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Abstract
Trichomes play a very important role in the process of evolution for plant which are epidermal appendages covering 

the surface of plants. In this paper, some progress concerning the genes responsible for trichome formation is presented 
for monocots and dicotyledons plants. Meanwhile, the special structures and physiological functions of trichome are briefly 
introduced, such as reflectance, energy balance, ultraviolet protection, drought resistance, gas exchange, insect resistance 
and disease resistance. The review provides a theoretical basis for the further study of other trichome related traits in plants. 

*Corresponding author: Jianfu Zhang, Rice REsearch Institute, Fujian Academy
of Agricultural Sciences, Fuzhou 350003, Fujian, China, Tel: 0086-591-83408726,
Fax: 0086-591-87868241, E-mail: jianfzhang@163.com

Huaan Xie, Rcie Research Institute, Fujian Academy of Agricultural 
Sciences,Fuzhou 350003

Received December 12, 2016; Accepted December 23, 2016; Published 
December 31, 2016

Citation: Xiao K, Mao X, Lin Y, Xu H, Zhu Y, et al. (2017) Trichome, a Functional 
Diversity Phenotype in Plant. Mol Biol 6: 183. doi: 10.4172/2168-9547.1000183

Copyright: © 2017 Xiao K, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Trichome; Functional diversity; Phenotype; Plant

Introduction
Trichomes, as a plant protective barrier against natural hazards 

such as herbivores, ultraviolet (UV) irradiation, pathogen attacks 
and excessive transpiration, play a key role in development of plants 
and occur widely in various plants. Trichomes may be unicellular or 
multicellular and are derived from aerial epidermal cells in leaves, 
stems and floral organs. They are classified as either glandular or 
non-glandular [1,2]: the former can contribute to the accumulation 
and secretion of some alkaloids to resist insects, such as nicotine and 
terpenoid alkaloids, and the latter can strengthen the role of resistance 
in abiotic stress by promoting normal plant growth, under condition 
of extreme high or low temperature, drought and UV irradiation [3,4]. 
The origination and spatial and temporal distribution of trichomes are 
well suited mechanisms for studying cell differentiation, fate choices 
and morphogenesis [5,6]. Over time, some previously unknown 
mechanisms have been elucidated (Figure 1). 

Structure characteristics of trichomes

Trichomes are a model system for cell differentiation, cell cycle 
regulation, cell polarity and cell expansion, according to different 
distributions on leaves, and can be divided into three categories: large, 
small and glandular trichomes [8,9]. Large trichomes are commonly 
observed on the abaxial surface, above the vascular bundles and along 
the margins, small trichomes in stomatal Para cellular and glandular 
trichomes, which are regularly distributed wholly or partly in sub 
epidermal tissue of the leaf surface [10]. Trichomes are not obvious 
in the early developmental stage, and can be observed at three-leaf 
stage. The early stages of trichome morphogenesis can be divided into 
four stages: (1) the radial trichome precursor cells protrude from the 
blade surface, (2) the rod structure of trichomes appears and enlarges, 
(3) branch structure is formed, (4) the rod structure and branch
further increase with the tips of branches being blunt. With further
development of trichomes, the rod-shaped structure and branches
continue to expand and the branch tip becomes sharp, and then forms
mature trichomes with papilla on the leaf surface [11,12].

The distribution and morphology of trichomes are related to many 
factors that include geography. For example, the stems of tomato are 
covered with long trichomes, but trichomes are short and scarce in 
the upper parts of the stem [13]. Moreover, the density distribution of 
trichomes varies in different organs: and the density of trichomes on 
the back of the same blade was significantly higher than that of the back 
[14]. Brewer found that different types of leaves had different densities 
of trichomes, and in soybean leaves, the adaxial of the leaf had greater 
trichome density than the abaxial [15].

