a set P � D
onsisting of n distin
t points p1; : : : ; pn in the interior of D. We will 
all thesepun
ture points. Let H(D;P ) be the group of all homeomorphisms h : D ! D su
hthat h(P ) = P and h �xes �D pointwise. Let I(D;P ) be the group of all su
hhomeomorphisms whi
h are isotopi
 to the identity relative to �D[P . We de�ne thebraid group Bn to be the group H(D;P )=I(D;P ). This is also 
alled the mapping
lass group of the disk with n pun
ture points. See [Bir74℄ for other equivalentde�nitions of these groups and a good introdu
tion to their basi
 properties.Let C denote the spa
e of all unordered pairs of distin
t points in D n P . Inother words, C = ((D n P )� (D n P )) n f(x; x)g(x; y) � (y; x) :Let d1 and d2 be distin
t points in �D. Let 
0 = fd1; d2g be a basepoint for C. Wenow de�ne a map � from �1(C; 
0) to the free Abelian group with basis fq; tg. Let� be a 
losed 
urve in C based at 
0 representing an element [�℄ of �1(C; 
0). We
an write � in the form �(s) = f�1(s); �2(s)gfor some ar
s �1 and �2 in D n P . Leta = 12�i nXj=1�Z�1 dzz � pj + Z�2 dzz � pj� :Let b = 1�i Z�1��2 dzz :Let �([�℄) = qatb.This de�nition requires some explanation. If �1 and �2 are 
losed loops then a isthe sum of the winding numbers of �1 and �2 around ea
h of the pun
ture points,and b is twi
e the winding number of �1 and �2 around ea
h other. However �1 and�2 are not ne
essarily 
losed loops, but may \swit
h pla
es". In this 
ase, a is the



BRAID GROUPS ARE LINEAR 3sum of the winding numbers of the 
losed loop �1�2 around ea
h of the pun
turepoints. Furthermore, �1 � �2 satis�es(�1 � �2)(1) = �(�1 � �2)(0);whi
h implies that b is an odd integer.Let ~C be the 
overing spa
e of C whose fundamental group is the kernel of �.Let � denote the ring Z[q�1; t�1℄. The homology group H2( ~C) 
an be 
onsideredas a �-module, where q and t a
t by 
overing transformations.Any homeomorphism � 2 H(D;P ) indu
es a homeomorphism from C to itself,also denoted �. It is easy to 
he
k that � �xes 
0 and the indu
ed a
tion of � on�1(C; 
0) satis�es �� = �. Thus � lifts uniquely to a map ~� from ~C to itself whi
h�xes the �ber over 
0 pointwise. Moreover, this lift ~� 
ommutes with the 
overingtransformations q and t. It follows that the indu
ed a
tion ~�� of ~� on H2( ~C) is a�-module automorphism. The Lawren
e-Krammer representation is the map fromBn to GL(H2( ~C)) taking [�℄ to ~��.We will see in Se
tion 4 that H2( ~C) is a free �-module of rank �n2�. Thus theLawren
e-Krammer representation 
an be thought of as a map from Bn to the groupof �n2� by �n2� matri
es with entries in �. We 
an obtain a faithful representationinto GL(�n2�;R) by substituting algebrai
ally independent real numbers for q andt. In [Law90℄, Lawren
e de�nes a representation by a similar 
onstru
tion usingthe spa
e of ordered k-tuples of distin
t points in D n P . In the 
ase k = 2, theresulting representation is the same map from Bn to GL(H2( ~C)) as de�ned above,ex
ept that H2( ~C) is to be 
onsidered as a module over Z[q�1; t�2℄. As a result,the representation de�ned by Lawren
e has rank n(n� 1), whi
h is double that ofthe Lawren
e-Krammer representation. The variable � in [Law90℄ 
orresponds tot2 in this paper.In [Kra99℄, Krammer de�nes a representation of Bn as the indu
ed a
tion on amodule of formal �-linear 
ombinations of forks modulo 
ertain relations. Theseforks are of 
entral importan
e in this paper, and will be de�ned in Se
tion 2.Krammer's representation is the same as our Lawren
e-Krammer representationex
ept that the variable t in [Kra99℄ 
orresponds to �t in this paper.1.3. Notation. Throughout this paper, I will denote the interval [0; 1℄.If � and � are ar
s in D nP su
h �(s) 6= �(s) for all s 2 I then denote by f�; �gthe ar
 in C given by f�; �g(s) = f�(s); �(s)g:If y is a point in D n P and � is an ar
 in D n (P [ fyg) then denote by f�; yg thear
 in C given by f�; yg(s) = f�(s); yg:The same ar
 
an also be denoted by fy; �g.If g and h are elements of a group then we use the notationgh = h�1ghand [g; h℄ = g�1h�1gh:Braids 
ompose from right to left. Ar
s 
ompose from left to right.
