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Abstract: In the context of our systematic investigations of penta- and hexacoordinate silicon
compounds, which included dianionic tri- (O,N,O1; O,N,N1) and tetradentate (O,N,N,O; O,N,N1,O1)
chelators, we have now explored silicon coordination chemistry with a dianionic tetradentate
(N,N1,N1,N) chelator. The ligand [o-phenylene-bis(pyrrole-2-carbaldimine), H2L] was obtained
by condensation of o-phenylenediamine and pyrrole-2-carbaldehyde and subsequently silylated
with chlorotrimethylsilane/triethylamine. Transsilylation of this ligand precursor (Me3Si)2L
with chlorosilanes SiCl4, PhSiCl3, Ph2SiCl2, (Anis)2SiCl2 and (4-Me2N-C6H4)PhSiCl2 afforded
the hexacoordinate Si complexes LSiCl2, LSiPhCl, LSiPh2, LSi(Anis)2 and LSiPh(4-Me2N-C6H4),
respectively (Anis = anisyl = 4-methoxyphenyl). 29Si NMR spectroscopy and, for LSiPh2, LSi(Anis)2

and LSiPh(4-Me2N-C6H4), single-crystal X-ray diffraction confirm hexacoordination of the Si
atoms. The molecular structures of LSiCl2 and LSiPhCl were elucidated by computational methods.
Despite the two different N donor sites (pyrrole N, X-type donor; imine N, L-type donor), charge
delocalization within the ligand backbone results in compounds with four similar Si–N bonds.
Charge distribution within the whole molecules was analyzed by calculating the Natural Charges
(NCs). Although these five compounds carry electronically different monodentate substituents,
their constituents reveal rather narrow ranges of their charges (Si atoms: +2.10–+2.22; monodentate
substituents: ´0.54–´0.56; L2´: ´1.02–´1.11).
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1. Introduction

The coordination number of tetravalent silicon can easily be enhanced (up to five or six) with the
aid of monodentate or chelating ligands. Whereas the former preferentially bind to Si atoms that carry
strongly electron withdrawing groups (e.g., formation of pyridine adducts of halosilanes, Scheme 1,
A, [1–3]), the latter offer greater opportunities of creating five- and six-coordinate silicon compounds
even in case of the absence of halides from the silicon coordination sphere (e.g., pentacoordinate
silicon with SiC5 coordination sphere, B [4–6]; and hexacoordinate silicon with a tetradentate chelator
and two Si–CH3 groups, C [7]). For various reasons, such as activation of Si–X bonds by silicon
hypercoordination [8–16], exploring special electronic/optical properties arising from the higher
coordination number of silicon in combination with selected ligands [17–20] or the aim of creating and
exploring hitherto unusual Si coordination compounds, e.g., with transition metals [21–29] or very soft
Lewis bases in their ligand sphere [30–38], silicon coordination chemistry continues to be an attractive
research field, reflected by frequently published research articles [39–58] and reviews [59–63]. Thus,
in the context of our systematic investigations of penta- and hexacoordinate silicon compounds with

Inorganics 2016, 4, 8; doi:10.3390/inorganics4020008 www.mdpi.com/journal/inorganics

http://www.mdpi.com/journal/inorganics
http://www.mdpi.com
http://www.mdpi.com/journal/inorganics


Inorganics 2016, 4, 8 2 of 18

dianionic tri-(O,N,O1; O,N,N1) [20,64–72] and tetradentate (O,N,N,O; O,N,N1,O1) [7–11,18,19,73–77]
chelators, we have now explored silicon coordination chemistry with a dianionic tetradentate
(N,N1,N1,N) chelator. Thus far, macrocyclic π-conjugated (porphyrine- and phthalocyanine-type)
ligands [78–81] have been explored in silicon coordination chemistry (e.g., D [81]), and our study
aims at building a bridge between these cyclic (N,N,N,N)-chelators with essentially chemically
equivalent donor atoms and “open chain” type chelators such as salen-type (O,N,N,O)-ligands (like
the tetradentate ligand in C).
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was converted into its bis(trimethylsilyl) derivative (Me3Si)2L, as its conversion with further 
chlorosilanes (in a transsilylation reaction) produces chlorotrimethylsilane as a liquid and volatile 
byproduct, which allows for easy separation from the target complex. Whereas SiCl4, PhSiCl3, and 
Ph2SiCl2 were commercially available, (Anis)2SiCl2 and (4-Me2N-C6H4)PhSiCl2 were prepared from 
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Scheme 1. Selected penta- and hexacoordinate silicon compounds with: monodentate ligands (A);
chelating groups (B,C); and a macrocyclic (phthalocyanine) ligand (D).

2. Results and Discussion

2.1. Syntheses

Based on our experience with pyrrolide as anionic anchoring group in chelating ligands for Si
coordination chemistry [20,64,82–84], we studied the syntheses and molecular structures of silicon
compounds with a pyrrole-2-carbaldimine functionalized (N,N1,N1,N)-chelating dianionic tetradentate
ligand. This ligand, H2L, has already been reported in the literature [85] and was synthesized by
condensation of o-phenylenediamine with two equivalents of pyrrole-2-carbaldehyde (Scheme 2). Prior
to reacting with the chlorosilanes to be chelated upon substitution of two Cl atoms [SiCl4, PhSiCl3,
Ph2SiCl2, (Anis)2SiCl2 and (4-Me2N-C6H4)PhSiCl2], H2L was converted into its bis(trimethylsilyl)
derivative (Me3Si)2L, as its conversion with further chlorosilanes (in a transsilylation reaction) produces
chlorotrimethylsilane as a liquid and volatile byproduct, which allows for easy separation from the
target complex. Whereas SiCl4, PhSiCl3, and Ph2SiCl2 were commercially available, (Anis)2SiCl2 and
(4-Me2N-C6H4)PhSiCl2 were prepared from SiCl4 and PhSiCl3, respectively, and suitable Grignard
reagents (see Experimental Section).
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Complexes LSiCl2, LSiPhCl, LSiPh2, LSi(Anis)2 and LSiPh(4-Me2N-C6H4) were obtained as
orange solids that exhibited poor solubility in various organic solvents. Therefore, the emphasis of
characterization is put on solid-state methods (29Si CP/MAS NMR spectroscopy, single-crystal X-ray
diffraction) and computational methods.

