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Abstract. In this paper we continue the development of a theoretical foundation for efficient primal-dual interior-point
algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are self-scaled

(see [NT97]). The class of problems under consideration includes linear programming, semidefinite programming and convex
quadratically constrained quadratic programming problems. For such problems we introduce a new definition of affine-scaling
and centering directions. We present efficiency estimates for several symmetric primal-dual methods that can loosely be classified
as path-following methods. Because of the special properties of these cones and barriers, two of our algorithms can take steps
that go typically a large fraction of the way to the boundary of the feasible region, rather than being confined to a ball of unit
radius in the local norm defined by the Hessian of the barrier.
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1. Introduction. This paper continues the development begun in [NT97] of a theoretical foundation
for efficient interior-point methods for problems that are extensions of linear programming. Here we concen-
trate on symmetric primal-dual algorithms that can loosely be classified as path-following methods. While
standard form linear programming problems minimize a linear function of a vector of variables subject to
linear equality constraints and the requirement that the vector belong to the nonnegative orthant in n-
dimensional Euclidean space, here this cone is replaced by a possibly non-polyhedral convex cone. Note that
any convex programming problem can be expressed in this conical form.

Nesterov and Nemirovskii [NN94] have investigated the essential ingredients necessary to extend several
classes of interior-point algorithms for linear programming (inspired by Karmarkar’s famous projective-
scaling method [Ka84]) to nonlinear settings. The key element is that of a self-concordant barrier for the
convex feasible region. This is a smooth convex function defined on the interior of the set, tending to
+∞ as the boundary is approached, that together with its derivatives satisfies certain Lipschitz continuity
properties. The barrier enters directly into functions used in path-following and potential-reduction methods,
but, perhaps as importantly, its Hessian at any point defines a local norm whose unit ball, centered at that
point, lies completely within the feasible region. Moreover, the Hessian varies in a well-controlled way in the
interior of this ball.

In [NT97] Nesterov and Todd introduced a special class of self-scaled convex cones and associated
barriers. While they are required to satisfy certain apparently restrictive conditions, this class includes some
important instances, for example the cone of (symmetric) positive semidefinite matrices and the second-
order cone, as well as the nonnegative orthant in Rn. In fact, these cones (and their direct products) are
perhaps the only self-scaled cones interesting for optimization. It turns out that self-scaled cones coincide
with homogeneous self-dual cones as was pointed out by Güler [Gu96] (see also the discussion in [NT97]),
and these have been characterized as being built up via direct products from the cones listed above, cones
of positive semidefinite Hermitian complex and quaternion matrices, and one exceptional cone. However,
for the reasons given in detail at the end of this introduction, we believe that it is simpler to carry out the
analysis and develop algorithms in the abstract setting of self-scaled cones. We maintain the name self-scaled
to emphasize our primary interest in the associated self-scaled barriers.
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For such cones, the Hessian of the barrier at any interior point maps the cone onto its dual cone, and
vice versa for the conjugate barrier. In addition, for any pair of points, one in the interior of the original
(primal) cone and the other in the interior of the dual cone, there is a unique scaling point at which the
Hessian carries the first into the second. Thus there is a very rich class of scaling transformations, which
come from the Hessians evaluated at the points of the cone itself (hence self-scaled).

These conditions have extensive consequences. For our purposes, the key results are the existence of
a symmetric primal-dual scaling and the fact that good approximations of self-scaled barriers and their
gradients extend far beyond unit balls defined by the local norm, and in fact are valid up to a constant
fraction of the distance to the boundary in any direction. Using these ideas [NT97] developed primal
long-step potential-reduction and path-following algorithms as well as a symmetric long-step primal-dual
potential-reduction method.

In this paper we present some new properties of self-scaled cones and barriers that are necessary for
deriving and analyzing primal-dual path-following interior-point methods.

The first part of the paper continues the study of the properties of self-scaled barriers started in [NT97].
In Section 2 we introduce the problem formulation and state the main definitions and our notation. In
Section 3 we prove some symmetry results for primal and dual norms and study the properties of the third
derivative of a self-scaled barrier and the properties of the scaling point. In Section 4 we introduce the
definitions of the primal-dual central path and study different proximity measures. Section 5 is devoted to
generalized affine-scaling and centering directions.

The second part of the paper applies these results to the derivation of short- and long-step symmetric
primal-dual methods that follow the central path in some sense, using some proximity measure. Primal-dual
path-following methods like those of Monteiro and Adler [MA89] and Kojima, Mizuno and Yoshise [KMY89]
are studied in Section 6. These methods follow the path closely using a local proximity measure, and take
short steps. At the end of this section we consider an extension of the predictor-corrector method of Mizuno,
Todd and Ye [MTY90], which uses the affine-scaling and centering directions of Section 5, also relying on
the same proximity measure. This algorithm employs an adaptive step size rule. In Section 7 we present
another predictor-corrector algorithm, a variant of the functional-proximity path-following scheme proposed
by Nesterov [Ne96] for general nonlinear problems. In the case of self-scaled cones the method is based
on the affine-scaling and centering directions. This algorithm uses a global proximity measure and allows
considerable deviation from the central path; thus much longer steps are possible than in the algorithms of
the previous section. Nevertheless, the results here can also be applied to the predictor-corrector method
considered there.

All these methods require O(
√
ν ln(1/ǫ)) iterations to generate a feasible solution with objective function

within ǫ of the optimal value, where ν is a parameter of the cone and barrier corresponding to n for the
nonnegative orthant in Rn. All are variants of methods already known for the standard linear programming
case or for the more general conic case, but we stress the improvements possible because the cone is assumed
self-scaled. For example, for the predictor-corrector methods of the last two sections we can prove that
the predictor step size is at least a constant times the square root of the maximal possible step size along
the affine-scaling direction. Alternatively, it can be bounded from below by a constant times the maximal
possible step size divided by ν1/4. These results were previously unknown even in the context of linear
programming.

In order to motivate our development, let us explain why we carry out our analysis in the abstract
setting of self-scaled cones, rather than restricting ourselves to say semidefinite programming. After all, the
latter context includes linear programming, and, as has been shown by several authors including Nesterov
and Nemirovskii [NN94], convex quadratically constrained quadratic programming. However, in the latter
case, the associated barrier parameter from the semidefinite programming formulation is far larger than it
need be, and the complexity of the resulting algorithm also correspondingly too large. In contrast, using the
second-order (or Lorentz, or ice-cream) cone permits one to employ the appropriate barrier and corresponding
efficient algorithms. The abstract setting of self-scaled cones and barriers allows us to treat each problem with
its natural formulation and barrier. Thus if a semidefinite programming problem has a positive semidefinite
matrix as a variable, and also involves inequality constraints, we do not need to use the slack variables for the
constraints to augment the positive semidefinite matrix and thus deal with block diagonal matrices; instead,
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our variable is just the combination of the original matrix variable and the slack vector, and the self-scaled
cone in which it is constrained to lie is the product of a positive semidefinite cone and a nonnegative orthant of
appropriate dimensions. In this way, it is in fact easier, although more abstract, to work in the more general
setting. Similarly, nonnegative variables are dealt with directly (with the cone the nonnegative orthant),
rather than embedded into the diagonal of a positive semidefinite matrix, so our algorithms apply naturally
to linear programming as well as semidefinite programming, without having to consider what happens when
the appropriate matrices are diagonal. We can also handle more general constraints, such as convex quadratic
inequalities on symmetric positive semidefinite matrices, by using combinations of the positive semidefinite
cone and the second-order cone. Finally, we can write linear transformations in the general form x → Ax,
rather than considering specific forms for semidefinite programming such as X → PXP T ; similar comments
apply to the bilinear and trilinear expressions that arise when dealing with second and third derivatives.
Thus we obtain unified methods and unified analyses for methods that apply to all of these cases directly,
rather than through reformulations; moreover, we see exactly what properties of the cones and the barriers
lead to the desired results and algorithms. We will explain several of our constructions below for the case
of linear or semidefinite programming to aid the reader, but the development will be carried out in the
framework of abstract self-scaled cones for the reasons given above.

In what follows we often refer to different statements of [NN94] and [NT97]. The corresponding references
are indicated by asterisks. An upper-case asterisk in the reference T ∗ (C∗, D∗, P ∗) 1.1.1 corresponds to
the first theorem (corollary, definition, proposition) in the first section of Chapter 1 of [NN94]. A lower-case
asterisk, for example T∗ 1.1 (or (1.1)∗), corresponds to the first theorem (or equation) in Section 1 of [NT97].

2. Problem Formulation and Notation. Let K be a closed convex cone in a finite-dimensional real
vector space E (of dimension at least 1) with dual space E∗. We denote the corresponding scalar product
by 〈s, x〉 for x ∈ E, s ∈ E∗. In what follows we assume that the interior of the cone K is nonempty and that
K is pointed (contains no straight line).

The problem we are concerned with is:

(P) min 〈c, x〉
s.t. Ax = b,

x ∈ K,
(2.1)

where we assume that

A is a surjective linear operator from E to
another finite-dimensional real vector space Y ∗.

(2.2)

Here, b ∈ Y ∗ and c ∈ E∗. The assumption that A is surjective is without loss of generality (else replace Y ∗

with its range).
Define the cone K∗ dual to K as follows:

K∗ := {s ∈ E∗ : 〈s, x〉 ≥ 0, ∀x ∈ K}.

Note that K∗ is also a pointed cone with nonempty interior. Then the dual to problem (P) is (see [ET76]):

(D) max 〈b, y〉
s.t. A∗y + s = c,

s ∈ K∗,
(2.3)

where A∗ denotes the adjoint of A, mapping Y to E∗, and y ∈ Y .
If K is the nonnegative orthant in Rn, then (P) and (D) are the standard-form linear programming

problem and its dual; if K is the cone of positive semidefinite matrices of order n, 〈c, x〉 := Trace (cTx),
and Ax := (〈ak, x〉) ∈ Rm where the ak’s are symmetric matrices of order n, we obtain the standard-
form semidefinite programming problem and its dual; here A∗y is

∑

ykak. In both these cases, K∗ can be
identified with K. The surjectivity assumption requires that the constraint matrix have full row rank in the
first case, and that the ak’s be linearly independent in the second.
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We make the following assumptions about (P) and (D):

S0(P ) := {x ∈ intK : Ax = b} is nonempty,(2.4)

and

S0(D) := {(y, s) ∈ Y × intK∗ : A∗y + s = c} is nonempty.(2.5)

These assumptions imply (see [NN94], T ∗ 4.2.1) that both (P) and (D) have optimal solutions and that their
optimal values are equal, and that the sets of optimal solutions of both problems are bounded (see [Ne96]).
Also, it is easy to see that, if x and (y, s) are feasible in (P) and (D) respectively, then

〈c, x〉 − 〈b, y〉 = 〈s, x〉.

This quantity is the (nonnegative) duality gap.
Our algorithms for (P) and (D) require that the cone K be self-scaled, i.e., admit a self-scaled barrier.

We now introduce the terminology to define this concept.
Let F be a ν-self-concordant logarithmically homogeneous barrier for cone K (see D∗ 2.3.2). Recall that

by definition, F is a self-concordant barrier for K (see D∗ 2.3.1) which for all x ∈ intK and τ > 0 satisfies
the identity:

F (τx) ≡ F (x) − ν ln τ.(2.6)

Since K is a pointed cone, ν ≥ 1 in view of C∗ 2.3.3. The reader might want to keep in mind for the
properties below the trivial example where K is the nonnegative half-line and F the function − ln(·), with
ν = 1. The two main interesting cases are where K is the nonnegative orthant Rn

+ and F the standard

logarithmic barrier function (F (x) := − ln(x) := −
n
∑

j=1

lnx(j)), and where K is the cone Sn
+ of symmetric

positive semidefinite n × n matrices and F the log-determinant barrier function (F (x) := − ln detx); in
both cases, ν = n. In the first case, F ′(x) = −([x(j)]−1), the negative of the vector of reciprocals of the
components of x, with F ′′(x) = X−2, where X is the diagonal matrix containing the components of x; in the
second, F ′(x) = −x−1, the negative of the inverse matrix, while F ′′(x) is the linear transformation defined
by F ′′(x)v = x−1vx−1.