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Figure 1. A fork F and a parallel 
opy F 0.2. Forks and NoodlesIn this se
tion we de�ne forks and noodles and a pairing between them. Theidea of using a fork to represent an element of H2( ~C) is due to Krammer [Kra99℄.A fork is an embedded tree F � D with four verti
es d1, pi, pj and z su
h thatF \ �D = fd1g, F \ P = fpi; pjg, and all three edges have z as a vertex. The edge
ontaining d1 is 
alled the handle of F . The union of the other two edges is a singleedge, whi
h we 
all the tine edge of F and denote by T (F ). We orient T (F ) in su
ha way that the handle of F lies to the right of T (F ).For a given fork F we 
an de�ne a parallel 
opy of F to be an embedded treeF 0 as shown in Figure 1. The �ve pun
ture points at the top of the �gure may berepla
ed by any number, and any orientation-preserving self-homeomorphism maybe applied to the entire disk. The tine edge T (F 0) of F 0 is de�ned analogously tothat of F .For any fork F , we de�ne a surfa
e ~�(F ) in ~C as follows. Let F 0 be a parallel
opy of F . Let z be the vertex 
ontained in all three edges of F , and let z0 be thevertex 
ontained in all three edges of F 0. De�ne a surfa
e �(F ) in C to be theset of all points whi
h 
an be written in the form fx; yg, where x 2 T (F ) n P andy 2 T (F 0) n P . Let �1 be an ar
 from d1 to z along the handle of F and let �2be an ar
 from d2 to z0 along the handle of F 0. Let ~� be the lift of f�1; �2g to ~Cbeginning at ~
0. Let ~�(F ) be the lift of �(F ) to ~C whi
h 
ontains ~�(1).There is an obvious homeomorphism from �(F ) to the interior of the squareT (F )� T (F 0). The orientations on T (F ) and T (F 0) give rise to an orientation onT (F )� T (F 0), and hen
e on �(F ). This lifts to an orientation on ~�(F ).A noodle is an embedded edge N � D n P with endpoints d1 and d2. Orient Nso that it goes from d1 to d2. For a given noodle N we de�ne the surfa
e �(N)to be the set of points fx; yg 2 C su
h that x and y are distin
t points in N . Let~�(N) be the lift of �(N) to ~C whi
h 
ontains ~
0.There is an obvious homeomorphism from �(N) to the subset ofN�N 
onsistingof those points (x; y) su
h that x is 
loser to d1 along N than y. The orientationon N gives rise to an orientation on N �N , and hen
e on �(N). This lifts to anorientation on ~�(N).2.1. A pairing. Let N be a noodle and let F be a fork. We use the surfa
es ~�(N)and ~�(F ) to de�ne an element hN;F i of � as follows.



BRAID GROUPS ARE LINEAR 5If ne
essary, apply a preliminary isotopy so that T (F ) interse
ts N transversely.Let z1; : : : ; zl denote the points of interse
tion between N and T (F ). Let F 0 be aparallel 
opy of F su
h that T (F 0) interse
ts N transversely at z01; : : : ; z0l where ziand z0i are joined by a short ar
 in N whi
h lies in the narrow strip bounded by T (F )and T (F 0). For i; j = 1; : : : ; l, there exists a unique monomial mi;j = qai;j tbi;j su
hthat mi;j ~�(N) interse
ts ~�(F ) at a point lying over fzi; z0jg 2 C. Let �i;j be thesign of that interse
tion. Then we de�ne the pairing between N and F as follows.hN;F i = lXi=1 lXj=1 �i;jqai;j tbi;j :We need to prove that this does not depend on our 
hoi
e of preliminary isotopyof F . First we des
ribe how to expli
itly 
ompute the pairing.2.2. Computing the Pairing. We 
ompute mi;j as follows. De�ne the followingembedded ar
s in D n P .� �1 from d1 to z along the handle of F ,� �2 from d2 to z0 along the handle of F 0,� �1 from z to zi along T (F ),� �2 from z0 to z0j along T (F 0),� 
1 from zi to dk along N , where k 2 f1; 2g is su
h that 
1 does not passthrough z0j ,� 
2 from z0j to dk0 along N , where k0 2 f1; 2g is su
h that 
2 does not passthrough zi.Consider the following ar
 in C.Æi;j = f�1; �2gf�1; �2gf
1; 
2g:Let ~Æi;j be the lift of Æi;j beginning at ~
0. This goes from ~
0 to the lift of fzi; zjgwhi
h lies in ~�(F ), and hen
e in mi;j ~�(N), then to the lift of 
0 whi
h lies inmi;j ~�(N). Thus ~Æi;j goes from ~
0 to mi;j~
0, somi;j = �(Æi;j):We now 
al
ulate �i;j . This is the sign of the interse
tion of �(N) with �(F ) atthe point fzi; z0jg. A dire
t 
omputation using our 
hoi
e of orientations for �(N)and �(F ) shows that �i;j = �ab
, where� a is the sign of the interse
tion of N and T (F ) at zi,� b is the sign of the interse
tion of N and T (F 0) at z0j ,� 
 is 1 if zi is 
loser to d1 along N than z0j , and �1 otherwise.Now bi;j is odd if and only if the two points swit
h pla
es in the path Æi;j .This happens if and only if z0j is 
loser than zi to d1 along N . Thus 
 = (�1)bi;j .Similarly, bi;i is odd if and only if z0i is 
loser than zi to d1 along N . This happens ifand only if the interse
tion betweenN and T (F ) at zi is negative. Thus a = (�1)bi;i .Similarly b = (�1)bj;j . We 
on
lude that(1) �i;j = �(�1)bi;i+bj;j+bi;jThe following formula will be useful later.Lemma 2.1. ai;j = (ai;i + aj;j)=2.