2.2. Molecular Structures

The starting material (4-Me2N-C6H4)PhSiCl2 was obtained as a crystalline solid, therefore we
determined its molecular structure in the solid state by single-crystal X-ray diffraction (Figure 1,
Table 1). Because of the different substituents, the Si coordination sphere is distorted tetrahedral, with
the C–Si–C angle (117.3˝) significantly exceeding the tetrahedral angle. Interestingly, the Si1–C1 bond
to the 4-dimethylaminophenyl group is slightly shorter than the Si1–C9 bond to the phenyl group.
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Figure 1. Molecular structure of (4-Me2N-C6H4)PhSiCl2 in the crystal, thermal displacement ellipsoids
are drawn at the 50% probability level. Selected bond lengths (Å) and angles (deg): Si1–C1 1.841(2),
Si1–C9 1.858(2), Si1–Cl1 2.083(1), Si1–Cl2 2.070(1); C1–Si1–C9 117.25(7), Cl1–Si1–Cl2 107.93(3).

Table 1. Crystallographic data from data collection and refinement for (4-Me2N-C6H4)PhSiCl2,
LSiPh2¨THF, LSi(Anis)2¨ 0.5 THF and LSiPh(4-Me2N-C6H4)¨THF.

Parameter (4-Me2N-C6H4) PhSiCl2 LSiPh2¨THF [LSi(Anis)2]2¨THF LSiPh(4-Me2N-C6H4)¨THF

Formula C14H15Cl2NSi C32H30N4OSi C64H60N8O5Si2 C34H35N5OSi
Mr 296.26 514.69 1077.38 557.76

T (K) 150(2) 150(2) 150(2) 150(2)
λ (Å) 0.71073 0.71073 0.71073 0.71073

Crystal system monoclinic triclinic monoclinic monoclinic
Space group P21/c P-1 P21/c Cc

a (Å) 16.6233(11) 9.7135(3) 14.3173(4) 14.5651(7)
b (Å) 7.5451(3) 14.9827(4) 18.2897(8) 22.8720(8)
c (Å) 12.2941(8) 18.4932(4) 21.3671(7) 10.4529(5)
α (˝) 90 82.491(1) 90 90
β (˝) 110.965(5) 83.162(1) 101.839(2) 124.370(3)
γ (˝) 90 88.353(1) 90 90

V (Å3) 1439.90(15) 2649.10(12) 5476.1(3) 2874.2(2)
Z 4 4 4 4

ρcalc (g¨ cm´1) 1.367 1.290 1.307 1.289
µMoKα (mm´1) 0.516 0.122 0.125 0.119

F(000) 616 1088 2272 1184
θmax(˝), Rint 30.0, 0.0500 27.0, 0.0384 28.0, 0.0496 30.0, 0.0350

Completeness 100% 98.6% 99.9% 99.9%
Reflns collected 19,787 45,819 52,823 27,745
Reflns unique 4203 11,420 13,197 7879

Restraints 0 0 0 4
Parameters 165 685 716 377

GoF 1.044 1.060 1.047 1.052
R1, wR2 [I > 2σ (I)] 0.0348, 0.0771 0.0463, 0.1140 0.0441, 0.1013 0.0331, 0.0800
R1, wR2 (all data) 0.0535, 0.0841 0.0790, 0.1241 0.0744, 0.1129 0.0381, 0.0831

Largest peak/hole (e¨Å´3) 0.428, ´0.305 0.564, ´0.410 0.678, ´0.590 0.307, ´0.190
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The diaryl substituted silicon compounds LSiPh2, LSi(Anis)2 and LSiPh(4-Me2N-C6H4)
crystallized from the reaction mixture (as THF solvates) and their molecular structures were thus
determined by single-crystal X-ray diffraction analyses (Figure 2, Table 1). Selected bond lengths are
listed in Table 2. As LSiCl2 and LSiPhCl were obtained as fine powders, even during slow formation in
very dilute solutions of starting materials, and our attempts of growing crystals from other solvents
failed, the molecular structures of LSiCl2, LSiPhCl and LSiPh2 were optimized (gas phase) at the DFT
MPW1PW91/6-311G(d,p) level of theory (Figure 3). Compound LSiPh2 thus serves as our internal
reference for the reliability of the computed molecular structure as an experimentally determined
structure of this compound is available for comparison. Selected bond lengths of these molecules are
also listed in Table 2.
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Figure 2. Molecular structures of (from left) LSiPh2, LSi(Anis)2 and LSiPh(4-Me2N-C6H4) in their
crystal structures (heteroatoms and Si-bound C atoms labeled, H-atoms, solvent molecules and second
independent molecule of the asymmetric unit of LSiPh2 and LSi(Anis)2 are omitted).

Table 2. Bond lengths (Å) in the Si coordination spheres of the hexacoordinate Si complexes discussed
in this paper.