We will often use the following straightforward consequences of (2.6): for all x ∈ intK and τ > 0,

F ′(τx) =
1

τ
F ′(x), F ′′(τx) =

1

τ2
F ′′(x),(2.7)

F ′′(x)x = −F ′(x), F ′′′(x)[x] = −2F ′′(x),(2.8)

〈F ′(x), x〉 = −ν,(2.9)

〈F ′′(x)x, x〉 = ν, 〈F ′(x), [F ′′(x)]−1F ′(x)〉 = ν(2.10)

(see P ∗ 2.3.4).
Let the function F∗ on intK∗ be conjugate to F , namely:

F∗(s) := max{−〈s, x〉 − F (x) : x ∈ K}.(2.11)

In accordance with T ∗ 2.4.4, F∗ is a ν-self-concordant logarithmically homogeneous barrier for K∗. (If
F (x) = − ln(x) for x ∈ intRn

+, F∗(s) = − ln(s) − n, while if F (x) = − ln detx for x ∈ intSn
+, F∗(s) =

− ln det s − n.) We will often use the following properties of conjugate self-concordant barriers for dual
cones: for any x ∈ intK and s ∈ intK∗,

−F ′(x) ∈ intK∗, −F ′
∗(s) ∈ intK,(2.12)
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F∗(−F ′(x)) = 〈F ′(x), x〉 − F (x) = −ν − F (x)(2.13)

(using (2.9)),

F (−F ′
∗(s)) = −ν − F∗(s),(2.14)

F ′
∗(−F ′(x)) = −x, F ′(−F ′

∗(s)) = −s,(2.15)

F ′′(−F ′
∗(s)) = [F ′′

∗ (s)]−1, F ′′
∗ (−F ′(x)) = [F ′′(x)]−1,(2.16)

F (x) + F∗(s) ≥ −ν + ν ln ν − ν ln〈s, x〉,(2.17)

and the last inequality is satisfied as an equality if and only if s = −αF ′(x) for some α > 0 (see P ∗ 2.4.1).
In this paper, as in [NT97], we consider cones and barriers of a rather special type. Let us give our main

definition.
Definition 2.1. Let K be a pointed cone with nonempty interior and let F be a ν-self-concordant

logarithmically homogeneous barrier for cone K. We call F a ν-self-scaled barrier for K if for any w and x
from intK,

F ′′(w)x ∈ intK∗(2.18)

and

F∗(F
′′(w)x) = F (x) − 2F (w) − ν.(2.19)

If K admits such a barrier, we call it a self-scaled cone.
Note that the identity (2.19) has an equivalent form: if x ∈ intK and s ∈ intK∗ then

F ([F ′′(x)]−1s) = F∗(s) + 2F (x) + ν(2.20)

(merely write x for w and [F ′′(x)]−1s for x in (2.19)). Tunçel [Tu96] has given a simpler equivalent form
(using (2.15)): if F ′′(w)x = −F ′(v), then

F (w) = [F (x) + F (v)]/2.

In fact, self-scaled cones coincide with homogeneous self-dual cones (see Güler [Gu96] and the discussion
in [NT97]), but we will maintain the name self-scaled to emphasize our interest in the associated self-scaled
barriers.

One important property of a self-scaled barrier is the existence of scaling points (see T∗ 3.2): for every
x ∈ intK and s ∈ intK∗, there is a unique point w ∈ intK satisfying

F ′′(w)x = s.

For example, when K is the nonnegative orthant in Rn the scaling point w is given by the following compo-
nentwise expression:

w(j) = [x(j)/s(j)]1/2;

when K is the cone of positive semidefinite matrices of order n then

w = x1/2[x1/2sx1/2]−1/2x1/2 = s−1/2(s1/2xs1/2)1/2s−1/2.

In what follows we always assume that cone K is self-scaled and F is a corresponding ν-self-scaled
barrier. Even though we know that we are in a self-dual setting, so that we could identify E and E∗ and
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K and K∗, we prefer to keep the distinction, which allows us to distinguish primal and dual norms merely
by their arguments, and makes sure that our methods are scale-invariant; indeed, it is impossible to write
methods that are not, such as updating x to x − F ′(x) or to x − s, since the points lie in different spaces.
We note that the two examples given above, the logarithmic barrier function for the nonnegative orthant in
Rn and the log-determinant barrier for the cone of symmetric positive semidefinite n×n matrices, are both
self-scaled barriers with parameter n. For example, in the second case we find F ′′(v)x = v−1xv−1 is positive
definite if x and v are, with

F∗(F
′′(v)x) = − ln det(v−1xv−1) − n = − ln detx+ 2 ln det v − n = F (x) − 2F (v) − n,

as desired. In addition, [NT97] shows that the standard barrier for the second-order cone is self-scaled, and
also that the Cartesian product of self-scaled cones is also self-scaled, with associated barrier the sum of
the individual self-scaled barriers on the components; its parameter is just the sum of the parameters of the
individual barriers.

3. Some results for self-scaled barriers. In this section we present some properties of self-scaled
barriers, which complement the results of Sections 3∗ – 5∗. The reader may prefer to skip the proofs at a
first reading.

We will use the following convention in notation: the meaning of the terms ‖ u ‖v, | u |v and σv(u) is
completely defined by the spaces of arguments (which are always indicated explicitly in the text). Thus, if
v ∈ intK then

• ‖ u ‖v means 〈F ′′(v)u, u〉1/2 if u ∈ E, and 〈u, [F ′′(v)]−1u〉1/2 if u ∈ E∗;
• σv(u) := 1

α , where α > 0 is either the maximal possible step (possibly +∞) in the cone K such that
v − αu ∈ K, if u ∈ E, or the maximal possible step in the cone K∗ such that −F ′(v) − αu ∈ K∗, if
u ∈ E∗; equivalently, σv(u) is the minimum nonnegative β such that either βv−u ∈ K, if u ∈ E, or
−βF ′(v) − u ∈ K∗, if u ∈ E∗.

Similarly, if v ∈ intK∗ then
• ‖ u ‖v means 〈u, F ′′

∗ (v)u〉1/2 if u ∈ E∗, and 〈[F ′′
∗ (v)]−1u, u〉1/2 if u ∈ E;

• σv(u) := 1
α , where α > 0 is either the maximal possible step in the cone K∗ such that v−αu ∈ K∗,

if u ∈ E∗, or the maximal possible step in the cone K such that −F ′
∗(v) − αu ∈ K, if u ∈ E;

equivalently, σv(u) is the minimum nonnegative β such that either βv − u ∈ K∗, if u ∈ E∗, or
−βF ′

∗(v) − u ∈ K, if u ∈ E.
In this notation

| u |v:= max{σv(u), σv(−u)}.

For a self-adjoint linear operator B from E to E∗ or vice versa we define its norm as follows: for v ∈ intK
or v ∈ intK∗, let

‖ B ‖v:= max{‖ Bu ‖v: ‖ u ‖v≤ 1},

where u belongs to the domain of B.
Thus if, for example, x ∈ intK, v, z ∈ E, and B : E → E∗, then

〈Bv, z〉 ≤ ‖ Bv ‖x · ‖ z ‖x ≤ ‖ B ‖x · ‖ v ‖x · ‖ z ‖x .(3.1)

Note also that

‖ B ‖x ≤ α ⇔ −αF ′′(x) ≤ B ≤ αF ′′(x).(3.2)

Let us illustrate these definitions when E and E∗ are Rn, and K and K∗ their nonnegative orthants. Let
u.∗v (u./v) denote the vector whose components are the products (ratios) of the corresponding components
of u and v. Then ‖ u ‖v is the 2-norm of u./v if u and v belong to the same space and of u.∗v if they
belong to different spaces; σv(u) is the maximum of 0 and the maximum component of u./v or of u.∗v; and
| u |v is the infinity- or max-norm of the appropriate vector. Suppose next that E and E∗ are spaces of
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symmetric matrices, and K and K∗ their cones of positive semidefinite elements. Writing χ(x) for the vector
of eigenvalues of the matrix x and χmax(x) and χmin(x) for its largest and smallest eigenvalues, we find that
‖ u ‖v is the 2-norm of χ(v−1/2uv−1/2) if both u and v lie in the same space, or of χ(v1/2uv1/2) otherwise.
Similarly, σv(u) is the maximum of 0 and χmax(v

−1/2uv−1/2) or χmax(v
1/2uv1/2), and | u |v is the infinity-

or max-norm of the appropriate vector of eigenvalues. Finally, if B : E → E∗ is defined by Bu := w−1uw−1,
with u and w in E, then for v ∈ E, ‖ B ‖v= max{‖ χ(v1/2w−1uw−1v1/2) ‖2: ‖ χ(v−1/2uv−1/2) ‖2≤ 1} =
max{‖ χ(v1/2w−1v1/2xv1/2w−1v1/2) ‖2: ‖ χ(x) ‖2≤ 1}. It can be seen that our general notation is somewhat
less cumbersome.

Returning to the general case, let us first demonstrate that | · |v is indeed a norm (it is clear that ‖ · ‖v

is):
Proposition 3.1. | · |v defines a norm on E and on E∗, for v in intK or intK∗.
Proof. Without loss of generality, we assume v ∈ intK and that we are considering | · |v defined on

E. From the definition it is clear that each of σv(z) and σv(−z) is positively homogeneous, and hence so is
| · |v. Moreover, clearly | −z |v=| z |v. It is also immediate that σv(z) = 0 if −z ∈ K, and (using the second
definition of σv(z)) that the converse holds also. Thus, since K is pointed, | z |v= 0 iff z = 0. It remains to
show that | · |v is subadditive.

Let βi := σv(zi) for i = 1, 2. Then βiv − zi ∈ K for each i, so that (β1 + β2)v − (z1 + z2) ∈ K, and thus
σv(z1 + z2) ≤ β1 +β2. We conclude that σv(z1 + z2) ≤ σv(z1)+σv(z2) ≤| z1 |v + | z2 |v. This inequality also
holds when we change the signs of the zi’s, and then taking the maximum shows that | · |v is subadditive as
required.

Henceforth, we usually follow the convention that s, t, and u belong to E∗, with s and t in intK∗,
while p, v, w, x, and z belong to E, with x and w in intK. We reserve w for the scaling point such that
F ′′(w)x = s.

3.1. Some symmetry results. Let us prove several symmetry results for the norms defined by a
self-scaled barrier.

Lemma 3.2. a) Let x ∈ intK and s ∈ intK∗. Then for any values of τ and ξ we have:

‖ τx + ξF ′
∗(s) ‖x = ‖ τs+ ξF ′(x) ‖s,(3.3)

‖ τx + ξF ′
∗(s) ‖s = ‖ τs+ ξF ′(x) ‖x .(3.4)

b) For any x, v ∈ intK

‖ v ‖x=‖ F ′(x) ‖v .

Proof. For part (a), let us choose w ∈ K such that s = F ′′(w)x (see T∗ 3.2). Then

F ′(x) = F ′′(w)F ′
∗(s), F ′′(x) = F ′′(w)F ′′

∗ (s)F ′′(w).

Also, let v ∈ E and t := F ′′(w)v ∈ E∗. Then we obtain:

‖ v ‖2
x= 〈F ′′(x)v, v〉 = 〈F ′′(w)F ′′

∗ (s)F ′′(w)v, v〉 = 〈t, F ′′
∗ (s)t〉 =‖ t ‖2

s .

In particular we can take v = τx + ξF ′
∗(s) and then t = τs + ξF ′(x). This proves the first equation; the

second is proved similarly. Part (b) follows from the first equation by taking s = −F ′(v), τ = 0, and ξ = 1.

For semidefinite programming, (3.3) above states that the 2-norm of the vector of eigenvalues of τi −
ξx−1/2s−1x−1/2 = x−1/2(τx− ξs−1)x−1/2 is the same as for τi− ξs−1/2x−1s−1/2 = s−1/2(τs− ξx−1)s−1/2;
(3.7) below says the same for the infinity-norm (here i denotes the identity). This is clear, since the two
matrices are similar and hence have the same eigenvalues. To see the steps of the proof in this setting, recall
that, in this case, the point w is s−1/2(s1/2xs1/2)1/2s−1/2 = x1/2(x1/2sx1/2)−1/2x1/2.

For τ = 1 and ξ = 0, part (a) of the lemma yields (4.1)∗. Note that, for w as above, we also have
‖ τs+ ξF ′(x) ‖w=‖ τx + ξF ′

∗(s) ‖w.
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Lemma 3.3. Let x ∈ intK and s ∈ intK∗. Then for any values of τ and ξ we have:

σx(τx + ξF ′
∗(s)) = σs(τs + ξF ′(x)),(3.5)

σs(τx + ξF ′
∗(s)) = σx(τs+ ξF ′(x)),(3.6)

| τx + ξF ′
∗(s) |x = | τs+ ξF ′(x) |s,(3.7)

| τx + ξF ′
∗(s) |s = | τs+ ξF ′(x) |x .(3.8)

Proof. Again choose w ∈ K such that s = F ′′(w)x (see T∗ 3.2). Then F ′(x) = F ′′(w)F ′
∗(s). Then in

view of T∗ 3.1 (iii), the inclusion

x− α(τx + ξF ′
∗(s)) ∈ K

is true for some α ≥ 0 if and only if

s− α(τs + ξF ′(x)) ∈ K∗.

This proves (3.5); the proof of the (3.6) is similar. Then (3.7) and (3.8) follow from these.
Again, for w as above, we have also | τs+ ξF ′(x) |w=| τx + ξF ′

∗(s) |w.
Let us prove now some relations among the σ-measures for x, s, and the scaling point w. (The result

below is referred to in the penultimate paragraph of Section 8 of [NT97].)
Lemma 3.4. Let x ∈ intK and s ∈ intK∗, and define w as the unique point in intK such that

F ′′(w)x = s. Then

σs(−F ′(x)) = σx(−F ′
∗(s)) = σx(w)2 = σw(−F ′(x))2 = σs(−F ′(w))2 = σw(−F ′

∗(s))
2,

σs(x) = σx(s) = σw(x)2 = σx(−F ′(w))2 = σw(s)2 = σs(w)2.