6 STEPHEN J. BIGELOWProof. For i = 1; : : : ; l let �i be the ar
 in D n P whi
h goes from d1 to zi in F andthen ba
k to d1 in N . Let ai be the sum of the winding numbers of �i around ea
hof the pun
ture points. Let � be the ar
 in D nP whi
h goes from d1 to d2 along Nand then ba
k to d1 
ounter
lo
kwise around �D. Let a be the sum of the windingnumbers of � around ea
h of the pun
ture points. I 
laim that ai;j = ai + aj + a.Let Æi;j = f�1; �2gf�1; �2gf
1; 
2g be as above. If �1�1
1 and �2�2
2 are 
losedar
s then �1�1
1 = �i and �2�2
2 is freely homotopi
 to �j�. On the other hand, if�1�1
1�2�2
2 is a single 
losed loop then it is freely homotopi
 to �i��j . In either
ase, the exponent of q in �(Æi;j is the sum of the winding numbers of �i, �j and �around ea
h of the pun
ture points. Thus ai;j = ai + aj + a.Similarly, ai;i = 2ai + a and aj;j = 2aj + a. Thus ai;j = (ai;i + aj;j)=2. �2.3. The Pairing is Well-de�ned. We now prove the following lemma.Lemma 2.2. Suppose F1 and F2 are isotopi
 relative to �D [ P su
h that T (F1)and T (F2) interse
t N transversely. Then hN;F1i = hN;F2i.A generi
 isotopy of F1 
an be split into a �nite sequen
e of moves of two types:� isotopies keeping T (F ) transverse to N ,� isotopies pushing a small subar
 of T (F ) a
ross a subar
 of N so that apair of interse
tion points is either added to or removed from N \ T (F ).. The �rst type has no e�e
t on the 
omputation of hN;F i. It suÆ
es to 
onsiderthe 
ase in whi
h a pair of interse
tion points zl+1 and zl+2 is added to N\T (F1) =fz1; : : : ; zlg.There are now two 
ases to 
onsider. First, suppose z0l+1 and z0l+2 lie betweenzl+1 and zl+2 on N . It follows from the de�nitions and the dis
ussion above that fori = 1; : : : ; l + 2 we have mi;l+1 = mi;l+2 and �i;l+1 = ��i;l+2. Also, for j = 1; : : : ; lwe have ml+1;j = ml+2;j and �l+1;j = ��l+2;j . Thus we have 
omplete 
an
ellationof the terms �i;jmi;j for whi
h either i or j are equal to either l + 1 or l + 2. Asimilar argument works if zl+1 and zl+2 lie between z0l+1 and z0l+2 on N . Thereforethe 
al
ulation of hN;F1i gives the same answer before and after the move.2.4. The Basi
 Lemma. We now prove the following lemma, whi
h explains whythe pairing between noodles and forks is a useful tool for studying the Lawren
e-Krammer representation.Lemma 2.3 (The Basi
 Lemma). If [�℄ lies in the kernel of the Lawren
e-Krammerrepresentation then hN;F i = hN; �(F )ifor every noodle N and fork F .Let [�℄ be an element of the kernel of the Lawren
e-Krammer representation.We 
an assume that the tine edges of F and �(F ) interse
t N transversely. Then�(F ) interse
ts �(N) transversely. Thus ~�(F ) interse
ts any lift qatb ~�(N) trans-versely. Let (qatb ~�(N); ~�(F )) denote the algebrai
 interse
tion number betweenthese surfa
es. Then an equivalent de�nition of the pairing between N and F is asfollows. hN;F i = Xa;b2Z(qatb ~�(N); ~�(F ))qatb:We must show that ~�(F ) and �(~�(F )) have the same algebrai
 interse
tion numberwith qatb ~�(N). The diÆ
ulty 
omes from the fa
t that the surfa
es ~�(N) and ~�(F )
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Figure 2. Some ar
s in D.are not 
losed, but are only properly embedded. The algebrai
 interse
tion betweento properly embedded surfa
es 
an be problemati
, sin
e it may be possible to pushinterse
tions o� to in�nity. To solve this problem, we will prove the existen
e ofan immersed 
losed surfa
e ~�2(F ) whi
h is equal to (1� q)2(1+ qt)~�(F ) outside asmall neighborhood of the pun
ture points.Let F be a fork. Let the endpoints of T (F ) be pi and pj . Let �(pi) and �(pj)be disjoint �-neighborhoods of pi and pj respe
tively su
h that �(pk) \ P = fpkgfor k = i; j. Let U be the set of fx; yg 2 C su
h that at least one of x and y lies in�(pi)[ �(pj). Fix a basepoint u0 = fu1; u2g 2 U , where u1 2 �(pi) and u2 2 �(pj).Let ~U be the pre-image of U in ~C. Choose a lift ~u0 of u0 to ~C . Note that ~U is
onne
ted.Now ~�(F ) represents an element of the relative homology group H2( ~C; ~U). Ourgoal is to �nd a 
orresponding element of the homology group H2( ~C). To do this,we start by analyzing �1(U; u0). This will give us information about the subgroup�1( ~U; ~u0). This in turn will give us information about H1( ~U). Finally, we willuse the long exa
t sequen
e of relative homology to obtain the required element ofH2( ~C).Using the ar
s shown in Figure 2, we de�ne the following elements of �1(U; u0).a1 = f
1; u2g;a2 = fu1; 
2g;b1 = f�1; �1�2�3gf�2�3; u1g;b2 = f�1�2�3; �1gfu2; �2�3g:Note that b1 and b2 are homotopi
 in C, but not in U .The following relations hold in �1(U; u0).[a1; a2℄ = 1;(2) [a1; b1a1b1℄ = 1;(3) [a2; b2a2b2℄ = 1:(4)The �rst of these is obvious. The se
ond follows from the fa
t that b1a1b1 is equalin �1(U; u0) to fu1; Æg, where Æ is a 
urve based at u2 whi
h passes 
ounter
lo
kwisearound p1 and u1. The third follows by a similar argument.