Bond LSiPh(4-Me2N-C6H4) LSi(Anis)2
1 LSiPh2

1 LSiPh2
2 LSiPhCl 2 LSiCl2

2

Si–C
1.994(1) 3 1.995(2) 1.983(2) 1.967 1.949 -
1.964(1) 4 1.974(2) 1.977(2) 1.967 - -

Si–Npyrrole
1.900(1) 1.904(1) 1.882(2) 1.948 1.877 1.851
1.890(1) 1.896(1) 1.890(1) 1.948 1.877 1.852

Si–Nimine
1.919(1) 1.923(2) 1.906(1) 1.933 1.906 1.892
1.905(1) 1.915(1) 1.908(1) 1.933 1.906 1.892

Si–Cl
- - - - 2.294 2.227
- - - - - 2.228

1 Data taken from one of the two crystallographically independent molecules (the molecule shown in Figure 2).
The other molecule in the asymmetric unit exhibits very similar bond lengths; 2 from optimized molecular
structures (see Figure 3); 3 C of the phenyl group; 4 C of the p-dimethylaminophenyl group.
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the computational analysis appears to underestimate the bond strength to the tetradentate ligand
(it predicts longer Si–N bonds) and the weakening of the Si–C bonds resulting therefrom. Thus, we
only interpret the trends observed in the optimized molecular structures rather than interpreting the
absolute bond length values.

Both in the series of crystallographically determined molecular structures and in the series of
computed structures we find systematic shortening of the Si–N bonds upon lowering the electron
releasing power or increasing the electron withdrawing power of the monodentate substituents.
Even though the experimental data confirm slightly longer Si–Nimine bonds for LSiPh2, whereas
computational analysis predicts slightly longer Si–Npyrrole bonds, these two kinds of bonds exhibit
only marginal bond length differences (despite their formally different character as dative bond
from an imine N atom and a covalent bond from a pyrrole N atom). Thus, the tetradentate ligand
under investigation reveals nearly perfect delocalization of its anionic charges over the chemically
different nitrogen donor atoms (Scheme 3). In this regard, its imine-pyrrolide donor moiety, at least
in hexacoordinate Si complexes, reflects the intermediate situation of what we had encountered with
the pentacoordinate Si complexes E and F [64] (Scheme 3), each of which prefers one of the resonance
contributions, depending on the situation of the imine and pyrrolide donor sites within the distorted
trigonal bipyramidal coordination sphere (axial vs. equatorial positions). In this regard, compound
LSiPh2 is related to (tetraphenylporphyrine)SiPh2 [79], which also has a delocalized π-system and
similar Si–N bond lengths. The Si–C bonds in LSiPh2 (1.98 Å), however, are slightly longer than
those in the porphyrine complex (1.95 Å), whereas the Si–N bonds (1.89, 1.91 Å) are shorter than
in the porphyrine complex (1.97 Å). We attribute this difference (shorter Si–N bonds in LSiPh2 and
pronounced Si–C bond lengthening resulting therefrom) to the smaller chelate size, i.e., five-membered
rings in LSiPh2, whereas in porphyrin complexes six-membered rings are encountered.
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Moreover, for the two complexes bearing two different monodentate substituents
(LSiPh(4-Me2N-C6H4) and LSiPhCl) we observe pronounced bond strengthening of the Si–C bond
to the more electron releasing group, whereas the bond to the trans-disposed rather electron
withdrawing group (Ph in LSiPh(4-Me2N-C6H4) , Cl in LSiPhCl) is significantly weakened relative to
the corresponding bonds in the symmetrically substituted complexes LSiPh2 and LSiCl2, respectively.

2.3. 29Si NMR

Compounds LSiPh2, LSi(Anis)2 and LSiPh(4-Me2N-C6H4) exhibited sufficient solubility in DMSO
for NMR spectroscopic investigation. Their 29Si NMR shifts (δ ´165.3, ´165.1, and ´164.4 ppm,
respectively) are very similar to one another and are characteristic of hexacoordinate Si complexes.
Moreover, for LSiPh2, LSiPhCl and LSiCl2 solid-state 29Si NMR (cross-polarization magic angle
spinning, CP/MAS), spectra were recorded and isotropic chemical shifts δiso characteristic of
hexacoordinate Si were recorded (´164.3, ´145.2, and ´175.3, respectively). Comparison of the
29Si NMR shift of LSiCl2 with the 29Si NMR shifts of porphyrine-SiCl2 complexes (ca. ´220 ppm [78])
reveals a clear difference between these two classes of silicon compounds on the NMR spectroscopic
level. Comparison of the solution state and solid-state 29Si NMR shift of LSiPh2 indicates that the
hexacoordination found in the solid state is retained in solution, hence, dynamic equilibria between
hexa- and tetracoordinate Si complexes, which would shift the 29Si resonance to lower field, do not
play a significant role. Interestingly, for LSiPhCl we observe a surprisingly lowfield shifted 29Si
signal, although stepwise substitution of Ph for Cl should cause upfield shifts of the 29Si signal, as
shown for the series (oxinate)2SiPh2 (δiso ´137 ppm), (oxinate)2SiPhCl (δiso ´152 ppm), (oxinate)2SiCl2
(δiso ´159 ppm) [86]. We attribute the downfield shift observed for LSiPhCl to a partial transition
towards pentacoordinate Si in terms of Si–Cl bond lengthening (towards ionic Si–Cl bond dissociation).
Kost et al. [87] have already reported that ionic dissociation of Si–Cl bonds is favored upon replacing an
SiCl2 moiety of a hexacoordinate Si complex by an SiCl(alkyl) moiety. Apparently, a phenyl substituent
can serve the same purpose of supporting this ionic dissociation, and the Si–Cl bond in the optimized
molecular structure of LSiPhCl (2.29 Å, vide supra) also hints at significant Si–Cl bond lengthening
(with respect to the Si–Cl bonds of LSiCl2, 2.23 Å), supported by shortening of the trans-disposed Si–C
bond (1.95 Å) with respect to the Si–C bonds in LSiPh2 (1.97 Å). For the (oxinate)2SiPhnCl2´n system
this Si–Cl bond lengthening has not been observed (Si–Cl 2.19 Å for n = 0, 2.20 Å for n = 1).