Genes related to the formation and development of trichomes

Increasing numbers of studies have focused on the localization and 
cloning of genes related to trichome growth, but molecular mechanisms 
remained unknown, especially in monocots plants such as Oryza sativa. 
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Figure 1: The development of trichome from rice (Oryza sativa L.) [7]; a) 
Trichome morphogenesis at early stages; b) Trichome morphogenesis at 
middle stages; c) Trichome morphogenesis at mature stages.
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In Arabidopsis thaliana, a series of genes related to the formation and 
development of trichomes has been found (Table 1), including GIS, 
MYB23, GL3/EGL3, TTG1, GL1, GL2 and FRC4 [11,16-21]. As an 
important monocots plant and agricultural crop, the agronomic traits 
of O. sativa are crucially influenced by trichomes. Several relevant genes 
have been localized, for example, genes OsGL1 and OsGL6 located on 
chromosomes 5 and 6, respectively [7,22]. In addition, a number of 
orthologous genes have been identified, such as TCL in Arabidopsis to 
OsTCL1 and OsTCL2 in rice [23] (Table 1).

Regulation of trichome formation

The genetic network regulating trichome development has been 
extensively studied and well understood in the model species Arabidopsis, 
and shown to be regulated by a complex gene network (Figure 2) 
[39,40]. The genes that control trichome growth generally belong to 
the MYB transcription factor family, including the transcriptional 
activator of GL2 [41], GLABRA1 (GL1) [42], the WD40-repeat protein 
TRANSPARENT TESTA GLABRA1 (TTG1) [1,43] and the basic helix-
loop-helix (bHLH) transcription factors GLABRA 3/ENHANCER OF 
GLABRA3 (GL3/EGL3) [44,45] which are key factors in the initiation 
of trichomes. The MYB transcription factor family is one of the largest 
transcription factor families in plant is based on variation in the number 
of N-terminal DNA-binding domain repeats (R) and has been divided 
into four subfamilies: 4R-MYB, 3R-MYB, R2R3-MYB and 1R-MYB 
containing four, three, two and one DNA-binding repeats, respectively 
[46]. It was proposed that GL1, TTG1 and GL3 or EGL3 form a GL1–
GL3/EGL3–TTG1 activator complex to trigger the expression of 
GL2, leading to the promotion of trichome formation; interestingly, 
the same activator complex also induces expression of some single-
repeat R3 MYB genes. Single-repeat R3 MYBs, in turn, move from a 
trichome precursor cell to its neighboring cells to block the formation 
of the activator complex by competing with GL1 for binding to GL3 or 
EGL3, thus limiting formation of the GL1–GL3/EGL3–TTG1 activator 
complex and inhibiting trichome formation [47,48]. Studies showed 

that GL3 can activate FRC4 to affect trichome branching [21,49]. KAK 
(KAKTUS) and PYM (POLYCHOME) are considered to be negative 
regulators of trichome branching. PYM and KAK act downstream 
of SPY (SPINDLY) to control the trichome branching pattern and 
number. AN (ANGUSTIFOLIA) promotes trichome branching, which 

Gene (Chr.) Function Species References
AtGL1 (Chr.3) A myb-related gene required for leaf trichome differentiation Arabidopsis [20]

AtGL2 (Chr.1) HD-ZIP IV family of homeobox-leucine zipper protein with lipid binding START domain-
containing Arabidopsis [11]