Proof. Let us prove the first sequence of identities. The equality of σs(−F ′(x)) and σx(−F ′
∗(s)) follows

from Lemma 3.3, as does that of σx(w) and σw(−F ′(x)) and that of σs(−F ′(w)) and σw(−F ′
∗(s)). Moreover,

the proof of σx(w) = σs(−F ′(w)) is exactly analogous. It remains to show that σx(−F ′
∗(s)) = σx(w)2. Let

us write z := −F ′
∗(s) and abbreviate σx(w) to σ. Since x and w lie in intK, σ is positive and finite, and

σx− w ∈ ∂K.

We want to show that

σ2x− z = σ(σx − w) + (σw − z) ∈ ∂K

also.
We saw above that σ = σw(z), so σw − z ∈ ∂K and thus σ2x − z ∈ K. We need to show that it

lies in the boundary of K. Because σx − w ∈ ∂K, there is some u ∈ ∂K∗ with 〈u, σx − w〉 = 0. Let
v := [F ′′(w)]−1u ∈ ∂K, so that

〈F ′′(w)v, σx − w〉 = 0,

i.e., v and σx−w are orthogonal with respect to w (see Section 5 of [NT97]). We aim to show that v is also
orthogonal to σw − z with respect to w, so that it is orthogonal to σ2x− z and thus the latter lies in ∂K.

By L∗ 5.1, v and σx − w are also orthogonal with respect to w(α) := w + α(σx − w) for any α ≥ 0.
Hence we find 〈F ′′(w(α))(σx − w), v〉 = 0 for all α ≥ 0, which implies

〈F ′(σx) − F ′(w), v〉 = 〈
∫ 1

0

F ′′(w(α))(σx − w)dα, v〉 = 0.
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This gives

〈F ′′(w)v, σw − z〉 = 〈F ′′(w)v, σw + F ′
∗(s)〉

= 〈F ′′(w)v, [F ′′(w)]−1(F ′(x) − σF ′(w)〉
= σ〈F ′(σx) − F ′(w), v〉 = 0,

where the last equation used (2.7). Hence σ2x − z = σ(σx − w) + (σw − z) is orthogonal to v with respect
to w, and thus lies in ∂K as desired.

The proof of the second line of identities is similar.
In the semidefinite programming case, the lemma says that the maximum eigenvalue of s−1/2x−1s−1/2

is equal to that of x−1/2s−1x−1/2, and that this is the square of the maximum eigenvalue of x−1/2wx−1/2 =
(x1/2sx1/2)−1/2.

3.2. Inequalities for norms. We have the following relationship between the two norms defined at a
point.

Proposition 3.5. For a ∈ E or E∗ and for b ∈ intK or intK∗ we have

| a |b≤‖ a ‖b≤ ν1/2 | a |b .

Proof. Since all the cases are similar, we assume a ∈ E and b ∈ intK. The first inequality follows from
(4.5)∗. For the second, suppose that b+ αa and b − αa ∈ K for some α > 0. Then

ν − α2 ‖ a ‖2
b= 〈F ′′(b)b, b〉 − α2〈F ′′(b)a, a〉 = 〈F ′′(b)(b − αa), b+ αa〉 ≥ 0,

so that ‖ a ‖b≤ ν1/2/α. Hence this holds for the supremum of all such α’s, which gives the right-hand
inequality.

We now give a result that relates the norms at two neighboring points. (Compare with Theorem 3.8
below.) Note that the outer bounds in (3.9) and (3.10) are valid for general self-concordant functions under
the much stronger assumption that ‖ x̃− x ‖x≤ δ < 1 (see T ∗ 2.1.1).

Theorem 3.6. Suppose x and x̃ lie in intK with | x̃ − x |x≤ δ < 1. Also, let p := x − x̃, so that
p+ := σx(p) ≤ δ and p− := σx(−p) ≤ δ. Then, for any v ∈ E and u ∈ E∗, we have

(1 + δ)−1 ‖ v ‖x ≤ (1 + p−)−1 ‖ v ‖x ≤ ‖ v ‖x̃ ≤ (1 − p+)−1 ‖ v ‖x ≤ (1 − δ)−1 ‖ v ‖x,(3.9)

(1 − δ) ‖ u ‖x ≤ (1 − p+) ‖ u ‖x ≤ ‖ u ‖x̃ ≤ (1 + p−) ‖ u ‖x ≤ (1 + δ) ‖ u ‖x,(3.10)

(1 + δ)−1 | v |x ≤ (1 + p−)−1 | v |x ≤ | v |x̃ ≤ (1 − p+)−1 | v |x ≤ (1 − δ)−1 | v |x,(3.11)

(1 − δ) | u |x ≤ (1 − p−) | u |x ≤ | u |x̃ ≤ (1 + p+) | u |x ≤ (1 + δ) | u |x .(3.12)

Proof. The inequalities in (3.9) and (3.10) follow directly from T∗ 4.1. For (3.11), suppose first that
0 < α < 1/σx(v). Then x− αv lies in K, and hence

(1 − p+)x− α(1 − p+)v ∈ K.

Also,

−(1 − p+)x+ x̃ = p+x− (x− x̃) ∈ K,

so that x̃ − α(1 − p+)v ∈ K and 1/σx̃(v) ≥ α(1 − p+). Since 0 < α < 1/σx(v) was arbitrary, we have
σx̃(v) ≤ (1 − p+)−1σx(v), and because this holds also for −v, we conclude that

| v |x̃≤ (1 − p+)−1 | v |x .
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Similarly, if 0 < α < 1/σx̃(v), then x̃− αv, and hence

(1 + p−)−1x̃− α(1 + p−)−1v ∈ K.

Also,

(1 + p−)x− x̃ = p−x+ (x− x̃) ∈ K,

so x − (1 + p−)−1x̃ ∈ K and thus x − α(1 + p−)−1v ∈ K. We conclude that 1/σx(v) ≥ α(1 + p−)−1 and
hence σx̃(v) ≥ (1 + p−)−1σx(v). Since this holds also for −v, we obtain

| v |x̃≥ (1 + p−)−1 | v |x,

finishing the proof of (3.11).
Now (3.5) in Lemma 3.3 with s := −F ′(x̃) shows that

σx̃(F ′(x) − F ′(x̃)) = p+, σx̃(−F ′(x) + F ′(x̃)) = p−,

so (3.12) follows from (3.11) by replacing v, x, and x̃ with u, −F ′(x̃), and −F ′(x) respectively.

3.3. Properties of the third derivative. Let us establish now some properties of the third derivative
of the self-scaled barrier. Let x ∈ intK and p1, p2, p3 ∈ E. Then

F ′′′(x)[p1, p2, p3] = (〈F ′′(x+ αp3)p1, p2〉)′α=0 .

Note that the third derivative is a symmetric trilinear form. We denote by F ′′′(x)[p1, p2] a vector from E∗

such that

F ′′′(x)[p1, p2, p3] = 〈F ′′′(x)[p1, p2], p3〉

for any p3 ∈ E. Similarly, F ′′′(x)[p1] is a linear operator from E to E∗ such that

F ′′′(x)[p1, p2, p3] = 〈F ′′′(x)[p1]p2, p3〉

for any p2, p3 ∈ E.
In the semidefinite programming case, F ′′′(x)[p1, p2] is the matrix −x−1p1x

−1p2x
−1 − x−1p2x

−1p1x
−1.

The results below are based on the following important property.
Lemma 3.7. For any x ∈ intK and p ∈ E

‖ F ′′′(x)[p] ‖x≤ 2 | p |x .(3.13)

Proof. Without loss of generality, we can assume that | p |x= 1. Then x+ p ∈ K and x− p ∈ K.
Note that in view of C∗ 3.2 (i), the operator F ′′′(x)[v] is negative semidefinite for any v ∈ K. Therefore,

F ′′′(x)[p] = F ′′′(x)[(x + p) − x] = 2F ′′(x) + F ′′′(x)[x + p] ≤ 2F ′′(x).

Similarly,

F ′′′(x)[p] = F ′′′(x)[x − (x− p)] = −2F ′′(x) − F ′′′(x)[x − p] ≥ −2F ′′(x)

and (3.13) follows.
Using the lemma above we can obtain some useful inequalities.
Theorem 3.8. For any x ∈ intK and p1, p2 ∈ E the following inequalities hold:

‖ F ′′′(x)[p1, p2] ‖x≤ 2 | p1 |x · ‖ p2 ‖x .(3.14)
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Moreover, if v = x− p1 ∈ intK then

‖ (F ′′(v) − F ′′(x))p2 ‖x≤
2 − σx(p1)

(1 − σx(p1))2
‖ p1 ‖x · | p2 |x .(3.15)

Proof. The proof of (3.14) immediately follows from (3.13) and (3.1). Let us prove (3.15).
In view of (3.14), Theorem 3.6 and T∗ 4.1 we have:

‖ (F ′′(v) − F ′′(x)) p2 ‖x=‖
1

∫

0

F ′′′(x− τp1)[p1, p2]dτ ‖x≤
1

∫

0

‖ F ′′′(x− τp1)[p1, p2] ‖x dτ

≤
1

∫

0

‖ F ′′′(x − τp1)[p1, p2] ‖x−τp1

1 − τσx(p1)
dτ ≤

1
∫

0

2

1 − τσx(p1)
‖ p1 ‖x−τp1 · | p2 |x−τp1 dτ

≤‖ p1 ‖x · | p2 |x
1

∫

0

2dτ

(1 − τσx(p1))3
=

2 − σx(p1)

(1 − σx(p1))2
‖ p1 ‖x · | p2 |x .

Note that from (3.14) for any p3 ∈ E we have:

| F ′′′(x)[p1, p2, p3] |≤ 2 | p1 |x · ‖ p2 ‖x · ‖ p3 ‖x .(3.16)

This inequality highlights the difference between self-scaled barriers and arbitrary self-concordant functions;
see D∗ 2.1.1 and its seemingly more general consequence in T ∗ 2.1.1, which is (3.16) but with | p1 |x replaced
by ‖ p1 ‖x.

We will need also a kind of “parallelogram rule” for the self-scaled barrier. Let us prove first two simple
lemmas.

Lemma 3.9. Let x, v ∈ intK. Then

[F ′′(v)]−1F ′(x) = 1
2 [F ′′(x)]−1F ′′′(x)[v, v].(3.17)

Proof. Let s = −F ′(v). Then, in view of Lemma 3.2(a) we have

〈F ′′
∗ (s)F ′(x), F ′(x)〉 ≡ 〈F ′′(x)F ′

∗(s), F
′
∗(s)〉.

By differentiating this identity with respect to x we get

2F ′′(x)F ′′
∗ (s)F ′(x) ≡ F ′′′(x)[F ′

∗(s), F
′
∗(s)].

And that is exactly (3.17) since

F ′
∗(s) = −v, F ′′

∗ (s) = [F ′′(v)]−1

using (2.15) and (2.16).
Lemma 3.10. Let x ∈ intK and s ∈ intK∗. Then

F∗(s+ τF ′(x)) + F (x) ≡ F∗(s) + F (x+ τF ′
∗(s))(3.18)

for any τ such that s+ τF ′(x) ∈ intK∗.
Proof. We simply note that

s+ τF ′(x) = F ′′(w)(x + τF ′
∗(s)),
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where w ∈ intK is such that s = F ′′(w)x. Therefore (3.18) immediately follows from (2.19).
(We note that this lemma was proved for the universal barrier of K by Rothaus in Theorem 3.8 of [Ro60].)

Now we can prove the following important theorem.
Theorem 3.11. Let x ∈ intK, p ∈ E, and the positive constants α and β be such that x − αp ∈ intK

and x+ βp ∈ intK. Then

F (x− αp) + F (x+ βp) = F (x) + F
(

x+ (β − α)p+ 1
2αβ[F ′′(x)]−1F ′′′(x)[p, p]

)

.

Proof. Denote

v = x+ (β − α)p+ 1
2αβ[F ′′(x)]−1F ′′′(x)[p, p], x1 = x− αp, x2 = x+ βp.

Then in view of (2.8) and Lemma 3.9

v = x+ (β − α)p+ α
2 [F ′′(x)]−1F ′′′(x)[p, x2 − x]

= x2 + α
2 [F ′′(x)]−1F ′′′(x)[p, x2]

= x2 + α
2β [F ′′(x)]−1F ′′′(x)[(x2 − x, x2]

=
(

1 + α
β

)

x2 + α
2β [F ′′(x)]−1F ′′′(x)[x2, x2]

=
(

1 + α
β

)

x2 + α
β [F ′′(x2)]

−1F ′(x)

= [F ′′(x2)]
−1

[

−
(

1 + α
β

)

F ′(x2) + α
βF

′(x)
]

Now, let s = −F ′(x2). Then, in view of (2.20), (2.6) and Lemma 3.10 we have:

F (v) = F
(

[F ′′(x2)]
−1

[(

1 + α
β

)

s+ α
βF

′(x)
])

= F∗

((

1 + α
β

)

s+ α
βF

′(x)
)

+ 2F (x2) + ν

= F∗

(

s+ α
α+βF

′(x)
)

+ 2F (x2) + ν + ν ln β
α+β

= −F (x) + F∗(s) + F
(

x− α
α+βx2

)

+ 2F (x2) + ν + ν ln β
α+β

= −F (x) + F
(

βx−αβp
α+β

)

+ F (x2) + ν ln β
α+β

= −F (x) + F (x1) + F (x2).