8 STEPHEN J. BIGELOWWe now analyze �1( ~U; ~u0), 
onsidered as a subgroup of �1(U; u0). Let i : U ! Cbe the in
lusion map and let i� be the indu
ed map on fundamental groups. Then�1( ~U; ~u0) is the kernel of the map �i�. We de�ne the following elements of �1( ~U; ~u0).a = a�12 a1;b = b�12 b1;
 = a�11 b�11 a1b1;d = a�12 b�12 a2b2:If x 2 �1( ~U; ~u0) and y 2 �1(U; u0) then the 
onjugate xy = y�1xy is also an elementof �1( ~U; ~u0). The following relations hold in �1( ~U; ~u0).aa1 = a;(5) 
b1a1
 = 1;(6) db2a2d = 1;(7) dbab1 = aba1
:(8)To see this, rewrite these relations in terms of a1, a2, b1 and b2. The �rst threetranslate into equations (2) to (4). The fourth translates into a trivial identity.If x 2 �1( ~U; ~u0), let [x℄ denote the 
orresponding element of H1( ~U). Note thatif x 2 �1( ~U; ~u0) and y 2 �1(U; u0) then [xy℄ = �(y)�1[x℄. The relations given inequations (5) to (8) give rise to the following relations in H1( ~U).(q�1 � 1)[a℄ = 0;(q�1t�1 + 1)[
℄ = 0;(q�1t�1 + 1)[d℄ = 0;(q�1 � 1)[b℄ = (t�1 � 1)[a℄� [
℄ + [d℄:Combining these relations, we obtain the following.(1� q)2(1 + qt)[b℄ = 0:Let [~�(F )℄ be the element of H2( ~C; ~U) represented by ~�(F ). The long exa
tsequen
e of relative homology gives us the following exa
t sequen
e of �-modulesH2( ~C) j�! H2( ~C; ~U) �! H1( ~U):But �[~�(F )℄ = [b℄. It follows that(1� q)2(1 + qt)[~�(F )℄ = j�[~�2(F )℄for some [~�2(F )℄ 2 H2( ~C) represented by some immersed 
losed surfa
e ~�2(F ).Then ~�2(F ) is setwise equal to (1� q)2(1 + qt)~�(F ) outside U .Let N be a noodle whi
h interse
ts T (F ) transversely. Choose �(pi) and �(pj)small enough so as not to interse
t N . Then(1� q)2(1 + qt)hN;F i = Xa;b2Z(qatb ~�(N); ~�2(F ))qatb:Now � is an element of the kernel of the Lawren
e-Krammer representation, soa
ts as the identity on H2( ~C). Thus the surfa
es ~�2(F ) and �(~�2(F )) representthe same element of homology, so have the same algebrai
 interse
tion with anyqatb ~�(N). Sin
e � is a domain, it follows that hN; �(F )i = hN;F i.