As for compound LSiPh2, both solid-state 29Si NMR data and crystallographically determined
molecular structure are available, we have determined the chemical shift anisotropy (CSA) tensor
both from CP/MAS spinning side bands (Figure 4) and quantum chemical calculations based on
the solid-state molecular structure (atomic coordinates from the crystal structure were used, only
coordinates of H atoms were subject to optimization prior to calculating the 29Si CSA tensor). As the
computationally obtained data are in good agreement with the experimental values (Table 3), they
allow for assignment of the directions of the CSA tensor principal components within the molecule
(Figure 4).
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For diorganosilicon complexes with tetradentate salen-type ligands we have reported 
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(oxinate)2Si(CH2)n (n = 3–6) [90]. The herein reported hexacoordinate diorgano Si complexes LSiPh2, 

Figure 4. 29Si CP/MAS NMR spinning side band spectrum of LSiPh2 (νspin = 500 Hz) (left), and
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Table 3. Parameters of the 29Si NMR CSA tensor (isotropic chemical shift δiso; principal components
δ11, δ22, δ33; span Ω; skew κ, according to the Herzfeld–Berger notation [88,89]) for LSiPh2 obtained
from a CP/MAS spectrum (LSiPh2exp) and from quantum chemical calculations (LSiPh2calc) as well as
experimentally obtained CSA tensor data of a hexacoordinate (O,N,N,O)SiPh2 complex of the chelating
ligand shown in Scheme 1 for compound C.

Parameter LSiPh2exp LSiPh2calc (O,N,N,O)SiPh2

δiso (ppm) ´164.3 ´166.9 ´177.7
δ11 (ppm) ´147.3 ´149.9 ´162.8
δ22 (ppm) ´164.6 ´168.1 ´174.3
δ33 (ppm) ´181.0 ´182.9 ´196.0
Ω (ppm) 1 33.7 33.0 33.2

κ 2 ´0.03 ´0.11 0.31
1 Ω = δ11´δ33; 2 κ = 3(δ22´δiso)/Ω.

In accord with the CSA data of a somewhat related complex, (O,N,N,O)SiPh2 with trans-disposed
Si–C bonds and an equatorial dianionic tetradentate salen-type ligand [7] (the same ligand as for
compound C in Scheme 1), pronounced shielding (direction δ33) is found along the C–Si–C axis,
whereas components δ11 and δ22 are located in the idealized plane of the tetradentate chelating
ligand. Interestingly, the change of the tetradentate chelator exerts similar influence on all principal
components, hence, the span Ω of the CSA tensor is essentially the same and even the skew κ is hardly
altered. In this regard, we find that the directional electronic effects of the (N,N1,N1,N) ligand used in
this study on the 29Si NMR shift are very similar to those of salen type (O,N,N,O) ligands.

2.4. Light Sensitivity

For diorganosilicon complexes with tetradentate salen-type ligands we have reported migration of
one of the Si-bound substituents to an imine C-atom (with formation of pentacoordinate Si complexes)
upon irradiation with UV (Scheme 4, left) [9,11,77], and we have observed similar behavior for
silacycloalkanes with two (O,N) bidentate oxinate ligands (oxinate)2Si(CH2)n (n = 3–6) [90]. The herein
reported hexacoordinate diorgano Si complexes LSiPh2, LSi(Anis)2 and LSiPh(4-Me2N-C6H4) are
also sensitive to light and have thus been synthesized in the dark. Upon exposure to visible light
or upon irradiation with UV the initially orange compounds turn dark red. Deliberate exposure of
THF solutions of LSiPh2, LSi(Anis)2 and LSiPh(4-Me2N-C6H4) to UV thus resulted in the formation



Inorganics 2016, 4, 8 8 of 18

of dark red solutions. In contrast to our previous studies of complexes with (O,N) and (O,N,N,O)
chelated diorgano silicon compounds, UV-induced rearrangement of the herein reported compounds
of the type LSiRR1 seems to produce complex mixtures of polymeric products rather than affording
well-defined monomolecular complexes. This was concluded from the absence of detectable 29Si
NMR signals from solutions of the product mixtures. The same observations were made under less
vigorous conditions, i.e., upon stirring THF solutions of these complexes in Schenk tubes out of regular
glassware exposed to the visible light of the laboratory environment. Nonetheless, rearrangement of
one Si-bound aryl group with migration to an imine C atom (according to Scheme 4, right) should
be thermodynamically allowed, as we could show by quantum chemical calculations. The proposed
rearrangement products (LRSiR1) are thermodynamically more stable by about 35 kcal¨ mol´1. Atomic
coordinates of the optimized molecular structures of compounds LSiRR1 and LRSiR1 can be found in
the supporting information.
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Scheme 4. UV induced rearrangement of an Si-bound hydrocarbyl group in hexacoordinate Si
complexes (migration to an imine C atom) observed for complexes of salen-type ligands (left)
and calculated to be thermodynamically allowed for the herein reported diarylsilicon complexes
LSiRR1 (right). Rearrangement energies calculated for the following combinations R,R1 are:
Ph,Ph: ´34.1 kcal¨mol´1; Anis,Anis: ´34.7 kcal¨mol´1; (4-Me2N-C6H4),Ph: ´35.6 kcal¨mol´1;
Ph,(4-Me2N-C6H4): ´34.4 kcal¨mol´1.