AtGL3 (Chr.5) basic helix-loop-helix (bHLH) DNA-binding superfamily protein Arabidopsis [18]
AtTTG1 (Chr.5) Transducin/WD40 repeat-like superfamily protein Arabidopsis [19]
AtTRY (Chr.5) Homeodomain-like superfamily protein Arabidopsis [24]
AtCPC (Chr.2) Homeodomain-like superfamily protein Arabidopsis [25]
AtTCL1 (Chr.1) Homeodomain-like superfamily protein Arabidopsis [26]
AtTCL2 (Chr.2) Homeodomain-like superfamily protein Arabidopsis [27]
AtETC1 (Chr.1) Homeodomain-like superfamily protein Arabidopsis [28]
AtETC2 (Chr.2) Homeodomain-like superfamily protein Arabidopsis [29]
OsGL1 (Chr.5) Homeodomain protein containing the WOX motif Oryza sativa [30]
OsGL6 (Chr.6) Unknown Oryza sativa [7]
OsHLa/HLb (Chr.9/11) Complementary genes for long pubescence of leaves Oryza sativa [31]
Wo  (Chr. 1) Homeodomain protein containing a bZIP motif and a START domain Tomato [32]
SlCycB2 (Chr.2) regulated by Wo, participates in trichome formation Tomato [32]
GaHOX1 (Chr.7) HD-Zip IV gene Cotton [33]
GhMYBs regulates early fibre and trichome development Cotton [34]
QLP1 (Chr.6) reduced hairiness only in young leaves Cotton [35]
QLP2 (Chr.25) increased hairiness in mature leaves Cotton [35]
RDL1 (Chr.4) regulator of cotton fiber development Cotton [36]
OCL4 (Chr.1) The HD-ZIP IV transcription factor Maize [37]
MHL1 (Chr.3) Promote leaf blade macrohair initiation and responds to factors regulating leaf identity Maize [38]

Table 1: The cloned gene and their function from plants.

Figure 2: Signaling pathway for the regulation of the trichome in Arabidopsis 
thaliana. 
The trichome were regulated by a complex gene network: 1) GL1, GL3 or 
EGL3 and TTG1 form a GL1-GL3/EGL3-TTG1 activator complex to trigger 
the expression of GL2 leading to the promotion of trichome formation, 2) 
some single-repeat R3 MYB genes competing with GL1 for binding GL3 or 
EGL3 limiting the formation of the GL1-GL3/EGL3-TTG1 activator complex 
and inhibiting trichome formation, 3) GL3 can activate positively FRC4 
to affect trichome branching, in addition, there are also have many genes 
involved in trichomes branch regulation, including FRC1~3, SPY, STL, etc., 
4) GA and CK may also involve in trichome formation by regulation the gene 
ZPF6, ZPF5 and GIS, and regulate to form a MBW (MYB-bHLH-WD40) 
transcriptional activator complex to induce the expression of GL2 and leading 
to the promotion of trichome formation
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is negatively regulated by the MYB transcription factor NOK (NOEK); 
however, SPY is a gibberellins signaling repressor and the SPY deletion 
mutant has increased trichome branching [21].

Although there is evidence that trichome formation in other same 
dicotyledonous plants may be controlled by similar mechanisms, it may 
not be in dicotyledonous plants [23]. Zheng et al. [23] used the entire 
amino acid sequence of Arabidopsis R3 MYB transcription factor 
Trichomeless1 (TCL1) blasted in O. sativa and thus found OsTCL1 
remained largely unchanged in transgenic rice plants, a gene can inhibit 
the formation of trichomes by interacting with GL3 in Arabidopsis 
protoplasts, which showed that rice may use different mechanisms to 
regulate trichome formation [50]. Until now, the only cloned gene in 
O. sativa to show control of trichome formation is OsGL1 [22], but the 
mechanism is not yet clear (Figure 2).

Apart from Arabidopsis and O. sativa, many genes that control 
the formation of trichome have been cloned in other plants, including 
HI2 and HI2Aesp, located on chromosome 4BL and 7BS in wheat, 
respectively [51]. A series of maize GLOSSY genes have been cloned 
and were shown to affect the morphology and trichome growth and 
cuticular wax biosynthesis [52,53]. Overexpression of the gene MIXTA 
led to the growth of a large number of trichomes on cotyledons, leaves 
and stems in tobacco, and another gene CotMYBA may cause the 
growth of Nicotiana tabacum leaf [54]. The gene that encodes the HD-
Zip protein named Wo, which can interact with cell cycle gene B2, plays 
an important role in trichome formation and embryo development in 
potato [55].

Ecophysiology of leaf trichomes

In recent decades, many studies have demonstrated that trichomes 
have an extensive role in plant–environment interactions [56-58]. The 
best known is as light reflectors that reduce photo-inhibition and UV-B 
related damage to leaf photochemistry [57,59]. Dense trichomes can 
modulate leaf heat balance and photon interception, and consequently 
affect gas exchange traits [57,60,61]. Trichomes can protect against 
damaging UV radiation and modulate water relations on leaf surfaces 
and in the mesophyll [62]. In addition, plants with trichomes also have 
characteristics of insect and disease resistance [63,64].