BRAID GROUPS ARE LINEAR 92.5. Alternative proofs. There are many possible approa
hes to proving the Ba-si
 Lemma. The proof given above is a 
ompromise of sorts, sin
e it proves theexisten
e of an appropriate element of H2( ~C), but does so in a non-
onstru
tiveway.It is possible to give a more 
onstru
tive proof whi
h uses an expli
it 
omputationof H2( ~C). One obtains a 
on
rete des
ription of an immersed genus two surfa
ewhi
h 
an be seen to be the same as (1� q)2(1 + qt)~�(F ) away from the pun
turepoints. This is perhaps best done in private, sin
e the details are only 
onvin
ing tothe person who �gures them out. Some details of a 
omputation of H2( ~C) will begiven in Se
tion 4. See also [Law90℄, where similar methods are used to 
al
ulatethe middle homology of a 
overing spa
e of the spa
e of ordered k-tuples of distin
tpoints in the n-times pun
tured disk, where k 
an be any positive integer.It is tempting to seek a less 
onstru
tive proof whi
h makes no referen
e to~�2(F ). It is intuitively obvious that the problem of pushing interse
tions o� toin�nity does not arise in the 
ontext of forks and noodles. However this line ofreasoning runs into some te
hni
al diÆ
ulties whi
h I feel distra
t from the truenature of the problem at hand. A proof that Bn a
ts faithfully on H2( ~C) shouldrefer to an element of H2( ~C).It is possible to prove that braid groups are linear without referen
e to C, letalone H2( ~C). The Lawren
e-Krammer representation 
an be de�ned to be thea
tion of Bn on a �-module 
onsisting of formal linear 
ombinations of forks subje
tto 
ertain relations, as des
ribed by Krammer in [Kra99℄. The pairing hN;F i 
anbe de�ned solely in terms of winding numbers. One must 
he
k that this pairingrespe
ts the relations between forks. The Basi
 Lemma then follows immediately.The rest of the proof that the Lawren
e-Krammer representation is faithful pro
eedsvirtually un
hanged. 3. The representation is faithfulIn this se
tion, we prove that the Lawren
e-Krammer representation is faithful.We start by reviewing some of the basi
 theory of 
urves on surfa
es.3.1. Curves on Surfa
es. The following well-known lemma means that we don'tneed to worry about the di�eren
e between homotopy and isotopy.Lemma 3.1. If � and � are embedded ar
s in a surfa
e � whi
h are homotopi
relative to endpoints then they are isotopi
 relative to endpoints.De�nition 3.2. Let � and � be embedded ar
s or simple 
losed 
urves on anorientable surfa
e �. A digon 
obounded by � and � is an embedded disk B in �whose boundary 
onsists of one subar
 of � and one subar
 of �.Note that B is not required to satisfy B \ (� [ �) = �B. However if � and �
obound a digon then it is easy to show that they 
obound an \innermost digon"with this property.Lemma 3.3. Let � and � be simple 
losed 
urves in an orientable surfa
e � whi
hinterse
t transversely. The following are equivalent.� � is isotopi
 to a simple 
losed 
urve whi
h interse
ts � at fewer points,� � and � 
obound a digon.



10 STEPHEN J. BIGELOWA proof 
an be found in [PR99, Proposition 3.7℄, or [FLP91, Proposition 3.10℄.Note that this lemma as stated does not apply to the 
ase of a noodle andthe tine edge of a fork, sin
e these are embedded edges and not simple 
losed
urves. However these edges 
an be easily extended to simple 
losed 
urves byatta
h handles to the surfa
e D n P . We will therefore use the above lemma in the
ontext of noodles and forks without further 
omment.Lemma 3.4. Let � and � be embedded ar
s in an orientable surfa
e � whi
hinterse
t transversely and are isotopi
 relative to endpoints. Then � and � 
obounda digon.Proof. Let �0 be the \double" of �, that is the boundary of a small regular neigh-borhood of �. Similarly, let �0 be the double of �. Let �0 be the surfa
e � with theendpoints of � removed. Then �0 and �0 are simple 
lose 
urves whi
h are isotopi
in �0. Thus �0 is isotopi
 to a 
urve whi
h does not interse
t �0. But �0 and �0 dointerse
t. By Lemma 3.3, �0 and �0 
obound a digon in �0. Thus � and � 
obounda digon in �. �3.2. The Key Lemma. We now prove the following lemma.Lemma 3.5 (The Key Lemma). Let N be a noodle and let F be a fork. ThenhN;F i = 0 if and only if T (F ) is isotopi
 relative to �D [ P to an ar
 whi
h isdisjoint from N .Let N be a noodle and let F be a fork. By applying a preliminary isotopy,we 
an assume that T (F ) interse
ts N transversely at z1; : : : ; zl, where l is theminimal possible number of points of interse
tion. Let F 0 be a parallel 
opy of Fsu
h that T (F 0) interse
ts N transversely at z01; : : : ; z0l, where zi and z0i are joinedby a short ar
 in N whi
h lies in the narrow strip bounded by T (F ) [ T (F 0).Let mi;j = qai;j tbi;j be su
h that mi;j ~�(N) interse
ts ~�(F ) at a point lying overfzi; z0jg 2 C. Let �i;j be the sign of that interse
tion. Re
all(9) hN;F i = lXi=1 lXj=1 �i;jqai;j tbi;j :If l = 0 then 
learly hN;F i = 0. We now assume l > 0 and show that hN;F i 6= 0.We use the following lexi
ographi
 ordering on the set of monomials qatb.De�nition 3.6. We say qatb � qa0tb0 if and only if either� a < a0, or� a = a0 and b � b0.For i; j 2 f1; : : : ; lg we say that mi;j is maximal if mi;j � mi0;j0 for all i0; j0 2f1; : : : ; lg.Claim 3.7. If mi;j is maximal then mi;i = mj;j = mi;j .By equation (1) we have that �i;j = �mi;imi;jmj;j j(q = 1; t = �1). The above
laim implies that if mi;j is maximal then �i;j = �mi;j j(q = 1; t = �1). Thus allmaximal monomials o

ur with the same sign in equation (9). Therefore hN;F i
annot equal zero. It remains only to prove the above 
laim.Suppose mi;j is maximal. Then ai;j is maximal among all the integers ai0;j0 . ByLemma 2.1 it follows that ai;i = aj;j = ai;j .