2.5. Charge Distribution

The different combinations of Si-bound monodentate substituents in the herein discussed
complexes gave rise to different Si–N separations within the tetradentate (N,N1,N1,N)-chelate and
we found the (expected) general trend of shortening of Si–N bonds upon enhancing the electron
withdrawing capabilities of the monodentate Si-bound substituents. In order to shed some light
on these electrostatic interaction, we have employed quantum chemical calculations of the Natural
Charges (NCs) of the atoms of all herein discussed complexes LSiRR1. A comparison of the sum of NCs
for the molecular fragments L, Si, R and R1 is listed in Table 4. Interestingly, the NC of the silicon atom
hardly changes upon alteration of the Si-bound monodentate substituents. Replacing aryl substituents
by Cl atoms causes lowering of the Si atom’s positive NC (especially for LSiCl2). Comparison of the Cl
atoms’ NCs in LSiPhCl and LSiCl2 indicates that in the latter the Cl atoms carry a less pronounced
negative charge (which we attribute to the shorter Si–Cl bond). Thus, we attribute the lowering of
the Si atom’s NC in LSiCl2 to charge compensation effects caused by the closer proximity of Si and
its monodentate substituents. In the same manner, the NCs of the tetradentate ligands L become less
negative as the Si–N bonds are getting shorter (i.e., from LSi(aryl)2 via LSiPh to LSiCl2). Inter-ligand
push-pull effects (i.e., lowering of one ligand’s charge while enhancing the other ligand’s charge) are
not observed. This is most obvious for LSiPh(4-Me2N-C6H4), in which the two electronically different
aryl groups still carry similar NCs, despite the electron releasing NMe2 substituent. The slightly less
pronounced NC of the 4-Me2N-C6H4 group can again be interpreted as a result of slightly better charge
compensation caused by the shorter Si–C bond, whereas the NC of the trans-disposed Ph group does
not change (with respect to the NCs of the aryl groups in LSiPh2 and LSi(Anis)2).
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Table 4. Natural Charges (NCs) of ligand L, Si and the monodentate substituents of the hexacoordinate
Si complexes discussed in this paper.

Moiety LSiPh(4-Me2N-C6H4) LSi(Anis)2 LSiPh2 LSiPhCl LSiCl2

Si 2.216 2.209 2.215 2.186 2.102
L ´1.110 ´1.107 ´1.100 ´1.051 ´1.023
R ´0.559 ´0.556 ´0.557 ´0.562 ´0.539

(Ph) (Anis) (Ph) (Ph) (Cl)
R1 ´0.547 ´0.546 ´0.557 ´0.572 ´0.540

(4-Me2N-C6H4) (Anis) (Ph) (Cl) (Cl)

3. Experimental Section

3.1. General Considerations

Chemicals commercially available were used as received without further purification.
4-Bromoanisole and 4-bromo-N,N-dimethylaniline were stored over activated molecular sieves (3 Å)
for at least 7 days. THF, diethyl ether, toluene and triethylamine were distilled from sodium
benzophenone. Triethylamine, DMSO and chloroform were stored over activated molecular sieves
(3 Å) and THF, diethyl ether and toluene were stored over sodium wire under argon atmosphere.
All reactions were carried out under an atmosphere of dry argon utilizing standard Schlenk
techniques. H2L was synthesized according to a literature procedure [85]. Solution NMR spectra
(1H, 13C, 29Si) were recorded on a Bruker DPX 400 MHz spectrometer (Me4Si as internal standard).
29Si (CP/MAS) NMR spectra were recorded on a Bruker Avance 400 WB spectrometer with 7 mm
zirconia (ZrO2) rotors and KelF inserts. Elemental analyses were performed on an Elementar
Vario MICRO cube. Single-crystal X-ray diffraction data were collected on a Bruker APEX2
CCD (LSiPh2¨ THF) and a STOE IPDS-2T diffractometer ((4-Me2N-C6H4)PhSiCl2, [LSi(Anis)2]2¨ THF,
LSiPh(4-Me2N-C6H4)¨ THF) using Mo Kα-radiation. The structures were solved by direct methods
using SHELXS-97 and refined with the full-matrix least-squares methods of F2 against all reflections
with SHELXL-97 [91–93]. All non-hydrogen atoms were anisotropically refined. Hydrogen atoms
were isotropically refined in idealized position (riding model). Graphics of molecular structures
were generated with ORTEP-3 [94] and POV-Ray 3.62 [95]. CCDC 999945 (LSi(Anis)2¨ 0.5¨ THF),
999946 (LSiPh2¨ THF), 999947 (Ph(4-Me2N-C6H4)SiCl2) and 999948 (LSiPh(4-Me2N-C6H4)¨ THF)
contain the supplementary crystal data for this article. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Computational analyses were performed with Gaussian 09 [96]. All molecules were optimized using
the DFT-MPW1PW91 [97–100] functional and the 6-311G(d,p) [101,102] basis set. The single-point
energies and NBO analyses [103–109] have been calculated at the MP2/cc-pVTZ level [110–119]. Color
graphics (Figures S1–S9) and atomic coordinates (Tables S1–S9) of the optimized molecular structures
are available in the supplementary material. Prior to calculations of 29Si NMR shifts (for the molecular
structures obtained by X-ray crystallography) the positions of the H atoms were optimized (using
the DFT-MPW1PW91 functional and the 6-311G(d,p) basis set), and the reference molecule SiMe4

was (fully) optimized at the same level of theory as the target molecule. The NMR calculation of the
molecules and the reference molecule were obtained with DFT-B3LYP/6-311G(d,p) [120].