Of course, here we have assumed that the appropriate points lie in the domains of F and F∗. But x1 =
x− αp ∈ intK implies

x− α

α+ β
x2 =

βx− αβp

α+ β
∈ intK.

Hence, using w with F ′′(w)x = s, we find

s+
α

α+ β
F ′(x) and hence (1 +

α

β
)s+

α

β
F ′(x) ∈ intK∗.

This shows v ∈ intK, and hence all the terms above are well defined.

3.4. Some properties of the scaling point. In this section we prove some relations for x ∈ intK,
s ∈ intK∗, and the scaling point w ∈ intK such that F ′′(w)x = s.

Denote by µ(x, s) the normalized duality gap:

µ(x, s) :=
1

ν
〈s, x〉.

Lemma 3.12. Let w̄ :=
√

µ(x, s)w, x̄ := x/
√

µ(x, s). Then

2(F (x) − F (w̄)) ≡ F (x) + F∗(s) + ν lnµ(x, s) + ν ≥ 0,(3.19)
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2[F (x) − F (w̄)] ≥‖ x̄− w ‖2
w=‖ w̄ − x ‖2

w̄,(3.20)

2[F (x) − F (w̄)] ≤ [µ(x, s)〈F ′(x), F ′
∗(s)〉 − ν]− ‖ w̄ − x ‖2

x .(3.21)

Proof. Denote µ = µ(x, s). Then,

F (w̄) = F (w) − 1
2ν lnµ = 1

2 [F (x) − F∗(s) − ν − ν lnµ].

(We have used (2.6) and (2.19).) Therefore, in view of (2.17) we obtain:

2(F (x) − F (w̄)) = F (x) + F∗(s) + ν lnµ+ ν ≥ 0.

Further, from (2.9) and the convexity of F , we have:

‖ x̄− w ‖2
w=

1

µ
〈s, x〉 +

2√
µ
〈F ′(w), x〉 + ν

= 2[ν + 〈F ′(w̄), x〉] = 2〈F ′(w̄), x− w̄〉 ≤ 2(F (x) − F (w̄)),

which gives (3.20); the equation is trivial by (2.7).

Finally, note that in view of Lemma 3.2(b), we have:

‖ w̄ − x ‖2
x = µ〈F ′′(x)w,w〉 + 2〈F ′(x), w̄〉 + ν

= µ〈F ′(x), [F ′′(w)]−1F ′(x)〉 + 2〈F ′(x), w̄〉 + ν
= [µ〈F ′(x), F ′

∗(s)〉 − ν] + 2(〈F ′(x), w̄〉 + ν).

Therefore, using the convexity of F (x), we get

2(F (x) − F (w̄)) ≤ 2〈F ′(x), x − w̄〉 = −2(〈F ′(x), w̄〉 + ν),

and (3.21) follows.

Let t := −F ′(w), so that F ′′
∗ (t) = [F ′′(w)]−1 takes s into x. We next relate F ′′(w) to F ′′(x) and F ′′

∗ (t)
to F ′′

∗ (s):

Lemma 3.13. Suppose we have δ :=| s/µ+ F ′(x) |x< 1 for some µ > 0. Then

(1 − δ)F ′′(x) ≤ F ′′(w)/µ ≤ (1 + δ)F ′′(x),
(1 − δ)F ′′

∗ (s) ≤ F ′′
∗ (t)/µ ≤ (1 + δ)F ′′

∗ (s).
(3.22)

Proof. Let v := −F ′
∗(s) and u := −F ′(x). We will use C∗ 4.1 to prove our result, so we need bounds

on σv(x), σx(v), σu(s), and σs(u). Since x, v ∈ intK and s, u ∈ intK∗, these are all positive, and we have
using Lemma 3.3

[σv(x)]−1 = [σu(s)]−1

= sup{α : −F ′(x) − αs ∈ K∗}
= sup{α : (1 − αµ)(−F ′(x)) − αµ(s/µ+ F ′(x)) ∈ K∗}.

Now for α < [µ(1 + δ)]−1, αµ < 1 and [αµ/(1 − αµ)]δ < 1, so using δ :=| s/µ + F ′(x) |x we have
−F ′(x) − [αµ/(1 − αµ)](s/µ+ F ′(x)) ∈ K∗. Thus [σv(x)]−1 ≥ [µ(1 + δ)]−1, or

σv(x) = σu(s) ≤ µ(1 + δ).(3.23)
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Similarly,

[σx(v)]−1 = [σs(u)]
−1

= sup{α : s+ αF ′(x) ∈ K}
= sup{α : (µ− α)(−F ′(x)) + µ(s/µ+ F ′(x)) ∈ K∗}.

Now for α < µ(1 − δ), α < µ and [µ/(µ − α)]δ < 1, so using δ :=| s/µ+ F ′(x) |x again we have −F ′(x) +
[µ/(µ− α)](s/µ+ F ′(x)) ∈ K∗. Thus [σx(v)]−1 ≥ µ(1 − δ), or

σx(v) = σs(u) ≤ [µ(1 − δ)]−1.(3.24)

Then (3.23) and (3.24) imply (3.22) by C∗ 4.1(iii).
Corollary 3.14. Under the conditions of the lemma, for all v ∈ E, u ∈ E∗, we have

‖ [F ′′(w)/µ− F ′′(x)]v ‖x ≤ δ ‖ v ‖x,(3.25)

‖ [F ′′
∗ (t)/µ− F ′′

∗ (s)]u ‖s ≤ δ ‖ u ‖s .(3.26)

Proof. This follows from the lemma and (3.2).

4. Primal-Dual Central Path and Proximity Measures. In this section we consider general
primal-dual proximity measures. These measures estimate the distance from a primal-dual pair (x, s) ∈
intK × intK∗ to the nonlinear surface of “analytic centers”

A := {(x, s) ∈ intK × intK∗ : s = −µF ′(x), µ > 0}.

(The intersection of the Cartesian product of this surface with Y and the strictly feasible set of the primal-
dual problem (2.1)-(2.3), S0(P ) × S0(D), is called the primal-dual central path.) Note that these general
proximity measures do not involve at all the specific information about our problem (2.1), namely the
objective vector c, the operator A and the right-hand-side b.

Let us introduce first the notion of the central path and give the main properties of this trajectory. In
what follows we assume that Assumptions (2.4) and (2.5) are satisfied.

Define the primal central path {x(µ) : µ > 0} for the problem (2.1) as follows:

x(µ) = argmin
x

{

1

µ
〈c, x〉 + F (x) : Ax = b, x ∈ K

}

.(4.1)

The dual central path {(y(µ), s(µ)) : µ > 0} for the dual problem (2.3) is defined in a symmetric way:

(y(µ), s(µ)) = argmin
y,s

{

− 1

µ
〈b, y〉 + F∗(s) : A∗y + s = c, y ∈ Y, s ∈ K∗

}

.(4.2)

The primal-dual central path for the primal-dual problem

min 〈c, x〉 − 〈b, y〉
s.t. Ax = b,

A∗y + s = c,
x ∈ K, y ∈ Y, s ∈ K∗,

(4.3)

is simply the combination of these paths:

{v(µ) = (x(µ), y(µ), s(µ)) : µ > 0}.

Let us present now the duality theorem (see [Ne96]).
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Theorem 4.1.

a) For any ξ > 0 the set

Q(ξ) = {v = (x, y, s) : Ax = b, A∗y + s = c, 〈c, x〉 − 〈b, y〉 = ξ, x ∈ K, y ∈ Y, s ∈ K∗}

is nonempty and bounded. The optimal set of the problem (4.3) is also nonempty and bounded.
b) The optimal value of the problem (4.3) is zero.
c) The points of the primal-dual central path are well defined and for any µ > 0 the following relations

hold:

〈c, x(µ)〉 − 〈b, y(µ)〉 = 〈s(µ), x(µ)〉 = νµ,(4.4)

F (x(µ)) + F∗(s(µ)) = −ν − ν lnµ,(4.5)

s(µ) = −µF ′(x(µ)),(4.6)

x(µ) = −µF ′
∗(s(µ)).(4.7)

For linear programming, where K is the nonnegative orthant in E := Rn, (4.6) and (4.7) state that the
componentwise product of x and s is µ times the vector of ones in Rn. For semidefinite programming, where
K is the cone of positive semidefinite matrices in the space E of symmetric matrices of order n, they state
that the matrix product of x and s is µ times the identity matrix of order n.

The relations of part (c) of the theorem explain the construction of all general primal-dual proximity
measures: most of them measure in a specific way the residual

1

µ
s+ F ′(x)

with µ = µ(x, s), where

µ(x, s) :=
1

ν
〈s, x〉.

In our paper we will consider two groups of primal-dual proximity measures. The first group consists of
the following global proximity measures:

• the functional proximity measure

γF (x, s) := F (x) + F∗(s) + ν lnµ(x, s) + ν,(4.8)

• the gradient proximity measure

γG(x, s) := µ(x, s)〈F ′(x), F ′
∗(s)〉 − ν,(4.9)

• the uniform proximity measure

γ∞(x, s) := µ(x, s)σs(−F ′(x)) − 1 = µ(x, s)σx(−F ′
∗(s)) − 1(4.10)

(see Lemma 3.3).
The second group is comprised of the local proximity measures:

λ∞(x, s) :=| 1

µ(x, s)
s+ F ′(x) |x=| 1

µ(x, s)
x+ F ′

∗(s) |s(4.11)
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(see Lemma 3.3),

λ+
∞(x, s) :=

σs(x)

µ(x, s)
− 1 =

σx(s)

µ(x, s)
− 1,(4.12)

(see Lemma 3.3 and compare with (4.10)),

λ2(x, s) :=‖ 1

µ(x, s)
s+ F ′(x) ‖x=‖ 1

µ(x, s)
x+ F ′

∗(s) ‖s(4.13)

(see Lemma 3.2(a)), and

λ(x, s) :=

[

ν − ν2µ2(x, s)

‖ s ‖2
x

]1/2

=

[

ν − ν2µ2(x, s)

‖ x ‖2
s

]1/2

(4.14)

(see Lemma 3.2(a)). The proof of Theorem 4.2 below shows that λ(x, s) is well-defined. We will see later
that the value of any global proximity measure can be used as an estimate for the distance to the primal-dual
central path at any strictly feasible primal-dual point. The value of a local proximity measure has a sense
only in a small neighborhood of the central path.

For comparison with the standard proximity measures developed in linear and semidefinite programming,
let us present the specific form of the above proximity measures for the cases K = Rn

+ and K = Sn
+, where

i denotes the identity matrix:

γF (x, s) = −
n
∑

j=1

ln
(

x(j)s(j)
)

+ n ln
(

xT s
n

)

, − ln detx− ln det s+ n ln Trace (x1/2sx1/2)
n ,

γG(x, s) = xT s
n

n
∑

j=1

1
x(j)s(j) − n, Trace (x1/2sx1/2)Trace (x−1/2s−1x−1/2)

n − n,

γ∞(x, s) = xT s
n min

1≤j≤n
x(j)s(j) − 1, Trace (x1/2sx1/2)

nχmin(x1/2sx1/2)
− 1,

λ∞(x, s) = ‖ n
xT sXs− e ‖∞, ‖ x1/2sx1/2

Trace (x1/2sx1/2)/n
− i ‖2,

λ+
∞(x, s) = n

xT s max
1≤j≤n

x(j)s(j) − 1, χmax(
x1/2sx1/2

Trace (x1/2sx1/2)/n
− i),

λ2(x, s) = ‖ n
xT sXs− e ‖2, ‖ x1/2sx1/2

Trace (x1/2sx1/2)/n
− i ‖F ,

λ(x, s) =









n−

(

n
∑

j=1

x(j)s(j)

)2

n
∑

j=1

(x(j)s(j))2









1/2

,
[

n− [Trace (x1/2sx1/2)]2

‖x1/2sx1/2‖2
F

]1/2

.

Thus level sets of λ2, λ∞, and γ∞ correspond respectively to the 2-norm, infinity-norm, and “minus-infinity-
norm” neighborhoods of the central path used in interior-point methods for linear programming. Also, γF is
the Tanabe-Todd-Ye primal-dual potential function with parameter n. (We have written these measures for
semidefinite programming in a symmetric way that stresses the similarity to linear programming. However,
simpler formulae should be used for computation; for example, Trace (x1/2sx1/2) = Trace (xs), and the
eigenvalues of x1/2sx1/2 are the same as those of lT sl, where llT is the Cholesky factorization of x.)

Now we return to the general case.
Remark 4.1. 1. Note that the gradient proximity measure can be written as a squared norm of the

vector 1
µ(x,s)s+ F ′(x). Indeed, let us choose w ∈ intK such that s = F ′′(w)x (this is possible in view of T∗

3.2). Then F ′(x) = F ′′(w)F ′
∗(s). Therefore (writing µ for µ(x, s) for simplicity)

〈 1

µ
s+ F ′(x), [F ′′(w)]−1

(

1

µ
s+ F ′(x)

)

〉

=
1

µ2
〈s, [F ′′(w)]−1s〉 +

2

µ
〈F ′(x), [F ′′(w)]−1s〉 + 〈F ′(x), [F ′′(w)]−1F ′(x)〉
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=
ν

µ
− 2ν

µ
+ 〈F ′(x), F ′

∗(s)〉 =
γG(x, s)

µ

Thus,

γG(x, s) = µ(x, s) ‖ 1

µ(x, s)
s+ F ′(x) ‖2

w= µ(x, s) ‖ 1

µ(x, s)
x+ F ′

∗(s) ‖2
w .(4.15)

2. There is an interesting relation between λ∞, λ+
∞ and γ∞:

λ∞(x, s) = max

{

λ+
∞(x, s),

γ∞(x, s)

1 + γ∞(x, s)

}

.