BRAID GROUPS ARE LINEAR 11We now show that bi;i = bi;j . Sin
e mi;j is maximal and ai;i = ai;j it follows thatbi;i � bi;j . Suppose, seeking a 
ontradi
tion, that bi;i < bi;j . Let � be an embeddedar
 from z0i to z0j along T (F 0). Let � be an embedded ar
 from z0j to z0i along N .If � does not pass through the point zi, let Æ = �� and let w be the windingnumber of Æ around zi. I 
laim that bi;j � bi;i = 2w. To see this, 
onsider the ar
Æ0 = fzi; Æg in C. Let ~Æ0 be the lift of this whi
h starts in ~�(F ). Then ~Æ0 goes frommi;i ~�(N) to mi;j ~�(N). Thus mi;jm�1i;i = �(Æ0). Taking the exponent of t in bothsides gives the required equality.If � does pass through zi, �rst modify � in a small neighborhood of zi so thatzi lies to its left. Next let Æ = �� and let w be the winding number of Æ around zi.I 
laim that 1+ bi;j � bi;i = 2w. We use a similar argument to that of the previous
ase. However � deviates from N to pass around zi in a 
ounter
lo
kwise (positive)dire
tion. As a result, ~Æ0 goes from mi;i ~�(N) to tmi;j ~�(N). The extra fa
tor of ta

ounts for the addition of one to the left-hand side of the equation.In either 
ase, our assumption that bi;i < bi;j implies that w is greater than zero.Let D1 = D n fzig. Let � : ~D1 ! D1 be the universal (in�nite 
y
li
) 
over. Let~� be a lift of � to ~D1. Let ~� be the lift of � to ~D1 whi
h starts at ~�(1). Let 
 be aloop in D1 based at z0i whi
h winds w times around zi in the 
lo
kwise (negative)dire
tion su
h that 
 is null-homotopi
 in D n P . Let ~
 be the lift of 
 to an ar
from ~�(1) to ~�(0). Choose 
 so that ~
 is an embedded ar
 whi
h interse
ts ~� and~� only at its endpoints.Let ~z0k be the �rst point on ~� whi
h interse
ts ~� (possibly ~�(1)). Then �(~z0k) =z0(k) for some k = 1; : : : ; l. Let ~�0 be the initial segment of ~� ending at ~z0k. Let ~�0be the �nal segment of ~� starting at ~z0k. Let ~Æ0 = ~�0 ~�0~
.Now ~Æ0 is a simple 
losed 
urve in ~D1, so by the Jordan 
urve theorem it mustbound a disk ~B. Sin
e 
 passes 
lo
kwise around zi, there is a non-
ompa
t regionto the right of ~Æ0. Thus ~Æ0 must pass 
ounter
lo
kwise around ~B.Let �0, �0 and Æ0 be the proje
tions of ~�0, ~�0 and ~Æ0 to D1. Then ai;k � ai;iis equal to the sum of the winding numbers of Æ0 around ea
h of the points in P .This is equal to the 
ardinality of ~B \ ��1(P ). Sin
e ai;i is maximal among allintegers ai0;j0 , we must have ai;k = ai;i. Thus ~B \ ��1(P ) = ;. It follows thatthe ar
 Æ0 = �0�0
 is null-homotopi
 in D n P . But �0 is homotopi
 relative toendpoints to a subar
 of N , and 
 was 
hosen to be null-homotopi
 in D nP . Thus�0 is homotopi
 relative to endpoints to a subar
 of N in D n P . By Lemmas 3.1and 3.4, � and N 
obound a digon in D n P . But �0 is a subar
 of T (F 0). This
ontradi
ts the fa
t that T (F 0) interse
ts N a minimal number of times. Thereforeour assumption that bi;j > bi;i must have been false, so bi;j = bi;i.The proof that bi;j = bj;j is similar. This 
ompletes the proof of the 
laim, andhen
e of the Key Lemma.3.3. Proof of the Theorem. We now use the Basi
 Lemma and the Key Lemmato prove that the Lawren
e-Krammer representation is faithful.Suppose � 2 H(D;P ) is a homomorphism representing an element of the kernelof the Lawren
e-Krammer representation. We will show that � is isotopi
 relativeto �D [ P to the identity map.Let D be the unit disk 
entered at the origin in the 
omplex plain. Let p1; : : : ; pnlie on the real axis and satisfy �1 < p1 < � � � < pn < 1. Let d1 and d2 lie in the lowerhalf plane, with d1 to the left of d2. For i = 1; : : : ; n � 1, let Ei be the horizontal
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Figure 3. The edge E1 and the noodle N4.edge from pi to pi+1. For i = 1; : : : ; n, let Ni be the noodle whi
h winds around piand no other pun
ture points, interse
ting the real axis twi
e. See Figure 3.Let F be a fork su
h that T (F ) = E1. Then hN3; F i = 0. By the Basi
 Lemma,hN3; �(F )i = 0. By the Key Lemma, it follows that �(E1) is isotopi
 relative to�D [ P to an ar
 whi
h is disjoint from N3. By 
omposing � with an element ofI(D;P ) if ne
essary, we 
an assume that �(E1) is disjoint from N3.Similarly, �(E1) 
an be isotoped so as to be disjoint from N4. By Lemma 3.3,this isotopy 