3.2. Syntheses

Ph(4-Me2N-C6H4)SiCl2. Magnesium turnings (13.5 g, 0.557 mol) in THF (40 mL) were activated
with a small amount of iodine at room temperature. To this mixture a small amounts (ca. 2 mL) of
a solution of p-bromo-N,N-dimethylaniline (22.2 g, 0.185 mol) in THF (20 mL) was added via dropping
funnel. The remaining aniline solution was then diluted further with THF (80 mL) and added dropwise.
After completion of addition of p-bromo-N,N-dimethylaniline solution (about 60 min), the reaction
mixture was stirred for another 5 h at room temperature. After storage at room temperature over
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night the Grignard reagent was transferred via cannula into a dropping funnel and the residual
magnesium was washed with THF (3 ˆ 30 mL) and dried in vacuo (converted Magnesium 2.97 g,
0.122 mol, 66% p-bromo-N,N-dimethylaniline reacted). The Grignard reagent was added dropwise
(within 3 h) to a solution of phenyltrichlorsilane (25.3 g, 0.120 mol) and diethyl ether (60 mL) under
vigorous stirring. The mixture was stored at room temperature for 5 d, whereupon the solvent was
removed under reduced pressure (condensation into a cold trap). The residue was refluxed in toluene
(80 mL) for 2 h and then cooled to 0 ˝C. The solid precipitate was filtered off and washed with toluene
(5 ˆ 20 mL). From the combined filtrate and washings the volatiles were condensed in a cold trap
under reduced pressure. The residue was distilled at 3.8–4.5 ˆ 10´2 Torr (b.p. = 190–192 ˝C). The
liquid product solidified at room temperature within 8 h. Yield: 9.27 g (31.3 mmol, 17% based on the
p-bromo-N,N-dimethylaniline used). Elemental analysis for C14H15Cl2NSi (296.26 g¨ mol´1): C, 56.76%;
H, 5.10; N, 4.73; found C, 53.61%; H, 5.45%; N, 4.25%. The composition found indicates complete
reaction with water during sample preparation, it fits the formula [Ph(p-HMe2N-C6H4)SiClOH]Cl.
Calculated for C14H17Cl2NOSi (314.28 g¨ mol´1): C, 53.50%; H, 5.45%; N, 4.46. 1H NMR (400.1 MHz,
CDCl3): δ (ppm) 3.00 (s, 6H, –CH3), 6.71–6.72 (m, 2H, aryl), 7.40–7.48 (mm, 3H, aryl), 7.57–7.59 (m, 2H,
aryl), 7.75–7.77 (m, 2H, aryl); 13C{1H} NMR (100 MHz, CDCl3): δ (ppm) 47.3 (–NMe2), 111.4, 115.9,
128.2, 131.4, 133.0, 134.1, 135.4, 152.4 (aryl); 29Si{1H} NMR (79.5 MHz, CDCl3): δ (ppm) 6.2.

(Anis)2SiCl2. (With reference to a literature method [121]): Magnesium turnings (10.6 g, 0.437 mol)
in 30 mL diethyl ether were activated with a small amount of iodine. To this mixture only 1–2 mL
of the total amount of p-bromoanisole (27.0 g, 0.144 mol) was added. The remaining p-bromoanisole
was dissolved in diethyl ether (60 mL) and added dropwise to the vigorously stirring mixture (within
1.5 h). Thereafter, more diethyl ether (50 mL) was added and the mixture was stirred under reflux
for 45 min and then cooled to room temperature. The Grignard reagent solution was transferred into
a dropping funnel (via cannula), the residual magnesium was washed with diethyl ether (4 ˆ 10 mL)
and the washings were added to the Grignard solution. The residual magnesium was then washed
with THF (40 mL) and dried in vacuum to find a weight difference of converted Magnesium of 3.48 g,
0.143 mol, 99% according to the p-bromoanisole used. The Grignard reagent was added dropwise
(within 2 h) to a vigorously stirring solution of SiCl4 (12.2 g, 0.0716 mol) and diethyl ether (20 mL) at
0 ˝C. Thereafter, this solution was stored at room temperature overnight (10 h), whereupon the solvent
was removed under reduced pressure (condensation into a cold trap). The white residue was stirred
with hexane (150 mL), filtered off and washed with hexane (40 mL). From the filtrate and washings
the solvent was removed under reduced pressure (condensation into a cold trap) and the residual
colorless oil was distilled under reduced pressure to yield (Anis)SiCl3 (6.53 g, 27.0 mmol, 19%) at
70 ˝C, 3.3 ˆ 10´2 Torr and (Anis)2SiCl2 (2.93 g, 9.36 mmol, 13%) at 160–161 ˝C, 1.8–2.0 ˆ 10´2 Torr.
(Anis)SiCl3: 1H NMR (400 MHz, CDCl3): δ (ppm) 3.45 (s, 6H, –OCH3), 6.99 (d, J = 8.6 Hz, 2H, aryl),
7.73 (d, J = 8.6 Hz, 2H, aryl). 13C{1H} NMR (100 MHz, CDCl3): δ (ppm) 55.3 (–CH3), 114.2, 122.5,
135.1, 163.1 (aryl); 29Si{1H} NMR (79,5 MHz, CDCl3): δ (ppm) ´1.1. (Anis)2SiCl2: 1H NMR (400 MHz,
CDCl3): δ (ppm) 3.84 (s, 6H, –OCH3), 6.97 (d, J = 8.70 Hz, 4H, aryl), 7.67 (d, J = 8.70 Hz, 4H, aryl).
13C{1H} NMR (100 MHz, CDCl3): δ (ppm) 55.2 (–CH3), 114.0, 123.3, 135.9, 162.3 (aryl). 29Si{1H} NMR
(79.5 MHz, CDCl3): δ (ppm) 5.9.

LSiCl2. A solution of H2L (0.60 g, 2.29 mmol) and triethylamine (0.93 g, 9.21 mmol) in THF
(7.5 mL) was stirred at room temperature, and chlorotrimethylsilane (0.60 g, 5.53 mmol) in THF
(2.5 mL) was added dropwise via syringe. The yellow suspension thus obtained was heated to and
stirred at 50 ˝C (3 h) and cooled to room temperature. Thereafter, the triethylamine hydrochloride
precipitate was filtered off and washed with THF (3 mL). From the combined filtrate and washings the
solvent was removed under reduced pressure (condensation into a cold trap), the orange residue was
dissolved in chloroform (5 mL) and a solution of SiCl4 (0.41 g, 2.41 mmol) in chloroform (2 mL) was
added dropwise via syringe. Within few seconds a precipitate formed. The mixture was stored at 6 ˝C
(2 d), whereupon the solid was filtered off, washed with chloroform (0.5 mL) and dried in vacuum.
Yield: 0.90 g (2.09 mmol, 82%) of LSiCl2¨ CHCl3. This compound is basically insoluble in common
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solvents such as hexane, diethyl ether, THF, toluene and DMSO. Elemental analysis for C17H13N4SiCl5
(478.66 g¨ mol´1): C, 42.66%; H, 2.74; N, 11.70%; found C, 42.72; H, 3.17%; N, 11.70%. 29Si{1H} CP/MAS
NMR (79.5 MHz): δiso (ppm) ´175.3.