Note that all the proximity measures we have introduced are homogeneous of degree zero (indeed,
separately in x and s). Let us prove some relations between these measures.

Theorem 4.2. Let x ∈ intK and s ∈ intK∗. Then

λ+
∞(x, s) ≤ λ∞(x, s) ≤ λ2(x, s) ≤ ν1/2λ∞(x, s),(4.16)

γF (x, s) ≤ ν ln

(

1 +
1

ν
γG(x, s)

)

≤ γG(x, s),(4.17)

γ2
∞(x, s)

1 + γ∞(x, s)
≤ γG(x, s) ≤ νγ∞(x, s),(4.18)

λ2(x, s) − ln(1 + λ2(x, s)) ≤ γF (x, s),(4.19)

λ(x, s) ≤ λ2(x, s),(4.20)

γG(x, s) ≤ λ2
2(x, s)(1 + γ∞(x, s)).(4.21)

Moreover, if λ∞(x, s) < 1 then

γ∞(x, s) ≤ λ∞(x, s)

1 − λ∞(x, s)
(4.22)

and therefore

γF (x, s) ≤ γG(x, s) ≤ λ2
2(x, s)

1 − λ∞(x, s)
.(4.23)

Proof. The fact that λ∞(x, s) ≤ λ2(x, s) ≤ ν1/2λ∞(x, s) follows from Proposition 3.5. In order to prove
the inequality λ+

∞(x, s) ≤ λ∞(x, s) we simply note that

σx(s/µ(x, s)) = 1 + σx(s/µ(x, s) + F ′(x)).

Let us prove inequality (4.17). We have:

γF (s, x) = F (x) + F∗(s) + ν lnµ(x, s) + ν (in view of (4.8))
= −F∗(−F ′(x)) − F (−F ′

∗(s)) + ν lnµ(x, s) − ν (using (2.13) and (2.14))
≤ ν ln〈F ′(x), F ′

∗(s)〉 + ν lnµ(x, s) − ν ln ν (see (2.17))
= ν ln

(

1 + 1
ν γG(x, s)

)

(see (4.9))
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and we get (4.17).
Next observe that, since all our proximity measures are homogeneous, we can assume for the rest of the

proof that

µ(x, s) = 1.(4.24)

Thus, using (4.24) and (4.4)∗, we get

γG(x, s) = 〈F ′(x), F ′
∗(s)〉 − ν ≤ ν(σx(−F ′

∗(s)) − 1) = νγ∞(x, s),

which is exactly the right-hand inequality of (4.18). To prove the left-hand inequality, note that

γG(x, s) = ‖ x+ F ′
∗(s) ‖2

w (by (4.15))
≥ ‖ x+ F ′

∗(s) ‖2
x /σ

2
x(w) (by C∗ 4.1)

≥ | x+ F ′
∗(s) |2x /σx(−F ′

∗(s)) (by Lemma 3.4 and Proposition 3.5)
≥ | x+ F ′

∗(s) |2x /(1 + γ∞(x, s)) (by the definition of γ∞(x, s))
≥ σ2

x(−x− F ′
∗(s))/(1 + γ∞(x, s))

= γ2
∞(x, s)/(1 + γ∞(x, s)).

Note that the functional proximity measure is nonnegative in view of (2.17). Let us fix s and consider
the function

φ(v) := F (v) + F∗(s) + 〈s, v − x〉 + ν.

Note that φ(v) ≥ γF (v, s) for any v ∈ intK and φ(x) = γF (x, s). Note also that φ(v) is a strictly self-
concordant function. Therefore, from P ∗ 2.2.2, we have:

φ(v̄) ≤ φ(x) − [λφ(x) − ln(1 + λφ(x))],

where

v̄ := x− 1

λφ(x)
[φ′′(x)]−1φ′(x),

and λφ(x) := 〈φ′(x), [φ′′(x)]−1φ′(x)〉1/2. Since φ(v̄) ≥ γF (v̄, s) ≥ 0 and λφ(x) = λ2(x, s), we get (4.19).
Further,

λ2
2(x, s) = 〈s+ F ′(x), [F ′′(x)]−1(s+ F ′(x))〉 = 〈s, [F ′′(x)]−1s〉 − ν

(see (2.8) and (4.24)). Therefore λ(x, s) is well-defined and we have

λ2
2(x, s) =

νλ2(x, s)

ν − λ2(x, s)
≥ λ2(x, s)(4.25)

which gives (4.20).
Let us now prove inequality (4.21). Let w be such that s = F ′′(w)x. In view of (4.15) and (4.24)

γG(x, s) = 〈s+ F ′(x), [F ′′(w)]−1 (s+ F ′(x))〉.(4.26)

Using inequality (4.7)∗ in C∗ 4.1, we have

F ′′(w) ≥ 1

σx(−F ′
∗(s))

F ′′(x).(4.27)

Note that σx(−F ′
∗(s)) = 1 + γ∞(x, s). Therefore, combining (4.26), (4.27) and (4.13) we come to (4.21).

Let λ = λ∞(x, s) < 1. This implies that for p = s+ F ′(x) we have −λF ′(x) + p ∈ K∗. Hence

s+ (1 − λ)F ′(x) ∈ K∗.
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This means that

1

σs(−F ′(x))
≥ 1 − λ.

Therefore

γ∞(x, s) = σs(−F ′(x)) − 1 ≤ λ

1 − λ

and inequality (4.22) is proved.
The remaining inequality (4.23) is a direct consequence of (4.17), (4.21) and (4.22).
From (2.17) we know that γF (x, s) is nonnegative, and λ(x, s) is nonnegative by definition. Also, if

σ := σx(s), then −σF ′(x) − s ∈ K∗, so νσ − 〈s, x〉 = 〈−σF ′(x) − s, x〉 ≥ 0, which implies that λ+
∞ =

σ/µ(x, s) − 1 ≥ 0. Hence the theorem shows that all the measures are nonnegative. Now suppose that
s = −µ(x, s)F ′(x) (or equivalently that x = −µ(x, s)F ′

∗(s)). Then γ∞(x, s) and λ∞(x, s) are zero, and hence
all the measures are zero. Indeed, if any one of the measures is zero, we have s = −µ(x, s)F ′(x) and hence
all of the measures are zero. This follows from the conditions for equality in (2.17) for γF (x, s), and hence
for all the global measures. It holds trivially for all the local measures except for λ+

∞(x, s) and λ(x, s). If
λ+
∞(x, s) = 0, then as above σ := σx(s) = µ(x, s) and 〈−σF ′(x) − s, x〉 = 0. But since x ∈ intK and

−σF ′(x) − s ∈ K∗, we find s+ µ(x, s)F ′(x) = s+ σF ′(x) = 0. If λ(x, s) is zero, so is λ2(x, s) by (4.25).
Observe that (4.18) provides a very simple proof of T∗ 5.2. Indeed, in our present notation, we need to

show that (using Lemma 3.4)

γG(x, s) ≥ 3

4
µ(x, s)σ2

x(w) − 1 =
3

4
µ(x, s)σx(−F ′

∗(s)) − 1 =
3

4
γ∞(x, s) − 1

4
.(4.28)

But this follows directly from (4.18) since γ2/(1 + γ) ≥ (3γ − 1)/4 for any γ ≥ 0.
Note that all global proximity measures are unbounded: they tend to +∞ when x or s approaches a

nonzero point in the boundary of the corresponding cone. This is immediate for γF , and hence follows from
the theorem for the other measures. All local proximity measures are bounded. Indeed, v := [F ′′(x)]−1s/ ‖
s ‖x has ‖ v ‖x= 1, so x − v ∈ K and 〈s, x − v〉 ≥ 0. This proves that 〈s, x〉 ≥‖ s ‖x and hence
0 ≤ λ(x, s)2 ≤ ν − 1. This bounds λ2(x, s) using (4.25) and hence all the local proximity measures. It can
be also shown that no contour of any local proximity measure defined by its maximum value corresponds
to the boundary of the primal-dual cone; thus, no such measure can be transformed to a global proximity
measure.

As we have seen, one of the key points in forming a primal-dual proximity measure is to decide what is
the reference point on the central path. This decision results in the choice of the parameter µ involved in
that measure. It is clear that any proximity measure leads to a specific rule for defining the optimal reference
point. Indeed, we can consider a primal-dual proximity measure as a function of x, s and µ. Therefore, the
optimal choice for µ is given by minimizing the value of this measure with respect to µ when x and s are
fixed. Let us demonstrate how our choice µ = µ(x, s) arises in this way for the functional proximity measure.

Consider the penalty function

ψµ(v) := ψµ(x, y, s) =
1

µ
[〈c, x〉 − 〈b, y〉] + F (x) + F∗(s).

By definition, for any µ > 0 the point v(µ) is a minimizer of this function over the set

Q = {v = (x, y, s) : Ax = b, A∗y + s = c, x ∈ K, y ∈ Y, s ∈ K∗}.

Note that from Theorem 4.1 we know exactly what the minimal value of ψµ(v) over Q is:

ψ∗
µ = ψµ(v(µ)) =

1

µ
[〈c, x(µ)〉 − 〈b, y(µ)〉] + F (x(µ)) + F∗(s(µ))
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= ν − ν − ν lnµ = −ν lnµ.

Thus, we can use the function

γµ(v) = ψµ(v) + ν lnµ

as a kind of functional proximity measure.
Note that the function γµ(v) can estimate the distance from a given point v to the point v(µ) for any

value of µ. But what is the point of the primal-dual central path that is closest to v? To answer this question
we have to minimize γµ(v) as a function of µ. Since

γµ(v) =
1

µ
[〈c, x〉 − 〈b, y〉] + F (x) + F∗(s) + ν lnµ,

we easily get that the optimal value of µ is

µ∗ =
1

ν
[〈c, x〉 − 〈b, y〉] =

1

ν
〈s, x〉 = µ(x, s).

It is easy to see that γµ(x,s)(v) = γF (x, s).
The main advantage of the choice µ = µ(x, s) is that the restriction of µ(x, s) to the feasible set is a

linear function. But this choice is not optimal for other proximity measures. For example, for the local
proximity measure λ2, let

λ̄2(x, s, µ) :=‖ 1

µ
s+ F ′(x) ‖x,(4.29)

so that λ2(x, s) = λ̄2(x, s, µ(x, s)). Then the optimal choice of µ for λ̄2 is not µ(x, s) but

µ̄ =
‖ s ‖2

x

〈s, x〉 .

This leads to the following relation:

λ̄2(x, s, µ̄) =

[

ν − 〈s, x〉2
‖ s ‖2

x

]1/2

≡ λ(x, s).(4.30)

The following lemma will be useful below:
Lemma 4.3. Let x ∈ intK, s ∈ intK∗, and w ∈ intK be such that F ′′(w)x = s. Then for any v ∈ E,

u ∈ E∗, we have

‖ v ‖2
x ≤ 1

µ(x, s)
[1 + γ∞(x, s)] ‖ v ‖2

w,

‖ u ‖2
s ≤ 1

µ(x, s)
[1 + γ∞(x, s)] ‖ u ‖2

w .

Proof. By (4.7)∗ in C∗ 4.1,

1

σx(−F ′
∗(s))

F ′′(x) ≤ F ′′(w),

and similarly

1

σs(−F ′(x))
F ′′
∗ (s) ≤ [F ′′(w)]−1.

The result follows since σx(−F ′
∗(s)) = σs(−F ′(x)) = [1 + γ∞(x, s)]/µ(x, s) by definition of γ∞(x, s).



INTERIOR-POINT METHODS FOR SELF-SCALED CONES 21

5. Affine scaling and centering directions. In the next sections we will consider several primal-
dual interior point methods, which are based on two directions: the affine-scaling direction and the centering
direction. Let us present the main properties of these directions.

5.1. The affine-scaling direction. We start from the definition. Let us fix points x ∈ S0(P ) and
(y, s) ∈ S0(D), and let w ∈ intK be such that s = F ′′(w)x.

Definition 5.1. The affine-scaling direction for the primal-dual point (x, y, s) is the solution (px, py, ps)
of the following linear system:

F ′′(w)px + ps = s,
Apx = 0,

A∗py + ps = 0.
(5.1)

Note that the first equation of (5.1) can be rewritten as follows:

px + [F ′′(w)]−1ps = x.(5.2)

If t := −F ′(w) ∈ intK∗, then F ′′
∗ (t)s = x and F ′′

∗ (t) = [F ′′(w)]−1, so the affine-scaling direction is defined
symmetrically. It is also clear from the other two equations that

〈ps, px〉 = 0.(5.3)

For K the nonnegative orthant in Rn this definition gives the usual primal-dual affine-scaling direction.
For K the cone of positive semidefinite matrices of order n, efficient methods of computing w and the
affine-scaling direction (and also the centering direction of the next subsection) are given in [TTT96].