an be performed by a sequen
e of moves whi
h 
onsist of eliminatingdigons, and hen
e do not introdu
e any new interse
tions with N3. Thus we 
anassume that �(E1) is disjoint from both N3 and N4.Continuing in this way, we 
an assume that �(E1) is disjoint from Ni for alli = 3; : : : ; n. By applying one �nal isotopy relative to �D [ P , we 
an assume that�(E1) = E1, (although we have not yet eliminated the possibility that � reversesthe orientation of E1).We 
an repeat the above pro
edure to isotope �(E2) to E2 while leaving E1 �xed.Continuing in this way, we 
an assume that �(Ei) = Ei for all i = 1; : : : ; n� 1. Itfollows that � must be isotopi
 relative to �D [ P to (�2)k for some k 2 Z, where�2 is a Dehn twist about a 
urve whi
h is parallel to �D.Let F be a fork with tine edge E1 whose handle is a straight line from d1 to E1.Then hN1; F i = �q. But one 
an easily 
he
k that hN; (�2)k(F )i = �q(q2nt2)k.By the Basi
 Lemma, it follows that k = 0, so � represents the trivial braid.4. Matri
es for the Lawren
e-Krammer representationIn this se
tion we give an expli
it des
ription of the Lawren
e-Krammer repre-sentation in terms of matri
es.Theorem 4.1. H2( ~C) is a free �-module of rank �n2�. There is a basisfvj;k : 1 � j < k � ng
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h the braid �i a
ts as follows.�i(vj;k) = 8>>>>>><>>>>>>: vj;k i 62 fj � 1; j; k � 1; kg;qvi;k + (q2 � q)vi;j + (1� q)vj;k i = j � 1;vj+1;k i = j 6= k � 1;qvj;i + (1� q)vj;k + (1� q)qtvi;k i = k � 1 6= j;vj;k+1 i = k�tq2vj;k i = j = k � 1:We prove this theorem by 
onstru
ting a two-
omplex whi
h is homotopy equiv-alent to C. Our methods require some geometri
 intuition (read: \hand-waving"),and some details are left to the reader.We des
ribe a set of generators for �1(C). For j = 1; : : : ; n, let �j be a 
losed
urve in D based at d1 and passing 
ounter
lo
kwise around pj , and let xj be thear
 f�j ; d2g in C. Let �1 be an ar
 from d1 to d2 and �2 an ar
 from d2 to d1 su
hthat �1�2 is a simple 
losed 
urve whi
h is oriented 
ounter
lo
kwise and en
losesno pun
ture points. Let y be the ar
 f�1; �2g in C. Let G = fx1; : : : ; xn; yg.We now des
ribe some relations between these generators. For 1 � j � n, letrj;j = [xj ; yxjy℄:For 1 � j < k � n, let rj;k = [xj ; yxky�1℄:Let R = frj;k : 1 � j � k � ng.We will see that hGjRi is a presentation for �1(C). In fa
t, we will show some-thing stronger. Let K be the Cayley 
omplex of the presentation hGjRi. In otherwords, K has one vertex, one edge for ea
h g 2 G, and one fa
e fr for ea
h r 2 R,where �fr is atta
hed to the 1-skeleton a

ording to the word r. We will show thatC is homotopy equivalent to K.Let �C be the set of ordered pairs of distin
t points in D n P . This is the double
over of C whose fundamental group is normally generated by x1; : : : ; xn and y2.Let Xj = yxjy�1. Let Y = y2. Let �G = fx1; : : : ; xn; X1; : : : ; Xn; Y g. For1 � j � n, let �rj;j = [xj ; XjY ℄;�r0j;j = [Xj ; Y xj ℄:For 1 � j < k � n, let �rj;k = [xj ; Xk℄;�r0j;k = [Xj ; Y xkY �1℄:Let �R = f�rj;k : 1 � j � k � ng [ f�r0j;k : 1 � j � k � ng:Let �K be the Cayley 
omplex of h �Gj �Ri. Then �K is homotopy equivalent to thedouble 
over of K whose fundamental group is normally generated by x1; : : : ; xnand y2. To show that C is homotopy equivalent to K, it suÆ
es to show that �C ishomotopy equivalent to �K.Let � : �C ! D nP be the map obtained by proje
tion onto the �rst 
oordinate.When restri
ted to the interior of �C, this is a �ber bundle over the interior of D nPwhose �ber is an (n+ 1)-times pun
tured open disk.The base D n P is homotopy equivalent to a graph with one vertex and n edges
orresponding to x1; : : : ; xn. The �ber is homotopy equivalent to a graph with
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orresponding to X1; : : : ; Xn and Y . The �ber bundlestru
ture of �C implies that it is homotopy equivalent to the Cayley 
omplex of apresentation h �Gj �R0i, where �R0 is a set of relations equating Y xk and Xxkj to wordsin fX1; : : : ; Xn; Y g, for j; k 2 f1; : : : ; ng. One 
an 
ompute these relations �R0 byexpli
itly manipulating ar
s in �C. They are as follows.Y xk = XkY X�1k ;Xxkj = 8<: XjY XjY �1X�1j ; j = kXkY X�1k Y �1XjY XkY �1X�1k ; j < kXj j > k:One 