Light reflectors and energy balance 

Studies have shown that trichomes can be reflectors of broad-
spectrum radiation, and play a physiologically significant role in 
modulating the plant energy balance [57,65,66]. When leaves are 
exposed in environments, this can regulate heat balance via transpiration 
cooling, which requires an adequate water supply or through reduced 
leaf absorption [66]. The reflectivity of the leaf surface changes with 
the seasons in some plants with a thinner leaf blade, trichomes can 
absorb 80% of the incident radiation in winter, so that leaf temperature 
is slightly higher than the surrounding air [63]. However, absorption 
of incident radiation by trichomes can be reduced to 30% to 40% in 
rain-scarce summer, thus making leaf temperature lower than the 
surrounding air temperature and this cooling effect of the hairs can 
increase the gain of carbon and decrease water loss by 20–25% [67]. The 
specific protection mechanisms require more research to determine the 
physiological and ecological significance of trichome effects on leaf 
temperature.

UV protection

Much evidence suggests that trichomes can absorb UV radiation 
and reduce the damage by UV-B to photosystem II photochemical 
activity and prevent stomatal closure. Thus, trichomes have a significant 

protective effect against UV-B radiation damage in the process of leaf 
development. Recently, Yan et al. found that exposure of Arabidopsis to 
UV-B could stimulate trichome formation, and that the UV protection 
may confer by flavonoids and epidermal waxes in the cell walls of 
trichomes [68]. The flavonoid substances secreted by trichomes are 
mainly in the form of water-soluble glycosides in the vacuoles of the 
epidermal cells of leaves, and are free and lipophilic. The accumulation 
of flavonoids in the plant epidermis can reduce the transmittance of 
UV-B radiation in the epidermis layer, and so reduce harm to plant 
organs and tissues [69]. The reason may be that flavonoids are highly 
susceptible to O-methylation, thus UV absorption characteristics shift 
to shorter wavelengths, which can more effectively absorb 250 to 320 nm 
UV radiations and so reduce the UV-B damage to plants [70]. Because 
flavonoids can absorb and effectively reduce the amount of UV-B 
radiation to plant tissue, they play the role of an ‘internal filter’ in plants, 
and so play an important role in plant biochemical regulation [71].

Drought resistance

The direct result of drought is a lack of available soil moisture, 
and so leaf transpiration losses exceed water absorption by roots. 
Morphological anatomical characteristics can enhance drought 
resistance by alleviating the contradiction between water supply and 
demand [72]. Shang found that one possible cause of plant drought 
resistance was the densely velvet trichomes, with the air trapped 
between the trichomes reducing the transpiration rate without affecting 
carbon dioxide exchange [63,73]. In addition, trichomes can hinder 
the proliferation of small pores, thus reducing water loss and playing 
an important role in water conservation and mitigation of the leaf 
temperature effect [63,74].

Studies have shown that the proximal and distal (relative to the leaf 
blade) ends of trichomes may have different effects on moisture retention 
and water droplets. Fernández et al. [75] examined the physiochemical 
properties of the proximal and distal ends of soft trichomes and found 
lower humidity and higher hydrophobicity at the distal end compared to 
the proximal end near the blade. Importantly, this hydrophobicity was 
associated with chemical and structural differences in the distal axillary 
trichomes. However, their analysis concluded that surface chemistry 
was the driving force for this powerful water–leaf interaction, which 
increased surface roughness and affected wetting [75]. Although many 
of the physical and chemical differences in the proximal and distal ends 
of trichomes and their respective leaf surfaces are not yet clear, the data 
suggest that trichomes may function differently at their different ends.