The affine-scaling direction has several important properties.
Lemma 5.2. Let (px, py, ps) be the affine-scaling direction for the strictly feasible point (x, y, s). Then

〈s, px〉 + 〈ps, x〉 = 〈s, x〉,(5.4)

〈F ′(x), px〉 + 〈ps, F
′
∗(s)〉 = −ν,(5.5)

‖ px ‖2
w + ‖ ps ‖2

w= 〈s, x〉,(5.6)

σ̄(x, s) := max{| px |x, | ps |s} ≥ 1.(5.7)

Proof. Indeed, multiplying the first equation of (5.1) by x and using the definition of w we get:

〈s, x〉 = 〈F ′′(w)px, x〉 + 〈ps, x〉 = 〈s, px〉 + 〈ps, x〉,

which is (5.4). From this relation it is clear that the point (x−px, y−py, s−ps) is not strictly feasible (since
〈s− ps, x− px〉 = 0) and therefore we get (5.7).

Further, multiplying the first equation of (5.1) by F ′
∗(s) and using the relation F ′(x) = F ′′(w)F ′

∗(s), we
get (5.5) in view of (2.9).

Finally, multiplying the first equation of (5.1) by px we get

‖ px ‖2
w= 〈s, px〉

from (5.3). Similarly, multiplying (5.2) by ps we get

‖ ps ‖2
w= 〈ps, x〉.

Adding these equations we get (5.6) in view of (5.4).
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It is interesting that the affine-scaling direction is related in a very nice way with the functional proximity
measure.

Theorem 5.3. Let the point (x, y, s) be strictly feasible, and let w ∈ intK be such that F ′′(w)x = s.
Then for small enough α ≥ 0 the point

x(α) := x− αpx, y(α) := y − αpy, s(α) := s− αps

is also strictly feasible and for any such α

γF (x(α), s(α)) − γF (x, s) = F (x− αpx) + F
(

x+ α
1−αpx

)

− 2F (x)

= F
(

x− α2

2(1−α) [F
′′(x)]−1F ′′′(x)[px, [F

′′(w)]−1ps]
)

− F (x).
(5.8)

Proof. Since the point (x, y, s) is strictly feasible, for small enough α ≥ 0 the point (x(α), y(α), s(α)) is
strictly feasible by the second and third equations of (5.1).

In view of (5.4) and (5.3) we get the following relation for the duality gap:

〈s(α), x(α)〉 = 〈s, x〉 − α[〈s, px〉 + 〈ps, x〉] = (1 − α)〈s, x〉.(5.9)

Therefore

ν ln〈s(α), x(α)〉 − ν ln〈s, x〉 = ν ln(1 − α).(5.10)

Further, from (5.1) we have:

s(α) = s− αps

= s− α[s− F ′′(w)px]
= (1 − α)s+ αF ′′(w)px

= F ′′(w)[(1 − α)x+ αpx].

Therefore, using (2.19) we obtain:

F∗(s(α)) = F ((1 − α)x + αpx) − 2F (w) − ν
= F ((1 − α)x + αpx) + F∗(s) − F (x).

(5.11)

Thus, in view of (5.10) and (5.11) we get

γF (x(α), s(α)) − γF (x, s) = ν ln(1 − α) + F (x(α)) + F∗(s(α)) − F (x) − F∗(s)
= ν ln(1 − α) + F (x(α)) + F ((1 − α)x+ αpx) − 2F (x),

which is the first part of (5.8) by (2.6).
Further, let

v = x− α2

2(1 − α)
[F ′′(x)]−1F ′′′(x)[px, [F

′′(w)]−1ps], β =
α

1 − α
.

Then

β − α = βα =
α2

1 − α

and we have:

v = x− 1
2βα[F ′′(x)]−1F ′′′(x)[px, (px + [F ′′(w)]−1ps) − px]

= x− 1
2βα[F ′′(x)]−1F ′′′(x)[px, x− px]

= x+ (β − α)px + 1
2βα[F ′′(x)]−1F ′′′(x)[px, px].
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Therefore the second part of the equation (5.8) follows from Theorem 3.11.
Denote

p(x, s) = − 1
2 [F ′′(x)]−1F ′′′(x)[px, [F

′′(w)]−1ps].

In view of the above theorem we need more information about this direction.
Lemma 5.4.

〈F ′(x), p(x, s)〉 ≤ 2(1 + λ+
∞(x, s))

√

γG(x, s) | px |x · ‖ ps ‖s,(5.12)

〈F ′(x), p(x, s)〉 ≤ ν(1 + γ∞(x, s))
√

γF (x, s),(5.13)

‖ p(x, s) ‖x≤| px |x‖ ps ‖s≤ 1
2ν(1 + γ∞(x, s)).(5.14)

Proof. Indeed,

〈F ′(x), p(x, s)〉 = − 1
2 〈F ′′′(x)[px, [F

′′(w)]−1ps], [F
′′(x)]−1F ′(x)〉

= 1
2F

′′′(x)[x, px, [F
′′(w)]−1ps]

= −〈F ′′(x)px, [F
′′(w)]−1ps〉

= 〈
[

1
µ(x,s)F

′′(w) − F ′′(x)
]

px, [F
′′(w)]−1ps〉.

Note also that

‖ [F ′′(w)]−1ps ‖x=‖ ps ‖s .

Therefore, using Theorem 3.8 we obtain:

〈F ′(x), p(x, s)〉 ≤ 2

(1 − σx(p))2
‖ p ‖x · | px |x · ‖ ps ‖s,(5.15)

where p = x−
√

µ(x, s)w. In view of (3.19) and (3.21) we have:

‖ p ‖x≤
√

γG(x, s).(5.16)

Further, by definition σx(p) = 1
α , where α is the maximal step such that

x− α(x −
√

µ(x, s)w) ∈ K.

Clearly, such α is greater than one. Therefore

α− 1

α
√

µ(x, s)
=

1

σw(x)
.

Thus,

1

(1 − σx(p))2
=

α2

(α− 1)2
=
σw(x)2

µ(x, s)
=

σs(x)

µ(x, s)
= λ+

∞(x, s) + 1

(see Lemma 3.4). Combining this equality with (5.15) and (5.16) we get (5.12).
In order to prove (5.13), note that in view of Theorem 3.8

| 〈
[

1
µ(x,s)F

′′(w) − F ′′(x)
]

px, [F
′′(w)]−1ps〉 |

= 1
µ(x,s) | 〈

[

F ′′(x/
√

µ(x, s)) − F ′′(w)
]

px, [F
′′(w)]−1ps〉 |

≤ 2
µ(x,s)(1−σw(p))2 ‖ p ‖w · | px |w · ‖ ps ‖w,
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where now p = w − x/
√

µ(x, s). Note that ‖ p ‖2
w≤ γF (x, s) by Lemma 3.12,

2 | px |w · ‖ ps ‖w≤‖ px ‖2
w + ‖ ps ‖2

w= νµ(x, s)

in view of (5.6) and

σw(p) = 1 −
√

1

1 + γ∞(x, s)

(the proof is quite straightforward). Combining these inequalities, we get (5.13).
Finally, the first inequality in (5.14) follows from Theorem 3.8. In order to prove the second one, note

that from Lemma 4.3 and (5.6) we have

2 | px |x · ‖ ps ‖s ≤ ‖ px ‖2
x + ‖ ps ‖2

s

≤ 1
µ(x,s) (1 + γ∞(x, s))(‖ px ‖2

w + ‖ ps ‖2
w)

= ν(1 + γ∞(x, s)).

5.2. Centering direction. Let us again fix points x ∈ S0(P ) and (y, s) ∈ S0(D), and let w ∈ intK
be such that s = F ′′(w)x.

Definition 5.5. The centering direction for the primal-dual point (x, y, s) is the solution (dx, dy, ds) of
the following linear system:

F ′′(w)dx + ds = s+ µ(x, s)F ′(x),
Adx = 0,

A∗dy + ds = 0.
(5.17)

Note that the first equation of (5.17) can be rewritten as follows:

dx + [F ′′(w)]−1ds = x+ µ(x, s)F ′
∗(s),(5.18)

so the centering direction is also symmetric between the primal and dual. It is also clear from the other two
equations that

〈ds, dx〉 = 0.(5.19)

Let us present the main properties of the centering direction.
Lemma 5.6. Let (dx, dy, ds) be the centering direction for the strictly feasible point (x, y, s). Then

〈s, dx〉 + 〈ds, x〉 = 0,(5.20)

〈F ′(x), dx〉 + 〈ds, F
′
∗(s)〉 = γG(x, s),(5.21)

‖ dx ‖2
w + ‖ ds ‖2

w= µ(x, s)γG(x, s).(5.22)

‖ dx ‖2
x + ‖ ds ‖2

s≤ γG(x, s)(1 + γ∞(x, s)).(5.23)

Moreover, the affine-scaling and the centering directions are orthogonal in the metric defined by w:

〈F ′′(w)px, dx〉 + 〈ds, [F
′′(w)]−1ps〉 = 0.(5.24)

Proof. Indeed, multiplying the first equation of (5.17) by x, we get (5.20) in view of (2.9). Multiplying
the first equation of (5.17) by F ′

∗(s) and using again (2.9), we obtain:

〈F ′(x), dx〉 + 〈ds, F
′
∗(s)〉 = −ν + µ(x, s)〈F ′(x), F ′

∗(s)〉 = γG(x, s).
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Further, multiplying the first equation of (5.17) by dx and using (5.19) we get

‖ dx ‖2
w= 〈s, dx〉 + µ(x, s)〈F ′(x), dx〉.

Similarly, from (5.18) we get:

‖ ds ‖2
w= 〈ds, x〉 + µ(x, s)〈ds, F

′
∗(s)〉.

Adding these equations, we get (5.22) from (5.20) and (5.21).
Next, (5.23) follows from (5.22) and Lemma 4.3.
In order to prove (5.24), let us note that 〈ps, dx〉 = 〈ds, px〉 = 0. Therefore

〈F ′′(w)px, dx〉 + 〈ds, [F
′′(w)]−1ps〉 = 〈s− ps, dx〉 + 〈ds, x− px〉

= 〈s, dx〉 + 〈ds, x〉 = 0

in view of (5.20).
Note that (5.20) shows that the centering direction keeps the duality gap constant.
Let us describe the behavior of the Newton process based on the centering direction. Let the point

(x, y, s) be strictly feasible. Consider the following process.

x0 = x, y0 = y, s0 = s;
xk+1 = xk − αkdxk

,
yk+1 = yk − αkdyk

,
sk+1 = sk − αkdsk

,







k = 0, . . . ,
(5.25)

where

αk =
1

1 + γ∞(xk, sk) + σ̄k
, σ̄k = max{σxk

(dxk
), σsk

(dsk
)}.(5.26)

Theorem 5.7. For any k ≥ 0 we have

γF (xk+1, sk+1) ≤ γF (xk, sk) − [τk − ln(1 + τk)],(5.27)

where

τk =

(

γG(xk, sk)

1 + γ∞(xk, sk)

)1/2

≥ γ∞(xk, sk)

1 + γ∞(xk, sk)
.

Proof. In order to simplify the notation let us omit subscripts for the current iterate and use a subscript
+ for the next iterate.

Since from Lemma 5.6 the centering direction does not change the duality gap, the decrease of the
functional proximity measure can be estimated as follows, using T∗ 4.2 and P∗ 4.1:

γF (x+, s+) − γF (x, s) = F (x+) − F (x) + F∗(s+) − F∗(s)

≤ −α〈F ′(x), dx〉 +
(

‖dx‖x

σx(dx)

)2

(−ασx(dx) − ln(1 − ασx(dx)))

−α〈F ′
∗(s), ds〉 +

(

‖ds‖s

σs(ds)

)2

(−ασs(ds) − ln(1 − ασs(ds)))

≤ −αγG(x, s) + 1
σ̄2 (‖ dx ‖2

x + ‖ ds ‖2
s)(−ασ̄ − ln(1 − ασ̄))

≤ −γG(x, s)
[

α+ 1+γ∞(x,s)
σ̄2 (ασ̄ + ln(1 − ασ̄))

]

.

Maximizing the expression in brackets with respect to α, we get the following step size yielding the optimal
bound:

α =
1

1 + γ∞(x, s) + σ̄
.
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Substituting this value in the above chain of inequalities, we obtain the following:

γF (x+, s+) − γF (x, s) ≤ − 1

σ̄2
γG(x, s)(1 + γ∞(x, s))

[

σ̄

1 + γ∞(x, s)
− ln

(

1 +
σ̄

1 + γ∞(x, s)

)]

.

Note that the expression in brackets above is monotonically decreasing in σ̄ and that

σ̄2 ≤‖ dx ‖2
x + ‖ ds ‖2

s≤ (1 + γ∞(x, s))γG(x, s).

Substituting this bound in the previous expression, we get the desired inequality for the change in γF . The
bound on τk follows from (4.18).

6. Some Closely Path-Following Methods. In this section we describe some extensions of standard
primal-dual path-following methods for linear programming to the setting of self-scaled cones. All our
algorithms generate iterates in the (narrow) neighborhood

N (β) := {(x, y, s) ∈ S0(P ) × S0(D) : λ2(x, s) =‖ s/µ(x, s) + F ′(x) ‖x≤ β}(6.1)

of the primal-dual central path, where β ∈ (0, 1). Note that this definition is symmetric between x and s
(see (4.13)).