an transform the relations �R0 to �R using moves whi
h 
an be realized byisotopy of the atta
hing maps of the fa
es in the Cayley 
omplex. Thus �C ishomotopy equivalent to �K, and hen
e C is homotopy equivalent to K.We are now ready to 
ompute H2( ~C). Let C1 and C2 be the free �-modules withbases f[g℄ : g 2 Gg and ffr : r 2 Rg respe
tively. For any word w in G we de�ne[w℄ 2 C1 indu
tively a

ording to the following rules[1℄ = 0;[gw℄ = [g℄ + �(g)[w℄;[g�1w℄ = �(g)�1([w℄� eg);for any g 2 G. Then H2( ~C) is the kernel of the map � : C2 ! C1 given by �fr = [r℄.We 
al
ulate the following.�fr = � (1 + q�1t�1)((1� t)[xj ℄ + (q � 1)[y℄) if r = rj;j ;(q�1 � q�2)(�[xj ℄ + t[xk℄� (q � 1)[y℄) if r = rj;k ; where j < k:It is now an exer
ise in linear algebra to 
ompute the kernel of this map. It is afree �-module with bases fvj;k : 1 � j < k � ng, wherevj;k = (q � 1)fj;j � (q � 1)tfk;k + (1� t)(1 + qt)fj;k:We now de�ne 
ertain forks Fj;k whi
h will 
orrespond to the basis ve
tors vj;k.Let D be the unit disk 
entered at the origin in the 
omplex plain. Let p1; : : : ; pnlie on the real axis and satisfy �1 < p1 < � � � < pn < 1. Let d1 and d2 lie in thelower half plane, with d1 to the left of d2. For ea
h 1 � j < k � n, let Fj;k be a forkwhi
h lies entirely in the 
losed lower half plane su
h that the endpoints of T (F )are pj and pk. Su
h an Fj;k is uniquely determined up to isotopy by j and k, andwill be 
alled a standard fork.Let D0 � D be a disk 
ontaining Fj;k su
h that D0\P = fpj ; pkg. Let C 0 be theset of unordered pairs of distin
t points in D0. Let ~C 0 be the pre-image of C 0 in ~C.We 
an 
onsider vj;k as an element of H2( ~C 0), in whi
h 
ase it generates H2( ~C 0) asa �-module. The surfa
e ~�2(Fj;k) lies in ~C 0, so must represent the homology 
lass�vj;k for some � 2 �. The value of � does not depend on j and k. (A
tually � = 1,but we will not need this fa
t.)To write �i(vj;k) in terms of basis ve
tors, we must �nd a �-linear 
ombinationof standard forks whi
h represents the same element of H2( ~C) as the fork �i(Fj;k).In the 
ases i 62 fj � 1; j; k � 1; kg, i = j 6= k, and i = k, there is no problembe
ause �i(Fj;k) is a standard fork.In the 
ase i = j = k � 1, the fork �i(Fj;k) has the same tine edge as Fj;k.It follows that it represents the same surfa
e in ~C , up to a 
hange in orientation
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ation of a 
overing transformation. With some thought, or by pairingwith an appropriate noodle, it is not hard to 
he
k that the 
orre
t formula is�i(vj;k) = �tq2vj;k.The remaining 
ases are i = j � 1 and i = k � 1 6= j. We will use the following
laim.Claim 4.2. �i(vj;k) is a linear 
ombination of basis ve
tors vj0;k0 whi
h satisfyj0; k0 2 fi; i+ 1; j; kg.Proof. There exists a disk D0 � D su
h that D0 
ontains �(Fj;k), D0 
ontains Fj0;k0for all j0; k0 2 fi; i + 1; j; kg with j0 < k0, and D0 \ P = fpi; pi+1; pj ; pkg. Let C 0be the set of unordered pairs of distin
t points in D0. Let ~C 0 be the pre-image ofC 0 in ~C. Then H2( ~C 0) is a free �-module with basis 
onsisting of all vj0;k0 withj0; k0 2 fi; i+ 1; j; kg and j0 < k0. But �(vj;k) 
an be 
onsidered as an element ofH2( ~C 0), so must be a linear 
ombination of these basis ve
tors. �In the 
ase i = j�1, this 
laim implies that �i(Fj;k) represents the same elementof H2( ~C) as some �-linear 
ombination of the three standard forks Fi;j , Fi;k, andFj;k. By pairing with some appropriate noodles it is not hard to 
he
k that the
orre
t linear 
ombination is as stated in Theorem 4.1. Similar methods 
an be usedto verify Theorem 4.1 in the last remaining 
ase, i = k� 1 6= j. This 
ompletes theproof of Theorem 4.1.We 
on
lude with some remarks on the BMW representation of braid groups, de-�ned independently by Birman and Wenzl in [BW89℄, and by Murakami in [Mur87℄.V. Jones noti
ed a striking resemblan
e between the matri
es des
ribed in Theorem4.1 and those of a 
ertain irredu
ible summand of the BMW representation. Heasserted that the two representations should be the same after some renormaliza-tion. The details are worked out by Zinno in [Zin℄. At present, there seems to beno deep explanation for this 
oin
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