Gas exchange of stomata 

During the process of aquatic to terrestrial evolution in plants, 
cuticle and other protective layers appeared to prevent excessive 
moisture transpiration, and the emergence of a stomatal-intensive 
gas exchange place, Stomatal and stratum corneum in different 
growth environments, the formation of the different characteristics 
of xerophytic plants such as oleander [58,76,77]. In order to prevent 
excessive transpiration of water, the leaf surface specialization out of 
the stomatal fossa, stomatal fossa with a number of pores and is covered 
with epidermal trichomes, so as to protect efficient gas exchange and 
also to prevent excessive loss of water caused by stomata [78]. The 
two main resistances in the exchange of gases between plants and the 
atmosphere are stomatal and boundary layer resistances. Benz and 
Martin [79] examined the relationships between water and carbon 
dioxide gas exchange parameters and leaf trichome cover in 12 
species of Tillandsia that exhibited a wide range in trichome size and 
trichome cover and found that trichome-enhanced boundary layers 
had negligible effects on Tillandsia gas exchange and concluded that 
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they did not significantly reduce transpirational water loss. However, 
the trichomes undoubtedly increased the thickness of the boundary 
layer, the increase due to Tillandsia trichomes was inconsequential in 
terms of whole leaf boundary layers, and any associated reduction in 
transpirational water loss was also negligible within the whole plant gas 
exchange pathway [79]. Cai et al. found that a higher net photosynthetic 
rate was associated with higher stomatal conductance, while the latter 
might be related to stomatal density and leaf anatomical structure [80].

Insect resistance

Plant trichomes can be a detrimental or beneficial trait to insects, 
and different insects have different responses. The density, length, 
softness or hardness, growth direction and shape of trichomes may be 
related to insect resistance. The mode of action of this insect resistance 
is rejection, including resistance as habitat (not conducive to insect 
attachment and movement) and refusing to lay eggs or to eat [81]. 
The responses of insects to plant burrs of trichomes vary with species, 
but in general, attachment and action on plant surfaces, feeding and 
oviposition are affected to varying degrees by trichomes and spines; 
and when the numbers of trichomes exceeds 300 per unit area, the 
insects are affected by the trichomes and death [82]. Trichomes can also 
affect the behavior of certain insect larvae, such as cotton bollworms, 
by hindering initial incubation on cotton foliage and petioles and 
exposing them to predators and high temperatures that ultimately lead 
to exhaustion and death [83]. Trichomes can also affect the digestion of 
insects with small chewing mouthparts, because the larvae must eat the 
trichomes to reach the epidermis, and their digestive tract accumulates 
too many trichomes to be digested [84]. Studies have shown that the 
density of trichomes on tomato leaves is the main factor leading to 
insects avoiding plants. In addition, trichomes on the surface of leaves 
can secrete alkanes, acyl sugars, sesquiterpenes and other chemicals to 
kill or repel insects [85].

Disease resistance

The trichomes and thorns on plant leaves also play important roles 
in disease resistance. They can reduce the chance of contact and invasion 
by suspending pathogen propagules above the leaf surface, and some 
trichomes can produce toxic substances that inhibit the invasion and 
germination of pathogen spores [86]. Beckman et al. reported that a 
phenolic substance was present in the leaves of plants, and was released 
by external stimuli [87]. Zhenmin et al. found that certain substances 
from plant trichomes could inhibit the growth of some fungi [88].

Conclusion
Trichomes are widely found on the aerial parts of a range of plants. 

With the excavation of genes in Arabidopsis and O. sativa, a series of 
signaling pathway networks were analyzed. The mechanism of trichome 
formation in rice differs from that of the dicotyledon Arabidopsis. 
Plant hormones may also be involved in the regulation of trichome 
formation, which show different regulation mechanisms in different 
plants. Trichomes begin in seedlings and remain until the plant dies and 
show the function of the unity of time and space. Moreover, the density, 
length and distribution of trichomes play corresponding physiological 
roles in resisting natural stresses because of their specific structure. 
Further investigating the formation and eco-physiology of trichomes 
will have important theoretical significance and practical applications. 

According to plants growing needs in different ecological regions 
to improve the environmental adaptability and yield of the plants, we 
can promote or inhibit the trichomes formation by altering the certain 
physiological characteristics of trichomes for different plants in the future. 
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