Suppose we are given, at the start of some iteration, a point (x, y, s) ∈ N (β) with

δ :=| s/µ(x, s) + F ′(x) |x= λ∞(x, s) ≤ ǫ :=‖ s/µ(x, s) + F ′(x) ‖x= λ2(x, s) ≤ β.(6.2)

Actually, we could work with the slightly wider neighborhood N ′(β) := {(x, y, s) ∈ S0(P ) × S0(D) :
λ(x, s) ≤ β} for β ∈ (0, 1). Note that (x, y, s) ∈ S0(P ) × S0(D) lies in this neighborhood if λ̄2(x, s, µ) =‖
s/µ + F ′(x) ‖x≤ β for some µ > 0 by (4.30). We could then try to decrease the value of µ and find new
iterates for which this inequality remains true. However, it is easy to see that the inequality implies that µ
is very close to µ(x, s):

Lemma 6.1. If ‖ s/µ+ F ′(x) ‖x≤ β holds for some µ > 0, then

(1 − β/
√
ν)µ ≤ µ(x, s) ≤ (1 + β/

√
ν)µ.(6.3)

Proof. To prove the upper bound, note that

〈s, x〉 = µ(〈s/µ+ F ′(x), x〉 − 〈F ′(x), x〉)
≤ µ(‖ s/µ+ F ′(x) ‖x‖ x ‖x +ν)

≤ (ν + β
√
ν)µ,

where we have used (2.9) and (2.10). Now divide by ν. The lower bound is proved similarly.
If we can find, for every such (x, y, s) ∈ N (β), some (x+, y+, s+) ∈ N (β) with µ(x+, s+) ≤ (1 −

κ/
√
ν)µ(x, s), for some positive constant κ, then clearly we can construct an algorithm which, given

(x0, y0, s0) ∈ N (β), achieves (xk, yk, sk) ∈ N (β) with 〈sk, xk〉 ≤ ǫ within O(
√
ν ln(〈s0, x0〉/ǫ)) iterations. All

the algorithms of this section are of this type.
Now let us denote

µ := µ(x, s)

and examine the effect on (6.2) if we replace µ by

µ+ := (1 − κ√
ν

)µ(6.4)

for some fixed constant κ.
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Lemma 6.2. Suppose (6.2) holds and µ+ is given by (6.4). Then

δ+ :=| s/µ+ + F ′(x) |x≤ ǫ+ :=‖ s/µ+ + F ′(x) ‖x(6.5)

satisfy

δ+ ≤ δ + κ

1 − κ
, ǫ+ ≤ ǫ+ κ

1 − κ
.(6.6)

Proof. Using (2.10), we have

ǫ+ =‖ s/µ+ + F ′(x) ‖x ≤ µ

µ+
[‖ s

µ
+ F ′(x) ‖x +(1 − µ+

µ
) ‖ F ′(x) ‖x]

≤ 1

1 − κ
[ǫ+

κ√
ν

√
ν]

as desired. We proceed similarly for δ+, using | F ′(x) |x≤‖ F ′(x) ‖x.
Having decreased µ, we now need to update x, y, and s so that (6.2) remains true at the new iterate.

Hence, with w ∈ intK such that F ′′(w)x = s, let qx, qs, and qy solve

F ′′(w)qx + qs = s+ µ+F
′(x),

Aqx = 0,
A∗qy + qs = 0.

(6.7)

Note that the first equation can alternatively be written as qx +F ′′
∗ (t)qs = x+µ+F

′
∗(s), where t := −F ′(w) ∈

intK∗ satisfies F ′′
∗ (t)s = x, so that this is a symmetric system. Also note that (qx, qy, qs) can be written in

terms of the affine-scaling and centering directions of Section 5. From Definitions 5.1 and 5.5 we have

(qx, qy, qs) =
µ− µ+

µ
(px, py, ps) +

µ+

µ
(dx, dy, ds).(6.8)

Now set

x+ := x− qx, y+ := y − qy, s+ := s− qs.(6.9)

Clearly, Ax+ = b and A∗y+ + s+ = c. Also, since 〈qs, qx〉 = 0, we have

〈s+, x+〉 = 〈s, x〉 − 〈qs, x〉 − 〈s, qx〉
= 〈s, x〉 − 〈F ′′(w)qx + qs, x〉
= 〈s, x〉 − 〈s+ µ+F

′(x), x〉
= νµ+.

This also follows from (6.8) and Lemmas 5.2 and 5.6. Hence

µ+ = µ(x+, s+).(6.10)

Lemma 6.3. Suppose

η :=
ǫ+

1 − δ
(6.11)

satisfies η < 1 (so that δ+ ≤ ǫ+ < 1). Then

‖ qx ‖x≤ η,‖ qs ‖s≤ η,

x+ ∈ S0(P ),(y+, s+) ∈ S0(D),
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and for any v ∈ E, u ∈ E∗,

‖ v ‖x+≤
1

1 − η
‖ v ‖x, ‖ u ‖x+≤ (1 + η) ‖ u ‖x .(6.12)

Proof. We have

‖ qx ‖2
x ≤ [µ(1 − δ)]−1 ‖ qx ‖2

w (by Lemma 3.13)

= [µ(1 − δ)]−1〈F ′′(w)qx + qs, qx〉
= [µ(1 − δ)]−1〈s+ µ+F

′(x), qx〉
≤ (µ+/µ)(1 − δ)−1 ‖ s/µ+ + F ′(x) ‖x‖ qx ‖x

≤ η ‖ qx ‖x,

which gives the first inequality, and similarly ‖ qs ‖s≤ η. If η < 1, x − qx ∈ intK, so x+ ∈ S0(P ), and
similarly (y+, s+) ∈ S0(D). Then (6.12) follows from Theorem 3.6.
Note that it does not seem to be easy to get a good bound (depending on δ’s, not ǫ’s) on | qx |x or | qs |s.

We can now assemble these results to get
Theorem 6.4. Let µ+, x+, y+, s+, δ+, ǫ+, and η be defined as above, and let η < 1. Then

λ2(x+, s+) = λ̄2(x+, s+, µ+) =‖ s+/µ+ + F ′(x+) ‖x+≤
(2 + δ − κ)(ǫ+ κ)2

(1 − δ)2(1 − κ)3
.(6.13)

Proof. The two equations follow from the definitions and (6.10). For the inequality, we write

s+ + µ+F
′(x+) = s− qs + µ+F

′(x − qx)

= s− qs + µ+F
′(x) + µ+(F ′(x− qx) − F ′(x))

= [s+ µ+F
′(x) − (qs + F ′′(w)qx)] + [(F ′′(w) − µ+F

′′(x))qx]

+µ+[F ′(x− qx) − F ′(x) − F ′′(x)(−qx)].

The first term vanishes by the definition of our steps. Hence

‖ s+/µ+ + F ′(x+) ‖x+ ≤ ‖ [F ′′(w)/µ+ − F ′′(x)]qx ‖x+

+ ‖ F ′(x− qx) − F ′(x) − F ′′(x)(−qx) ‖x+ .

Now applying Lemma 6.3 and Corollary 3.14 (with µ+ and δ+ replacing µ and δ) to the first term, we find

‖ [F ′′(w)/µ+ − F ′′(x)]qx ‖x+ ≤ (1 + η) ‖ [F ′′(w)/µ+ − F ′′(x)]qx ‖x

≤ (1 + η)δ+ ‖ qx ‖x≤ (1 + δ+)η2.

Also, T∗ 4.3 bounds the second term by | qx |x‖ qx ‖x≤ η2, so we conclude that

‖ s+/µ+ + F ′(x+) ‖x+≤ (2 + δ+)η2 =
2 + δ+
(1 − δ)2

ǫ2+.(6.14)

Substituting the upper bounds on δ+ and ǫ+ from Lemma 6.2 yields the conclusion of the theorem.
We can now analyse some algorithms. First suppose we choose β = 1/10 and κ = 1/15. Then δ ≤ ǫ ≤

1/10, δ+ ≤ ǫ+ ≤ 5/28, η ≤ 50/252 < 1, and (2+ δ−κ)(ǫ+κ)2/[(1− δ)2(1−κ)3] < 1/10. Thus these choices
ensure that all iterates lie in N (1/10) and that µ decreases by a factor of [1 − (15

√
ν)−1] at each iteration.

In summary, we have the following method:
Algorithm 6.1. (Short-step method) Let β = 1/10 and κ = 1/15, and choose ζ > 0. Given (x0, s0) ∈

N (β), set k = 0;
While 〈sk, xk〉 > ζ do
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begin
set (x, y, s) := (xk, yk, sk) and µ := µ(x, s);
compute µ+ from (6.4);
compute the directions (qx, qy, qs) from (6.7);
set (xk+1, yk+1, sk+1) := (x+, y+, s+) from (6.9);
k := k + 1;

end.

Thus we have extended the short-step algorithm of Monteiro and Adler [MA89] and Kojima, Mizuno,
and Yoshise [KMY89] to the setting of self-scaled cones.

If our strategy is, as above, to first decrease µ to µ+ so that ǫ+ remains bounded, and then to take
one or more steps to get close again with the same value of µ, then we cannot achieve much more than the
reduction in µ given above. Indeed, Lemma 6.1 shows that if λ̄2(x, s, µi) ≤ β for two values µ1 and µ2, then
we must have µ2 ≥ (1 − 2β/

√
ν)µ1.

However, better progress is possible using adaptive steps. First, suppose we calculate the steps qx, qy,
and qs parametrically in µ+ and choose the smallest µ+ so that (x+, y+, s+) remains in N (1/10). By the
analysis above, we can choose µ+ ≤ [1− (15

√
ν)−1]µ at each iteration, and thus achieve the same complexity

estimate as for the short-step method:

Algorithm 6.2. (Adaptive-step method I) Let β = 1/10 and choose ζ > 0. Given (x0, s0) ∈ N (β), set
k = 0;

While 〈sk, xk〉 > ζ do
begin

set (x, y, s) := (xk, yk, sk) and µ := µ(x, s);
compute the directions (qx, qy, qs) parametrically in µ+ from (6.7);
choose µ+ as small as possible so that (x+, y+, s+) defined by (6.9) lies in N (β);
set (xk+1, yk+1, sk+1) := (x+, y+, s+);
k := k + 1;

end.

This algorithm extends the “largest-step path-following” algorithm which was suggested by Monteiro
and Adler and made precise and implemented by Mizuno, Yoshise, and Kikuchi [MYK89].

The second adaptive-step algorithm we consider, and the last in this section, is an extension of the
predictor-corrector method of Mizuno, Todd, and Ye [MTY90]. In this method, each step consists of two
substeps. In the first, we strive to reduce the duality gap while not straying too far from the central path
(as measured by the proximity measure λ2) by taking a step along the affine-scaling direction, while in
the second, we take a single step in the centering direction so that the duality gap remains constant and
the iterates return to close proximity with the path. In the next section, we will consider a much more
sophisticated version of this strategy, where we use the global proximity measure γF so that much longer
steps can be taken, and correct by a sequence of centering steps as in Section 5.2.

We first consider the predictor step. Here the direction is (px, py, ps) from Definition 5.1; so it satisfies
(6.7) with µ+ = 0. We still assume that our iterate (x, y, s) satisfies (6.2). As in Lemma 6.3 (see also the
proof of Lemma 5.2), we find

‖ px ‖2
x ≤ [µ(1 − δ)]−1 ‖ px ‖2

w

= [µ(1 − δ)]−1〈F ′′(w)px + ps, px〉
= [µ(1 − δ)]−1〈s, px〉
≤ [µ(1 − δ)]−1 ‖ s ‖x‖ px ‖x,

so

‖ px ‖x ≤ (1 − δ)−1 ‖ s/µ+ F ′(x) − F ′(x) ‖x

≤ (1 − δ)−1(ǫ+
√
ν) ≤ 1 + ǫ

1 − δ

√
ν.
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We choose the step size α as large as possible so that the next iterates remain approximately centered as
measured by λ2. We will show that, for a certain value of the constant κ,

α :=
κ√
ν

suffices. Note that then

‖ αpx ‖x≤
1 + ǫ

1 − δ
κ =: η,

and we choose κ so that η < 1. Similarly, ‖ αps ‖s≤ η. So if we set

x+ := x− αpx, y+ := y − αpy, s+ := s− αps,(6.15)

we will have x+ ∈ S0(P ) and (y+, s+) ∈ S0(D). Let us continue to assume that α is given as above. Note
that from (5.9)

〈s+, x+〉 = (1 − α)〈s, x〉.
So we set µ+ := (1 − α)µ = µ(x+, s+). Then we find

λ2(x
+, s+) = ‖ s+/µ+ + F ′(x+) ‖x+

= ‖ (s− αps)/[(1 − α)µ] + F ′(x− αpx) ‖x+

= ‖ [(1 − α)s+ α(s− ps)]/[(1 − α)µ] + F ′(x− αpx) ‖x+

≤ ‖ s/µ+ F ′(x) ‖x+ + ‖ F ′(x− αpx) − F ′(x) − F ′′(x)(−αpx) ‖x+

+ ‖ α[
F ′′(w)

(1 − α)µ
− F ′′(x)]px ‖x+ .