LSiPhCl. A solution of H2L (0.50 g, 1.91 mmol) and triethylamine (0.58 g, 5.74 mmol) in THF
(5 mL) was stirred at room temperature, and chlorotrimethylsilane (0.50 g, 4.61 mmol) in THF (2.5 mL)
was added dropwise via syringe. The yellow suspension thus obtained was heated to and stirred at
50 ˝C (3 h) and cooled to room temperature. Thereafter, the triethylamine hydrochloride precipitate
was filtered off and washed with THF (2 mL). From the combined filtrate and washings the solvent was
removed under reduced pressure (condensation into a cold trap). The orange residue was dissolved
in chloroform (5 mL) and a solution of phenyltrichlorsilane (0.42 g, 1.99 mmol) in THF (2.5 mL) was
added dropwise via syringe. Within few seconds an orange precipitate formed. The mixture was
stored at 6 ˝C (1 d), whereupon the solid product was filtered off, washed with THF (0.5 mL) and
dried in vacuum. Yield: 0.49 g (1.04 mmol, 54%) of LSiClPh¨ THF. This compound is basically insoluble
in common solvents such as hexane, diethyl ether, THF, toluene and DMSO. Elemental analysis for
C26H25N4OSiCl (473.04 g¨ mol´1): C, 66.02%; H, 5.33%; N, 11.84%; found C, 65.98%; H, 5.51%; N,
11.79%. 29Si{1H} CP/MAS NMR (79.5 MHz): δiso (ppm) ´145.2.

LSiPh2. A solution of H2L (2.00 g, 7.63 mmol) and triethylamine (3.85 g, 38.1 mmol) in THF
(35 mL) was stirred at room temperature, and chlorotrimethylsilane (2.48 g, 22.9 mmol) in THF
(5 mL) was added dropwise via syringe. The yellow suspension thus obtained was heated to and
stirred at 50 ˝C (4 h) and cooled to room temperature. Thereafter, the triethylamine hydrochloride
precipitate was filtered off and washed with THF (10 mL). From the combined filtrate and washings
the solvent was removed under reduced pressure (condensation into a cold trap). The orange residue
was dissolved in THF (10 mL). In the dark a solution of diphenyldichlorsilane (2.03 g, 8.02 mmol) in
THF (3 mL) was added quickly (with stirring) and the solution was then stored at room temperature in
the dark for 6 days. The orange crystals obtained were filtered off, washed with THF (5 mL) and briefly
dried in vacuum. Yield: 2.86 g (5.56 mmol, 73%) of LSiPh2¨ THF. Elemental analysis for C32H30N4OSi
(514.69 g¨ mol´1): C, 74.67%; H, 5.87%; N, 10.89%; found C, 74.14%; H, 5.56%; N, 10.81%. 1H NMR
(400 MHz, DMSO-d6): δ (ppm) 6.46–6.47 (m, 2H, aryl), 6.66–6.70 (m, 6H, aryl), 6.80–6.82 (m, 4H,
aryl), 6.91–6.92 (m, 2H, aryl), 7.42–7.44 (m, 2H, aryl), 7.99–8.00 (m, 2H, aryl), 8.29 (s, 2H, aryl), 9.05
(s, 2H, –N=CH–); 13C{1H} NMR (100 MHz, DMSO-d6): δ (ppm) 115.7, 115.8, 118.9, 124.4, 126.3, 127.3,
132.0, 134.4, 134.6, 135.4, 141.6 (aryl), 160.4 ppm (–N=CH–); 29Si{1H} NMR (79.5 MHz, DMSO-d6):
δ (ppm) ´165.3.