The first term above is at most (1 + η)ǫ using Theorem 3.6. By T∗ 4.3, the second term is bounded by η2.
Now (3.22) gives two-sided bounds for F ′′(w)/µ. Dividing by (1 − α), we see that the inequalities remain
true with µ replaced with (1 − α)µ and δ replaced with

δ′ :=
δ + α

1 − α
.

Then, following the argument in the proof of Corollary 3.14, we discover that the third term is bounded by
(1 + η)δ′η. Using our form of α, we conclude that

‖ s+/µ+ + F ′(x+) ‖x+≤ (1 + η)ǫ+ η2 +
ǫ+ κ

1 − κ
(η + η2).

Note that if ǫ ≤ 1/10 and we choose κ := 1/10, then η ≤ 1/8 and the bound above is less than 1/6. Thus
we have proved:

Theorem 6.5. If (x, y, s) satisfies (6.2) with β = 1/10 and if we choose as our step size α∗ the largest
α so that the point defined by (6.15) lies in N (1/6), then α∗ ≥ (10

√
ν)−1, and

µ+ = [1 − α∗]µ ≤ [1 − (10
√
ν)−1]µ.

We next apply a corrector step to the resulting iterate (x+, y+, s+) to return to N (1/10). For this, note
that we now have a point satisfying (6.2) with β = 1/6. We proceed as in the first part of this section, but
choosing κ = 0, so that we take a unit step in the centering direction (dx, dy, ds) of Definition 5.5 (so that
we apply one step of the centering process (5.25) with a unit step). We find that the corresponding value
of η is at most 1/5 < 1, and, from Theorem 6.4, that the result (x+, y+, s+) of the corrector step lies in
N (1/10) with µ+ := µ(x+, s+) = µ+. This corrector step completes the iteration; we are back in the desired
neighborhood with an appropriate reduction of µ. In summary, we have

Algorithm 6.3. (Predictor-corrector method I) Let β = 1/10 and β̄ = 1/6, and choose ζ > 0. Given
(x0, y0, s0) ∈ N (β), set k = 0;
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While 〈sk, xk〉 > ζ do
begin

set (x, y, s) := (xk, yk, sk) and µ := µ(x, s);
compute the affine-scaling direction (px, py, ps);
choose the largest stepsize α so that (x+, y+, s+) defined by (6.15) lies in N (β̄);
set (x, y, s) := (x+, y+, s+);
compute the centering direction (px, py, ps);
set (xk+1, yk+1, sk+1) := (x− dx, y − dy, s− ds);
k := k + 1;

end.
The analysis in this section has only used the local proximity measure λ2 and the resulting narrow

neighborhood N (β). In the next section we will consider a predictor-corrector algorithm based on a possibly
much wider neighborhood that uses the proximity measure γF . However, for small values of λ2 and γF ,
there is a close relationship between these measures as shown by Theorem 4.2. To conclude this section, we
use this relationship to obtain a lower bound on the step size α∗ in the predictor-corrector algorithm above;
this will allow us to apply the results of the next section to get more information about α∗.

Suppose that (x, y, s) satisfies (6.2) with β = 1/10. Then λ∞(x, s) ≤ λ2(x, s) ≤ 1/10, so that (4.23)
implies

γF (x, s) ≤ (1/10)2/[1 − 1/10] = 1/90 = .011 · · · .

Let α̃ be the largest α so that the point defined by (6.15) satisfies

γF (x+, s+) ≤ 1/6 − ln(1 + 1/6) = .012 · · · .

Then by (4.19) we see that λ2(x
+, s+) ≤ 1/6, and hence

α∗ ≥ α̃.

Thus, in addition to α∗ ≥ (10
√
ν)−1 from Theorem 6.5, we know that α∗ is at least the step size α̃ needed

to increase γF from 1/90 to 1/6− ln(1 + 1/6) along the affine-scaling direction. The next section gives some
lower bounds for α̃, which give a fortiori lower bounds on α∗.

We have indicated above that we could have used λ instead of λ2 to define our neighborhood. The
argument of the previous paragraph shows that similar results hold when γF is employed. Indeed, Theorem
4.2 suggests that, for algorithms for which every iterate (including intermediate ones) lies in a narrow
neighborhood of the central path, similar results and estimates are possible whichever of λ, λ2, γF , or γG is
used to define the neighborhood.

7. Functional Proximity Path-Following Scheme. In this section we consider an algorithm which
generates the main sequence of points in the following neighborhood of the primal-dual central path:

F(β) := {(x, y, s) ∈ S0(P ) × S0(D) : γF (x, s) ≤ β},

where 0 < β < 1 − ln 2. For that purpose it forms first a predicted point in the neighborhood F(β + ∆),
∆ > 0. Then it computes a new point in the initial neighborhood F(β) using the Newton process (5.25).
Note that the predictor step size parameter ∆ can be arbitrarily large, which contrasts strongly with the
predictor-corrector method of the previous section.

Suppose we are given a positive constant β, 0 < β < 1 − ln 2, and a strictly feasible point (x0, y0, s0) ∈
F(β). Consider the following predictor-corrector scheme.

Algorithm 7.1. (Predictor-corrector method II) Choose β > 0, ∆ > 0, and ζ > 0. Given (x0, s0) ∈
F(β), set k = 0;
While 〈sk, xk〉 > ζ do
begin

set (x, y, s) := (xk, yk, sk);
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compute the affine-scaling direction (px, py, ps);
choose the largest stepsize α := αk so that (x+, y+, s+) := (x − αpx, x − αpx, x − αpx) satisfies

γF (x+, s+) = β + ∆;
set (x, y, s) := (x+, y+, s+);
compute (xk+1, yk+1, sk+1) using the Newton method (5.25) starting from (x, y, s) and terminating

as soon as a point in F(β) is found;
k := k + 1;

end.
Theorem 7.1. Let β = κ− ln(1 + κ) for some κ ∈ (0, 1). Then
1. Algorithm 7.1 decreases the duality gap at a linear rate:

〈sk+1, xk+1〉 ≤ (1 − αk)〈sk, xk〉,(7.1)

where

α2
k

1 − αk
≥ 1

ν
ω1(∆, κ).(7.2)

Moreover,

α2
k

1 − αk
≥ ω2(∆, κ)

| pxk
|xk

· ‖ psk
‖sk

≥ ω2(∆, κ)√
ν | pxk

|xk
· | psk

|sk

.(7.3)

In the above inequalities the positive constants ωi depend on ∆ and κ only.
2. The number of Newton steps Nk in the corrector phase 1(c) is bounded by an absolute constant:

Nk ≤ ∆

τ̄ − ln(1 + τ̄ )
,(7.4)

where

τ̄ = 1
2

√

3β

1 + β
.

Proof.
In order to simplify the notation let us omit subscripts for the current iterate and use a subscript + for

the next iterate; the superscript + denotes the intermediate iterates given by the predictor step.
From Theorem 5.3 we know that

∆ = γF (x+, s+) − γF (x, s) = F (x+ ξp(x, s)) − F (x),(7.5)

where ξ := α2/(1 − α). Since κ < 1, in view of Theorem 4.2 we have:

λ+
∞(x, s) ≤ λ∞(x, s) ≤ λ2(x, s) ≤ κ,

γ∞(x, s) ≤ κ

1 − κ
, γG ≤ κ2

1 − κ
.

Therefore, from Lemma 5.4 we get the following inequalities:

〈F ′(x), p(x, s)〉 ≤ 2κ(1 + κ)√
1 − κ

| px |x · ‖ ps ‖s,

〈F ′(x), p(x, s)〉 ≤ ν
√
β

1 − κ
,
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‖ p(x, s) ‖x≤| px |x · ‖ ps ‖s≤
ν

2(1 − κ)
.

In view of (7.5), T∗ 4.2 and P∗ 4.1 (iii),

∆ = F (x+ ξp(x, s)) − F (x) ≤ ξ〈F ′(x), p(x, s)〉 − ξ ‖ p(x, s) ‖x − ln(1 − ξ ‖ p(x, s) ‖x).

Hence

∆ ≤ ξν
√
β

1 − κ
− ξν

2(1 − κ)
− ln

(

1 − ξν

2(1 − κ)

)

.

Therefore

να2

1 − α
= ξν ≥ ω1(∆, κ),

where the positive constant ω1 depends on ∆ and κ only. Since from (5.20) and (5.4)

〈s+, x+〉 = 〈s+, x+〉 = (1 − α)〈s, x〉,

we get (7.1) with the estimate (7.2) for the predictor step size.
Similarly,

∆ ≤ 2κ(1 + κ)ξ̄√
1 − κ

− ξ̄ − ln(1 − ξ̄),

where

ξ̄ := ξ | px |x · ‖ ps ‖s .

Therefore

ξ ≥ ω2(∆, κ)

| px |x · ‖ ps ‖s
,

where the positive constant ω2 depends on ∆ and κ only. Thus,

α2

1 − α
≥ ω2(∆, κ)

| px |x · ‖ ps ‖s
≥ ω2(∆, κ)√

ν | px |x · | ps |s
.

Let us prove now that the number of the corrector steps is bounded by an absolute constant.
Let (x̃, ỹ, s̃) be an intermediate point of the corrector process. In view of Theorem 5.7, the value of the

proximity measure is reduced during this step by τ̃ − ln(1 + τ̃ ), where

τ̃ =

√

γG(x̃, s̃)

1 + γ∞(x̃, s̃)
.

Note also that

τ̃ ≥ τ̄ :=

√

3β

4(1 + β)

since otherwise by (4.28)

γG(x̃, s̃) = τ̃2(1 + γ∞(x̃, s̃)) ≤ 4

3
τ̃2(1 + γG(x̃, s̃)) ≤ β

1 + β
(1 + γG(x̃, s̃))
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and therefore γF (x̃, s̃)) ≤ γG(x̃, s̃)) ≤ β. Thus, we conclude that the number of the corrector steps does not
exceed ∆/(τ̄ − ln(1 + τ̄)).

Thus, we have proved three different inequalities for the size of the predictor step. The first inequality
(7.2) provides us with the theoretical efficiency estimate of the method. It shows that after

O

(√
ν ln

〈s0, x0〉
ǫ

)

predictor steps we will generate a feasible primal-dual point with the duality gap less than ǫ. However, this
inequality cannot describe the potential “adaptivity” of the scheme. We can get this information from the
second inequality (7.3).

To explain this, let us suppose that at some iteration αk ≤ .9; if not, then we know that the duality gap
decreases by a factor of 10, which is already very good progress. Then (7.3) gives

10α2
k ≥ ω2(∆, κ)

| pxk
|xk

· ‖ psk
‖sk

≥ ω2(∆, κ)√
ν | pxk

|xk
· | psk

|sk

.(7.6)

Since our algorithm is symmetric, we can also replace the denominator in the second term by ‖ pxk
‖xk

· |
psk

|sk
. For definiteness, let us suppose that ηk :=‖ psk

‖sk
≥‖ pxk

‖xk
(otherwise x and s can be switched

in what follows), and scale the affine-scaling directions by ηk, to get

p̄xk
=

1

ηk
pxk

, p̄sk
=

1

ηk
psk

, p̄yk
=

1

ηk
pyk

,

The corresponding step size is

ᾱk := αkηk.

Let us call

ᾱ∗
k := max{α : xk ± αp̄xk

∈ K, sk ± αp̄sk
∈ K∗} = 1/max{| p̄xk

|xk
, | p̄sk

|sk
} ≥ 1,

the maximal feasible step size, where the inequality follows from | p̄xk
|xk

=| pxk
|xk

/ηk ≤ 1 and similarly
| p̄sk

|sk
≤ 1.

Now the first inequality in (7.6) gives

10ᾱ2
k ≥ ω2(∆, κ)η

2
k

| pxk
|xk

· ‖ psk
‖sk

=
ω2(∆, κ)ηk

| pxk
|xk

=
ω2(∆, κ)

| p̄xk
|xk

≥ ω2(∆, κ)ᾱ
∗
k,

so ᾱk = Ω(
√

ᾱ∗
k); the predictor step size is at least proportional to the square root of the maximal feasible

step size in this normalization.
The second inequality in (7.6) gives

10ᾱ2
k ≥ ω2(∆, κ)η

2
k√

ν | pxk
|xk

· | psk
|sk

=
ω2(∆, κ)√

ν | p̄xk
|xk

· | p̄sk
|sk

≥ ω2(∆, κ)√
ν

(ᾱ∗
k)2,

so that ᾱk = Ω(ν−1/4ᾱ∗
k); the predictor step size is at least proportional to the maximal feasible step size

divided by ν1/4.
These two results provide a strong indication that the functional neighborhood permits large steps.
Note that these bounds also apply to the step size in the λ2-based predictor-corrector algorithm of the

previous section. Indeed, we showed at the end of Section 6 that the step size α∗ used there was at least the
step size α̃ needed to go from a point in F(β) with β = 1/90 = .011 · · · < 1 − ln 2 along the affine-scaling
direction to a point (x+, y+, s+) with γF (x+, s+) = β+ := 1/6 − ln(1 + 1/6) = .012 · · ·. Thus the bounds
established above also hold for α∗, where now we use ∆ := β+ − β > 0 and κ such that β = κ− ln(1 + κ).
However, the constants hidden in the Ω’s above are much smaller for α∗ due to the small value of ∆, while in
the predictor-corrector method using the functional proximity neighborhood, ∆ can be any positive constant.
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