LSi(Anis)2. A solution of H2L (0.80 g, 3.05 mmol) and triethylamine (1.00 g, 9.22 mmol) in THF
(10 mL) was stirred at room temperature, and chlorotrimethylsilane (1.24 g, 12.3 mmol) in THF (4 mL)
was added dropwise via syringe. The yellow suspension thus obtained was heated to and stirred at
50 ˝C (4 h) and cooled to room temperature. Thereafter, the triethylamine hydrochloride precipitate
was filtered off and washed with THF (5 mL). From the combined filtrate and washings the solvent was
removed under reduced pressure (condensation into a cold trap). The orange residue was dissolved in
THF (7 mL). In the dark 2.04 g of a 50% solution of (Anis)2SiCl2 in hexane (corresponding to 1.02 g,
3.20 mmol) was added quickly with stirring and the solution was stored at room temperature in the
dark for 6 days. The orange crystals obtained were filtered off, washed with THF (2 ˆ 1.5 mL) and
briefly dried in vacuum. Yield: 0.91 g (1.69 mmol, 55%) of LSi(Anis)2¨ 0.5THF. This composition was
concluded from the crystallographic data. 1H NMR data and elemental analysis suggest a somewhat
higher THF content (0.7 THF). Elemental analysis for C32.8H31.6N4O2.7Si (553.11 g¨ mol´1): C, 71.22%;
H, 5.76%; N, 10.13%; found C, 70.64%; H, 6.06%; N, 10.50%. 1H NMR (400 MHz, DMSO-d6): δ (ppm)
3.45 (s, 6H, –O–CH3), 6.25–6.27 (m, 4H, aryl), 6.45–6.46 (m, 2H, aryl), 6.66–6.68 ppm (m, 4H, aryl),
6.91–6.92 (m, 2H, aryl), 7.42–7.43 (m, 2H, aryl), 7.98–8.00 (m, 2H, aryl), 8.21–8.22 (m, 2H, aryl), 9.04 (s,
2H, –N=CH–); 13C{1H} NMR (100 MHz, DMSO-d6): δ (ppm) 54.3 (–O–CH3), 111.8, 115.6, 115.7, 118.6,
127.3, 133.1, 134.2, 134.3, 135.3, 141.3, 151.3 (aryl), 156.1 (C=N); 29Si{1H} NMR (79.5 MHz, DMSO-d6):
δ (ppm) ´165.1.
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LSiPh(4-Me2N-C6H4). A solution of H2L (0.70 g, 2.67 mmol) and triethylamine (1.08 g, 10.7 mmol)
in THF (5 mL) was stirred at room temperature, and chlorotrimethylsilane (0.70 g, 6.45 mmol) in THF
(2 mL) was added dropwise via syringe. The yellow suspension thus obtained was heated to and
stirred at 50 ˝C (3 h) and cooled to room temperature. Thereafter, the triethylamine hydrochloride
precipitate was filtered off and washed with THF (5 mL). From the combined filtrate and washings the
solvent was removed under reduced pressure (condensation into a cold trap). The orange residue was
dissolved in THF (5 mL). In the dark and with stirring a solution of Ph(4-Me2N-C6H4)SiCl2 (0.87 g,
2.94 mmol) in THF (5 mL) was added quickly. The mixture was stored at room temperature in the
dark for 3 days. The orange crystals obtained were filtered off, washed with THF (2 mL) and briefly
dried in vacuum. Yield: 0.64 g (1.15 mmol, 43%) of LSiPh(4-Me2N-C6H4)¨ THF. This composition
was concluded from the crystallographic data. Elemental analysis suggests a somewhat lower THF
content (0.9 THF), loss of solvent may have occurred during sample preparation. Elemental analysis
for C33.6H34.2N5O0.9Si (550.55 g¨ mol´1): C, 73.30%; H, 6.26%; N, 12.72%; found C, 72.70%; H, 6.15%;
N, 21.91%. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 2.59 (s, 6H, –NMe2), 6.10–6.12 (m, 2H, aryl),
6.44–6.90 (mm, 12H, aryl), 7.41–7.43 (m, 2H, aryl), 7.98–8.00 (m, 2H, aryl), 8.21–8.23 (m, 3H, aryl), 9.03
(s, 2H, –N=CH–). 13C{1H} NMR (100 MHz, DMSO-d6): δ (ppm) 40.1 (–NMe2), 111.3, 114.6, 115.9, 119.0,
124.3, 126.4, 126.8, 131.9, 133.0, 133.8, 134.4, 135.3, 138.8, 144.8, 147.6 (aryl), 160.1 (C=N). 29Si{1H} NMR
(79.5 MHz, DMSO-d6): δ (ppm) ´164.4.

4. Conclusions

The silicon compounds LSiPh2, LSi(Anis)2, LSiPh(4-Me2N-C6H4), LSiPhCl and LSiCl2, with
the dianionic tetradentate (N,N1,N1,N)-chelating ligand obtained from o-phenylenediamine and
pyrrole-2-carbaldehyde, exhibit trans-disposed monodentate substituents and an almost planar
arrangement of the tetradentate chelator. For LSiPh2, LSi(Anis)2 and LSiPh(4-Me2N-C6H4), this
was concluded from the crystal structures, and for LSiPhCl and LSiCl2, the corresponding molecular
structures were predicted by computational methods. With respect to this configurational feature,
the herein presented complexes are related to both the group of hexacoordinate Si-complexes with
salen-type (O,N,N,O)-ligands, which also exhibit trans-arrangement of their monodentate substituents,
and to hexacoordinate Si-complexes with macrocyclic (N,N,N,N)-ligands, such as phthalocyanines
and porphyrines. Moreover, compounds LSiPh2, LSi(Anis)2, LSiPh(4-Me2N-C6H4), LSiPhCl and
LSiCl2 exhibit almost perfect charge delocalization within the pyrrolide/imine chelating moiety, which
results in very similar Si–N bond lengths within one molecule. Whereas this structural feature makes
them appear related to phthalocyanine and prophyrine complexes, the 29Si NMR characteristics (e.g.,
chemical shift range and orientation of the chemical shift anisotropy tensor of LSiPh2) are similar to
those of Si-salen-complexes. Like their salen-chelated relatives, compounds such as LSiPh2 are light
sensitive. In sharp contrast, upon irradiation they do not form distinct rearrangement products like the
related salen-complexes (even though it would be thermodynamically allowed). Moreover, analysis
of the development of bond lengths and natural charges upon altering the monodentate substituents
R and R1 in compounds LSiRR1 indicates that enhanced electron withdrawing effects of R/R1 do not
enhance charge separation between R/R1 and Si but lead to better charge compensation by bond
shortening. This effect is observed for the tetradentate ligand as well. In the case of two different
trans-disposed monodentate substituents (in LSiPh(4-Me2N-C6H4) and LSiPhCl), we have not found
“push-pull effects” of charges (enhanced negative charge of one group at the expense of negative
charge of the other trans-disposed group).

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/4/2/8/s1,
Figures S1–S9 and Tables S1–S9 containing graphical representations and Cartesian coordinates, respectively,
of the optimized molecular structures of LSiPh2, LSi(Anis)2, LSiPh(4-Me2N-C6H4), LSiPhCl, LSiCl2, LPhSiPh,
LAnisSiAnis, LPhSi(4-Me2N-C6H4) and L(4-Me2N-C6H4)SiPh.
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