Efficient algorithms for two extensions of LPF table: the power of suffix arrays

M. Crochemore C. S. Iliopoulos
M. Kubica W. Rytter
T. Waleń

SOFSEM 2010
Preliminaries

Input: a string $y[0..n-1]$.

Auxiliary algorithms:
- the suffix array (SUF),
- the longest common prefix array (LCP),
- range minimum/maximum query (RMQ) for SUF and LCP.

Can be done in $O(n)$ time.
We consider two variants of the classical problem:

The Longest Previous Factor Problem (LPF)

\[\text{LPF}[i] = \text{the largest such } k, \text{ that } y[i \ldots i + k] \text{ appears before (possibly overlapping)}. \]
Introduction

We consider two variants of the classical problem:

The Longest Previous Factor Problem (LPF)

\[\text{LPF}[i] = \text{the largest such } k, \text{ that } y[i \ldots i + k] \text{ appears before (possibly overlapping)}. \]

- Well studied.
- Can be computed in \(O(n) \) time.
The Longest Previous Reversed Factor Problem (LPrF)

$LPrF[i] =$ the largest such k, that $\text{rev}(y[i .. i + k])$ appears before (without overlapping).
The Longest Previous Reversed Factor Problem (LPrF)

$LPrF[i] =$ the largest such k, that $\text{rev}(y[i \ldots i + k])$ appears before (without overlapping).

- Generalises a factorization of strings used to extract certain types of palindromes [Kolpakov, Kucherov, 2008].
- Applications in compression of genetic sequences (in combination with LPF) [Grumbach, Tahi, 1993].
The Longest Previous Non-Overlapping Factor Problem (LPnF)

$LPnF[i] =$ the largest such k, that $y[i \ldots i + k]$ appears before (without overlapping).

Emerged from a version of Ziv-Lempel factorization. Decomposition of a string into already processed factors. Application in algorithms computing repetitions in strings [Crochemore, 1986], [Main, 1989], [Kolpakov, Kucherov, 1999].
Introduction

The Longest Previous Non-Overlapping Factor Problem (LPnF)

\[LPnF[i] = \text{the largest such } k, \text{ that } y[i \ldots i + k] \text{ appears before (without overlapping)}. \]

- Emerged from a version of Ziv-Lempel factorization.
- Decomposition of a string into already processed factors.
- Application in algorithms computing repetitions in strings [Crochemore, 1986], [Main, 1989], [Kolpakov, Kucherov, 1999].
Efficient algorithms for two extensions of LPF table
The Alternating Search Technique

Assumptions

We assume, that the following operations are given, and take $O(1)$ time:

- $Val(k)$ — non-increasing (for $i \leq k \leq j$),
- $Candidate(k)$ — a predicate,
- $FirstMin(i, j)$ — first position $k \in [i \ldots j]$ with the minimum value of $Val(k)$,
- $NextCand(i, j)$ — any candidate $k \in [i \ldots j)$.
Goal

For a given range \([i \ldots j]\), find a *candidate* \(k\) maximizing \(Val(k)\).
The Alternating Search Technique

Goal

For a given range $[i..j]$, find a candidate k maximizing $Val(k)$.

Alternating-Search(i, j)

Running time: $O(Val(k_{opt}) - Val(j) + 1)$
Computation of the LPrF table

- Calculate SUF and LCP for \(x = y \# \text{rev}(y) \).
- \(\text{LPrF}[i] = \max \{ \text{RMQ}(\text{LCP}[i \ldots j]) : j > 2n - i \} \)
Computation of the LPrF table

- Calculate SUF and LCP for \(x = y \# \text{rev}(y) \).
- \(\text{LPrF}[i] = \max\{\text{RMQ}(\text{LCP}[i..j]) : j > 2n - i\} \)

Example
Computation of the LPrF table

- \(\text{LPrF}[i + 1] \geq \text{LPrF}[i] - 1 \)

An instance of the alternating search (using: SUF and LCP for \(x \), and RMQ).

\(\mathcal{O}(n) \) running time.
Computation of the LPrF table

- \(\text{LPrF}[i + 1] \geq \text{LPrF}[i] - 1 \)

- An instance of the alternating search (using: SUF and LCP for \(x \), and RMQ).
- \(O(n) \) running time.
Computation of the LPnF table

\[LPnF[i + 1] \geq LPnF[i] - 1 \]

Boundary case (squares) — using runs (Kolpakov, Kucherov, 1999).

General case — the alternating search (using: SUF and LCP for \(y \), and RMQ).

\(O(n) \) running time.

M. Crochemore, C.S. Iliopoulos, M. Kubica, W. Rytter, T. Waleń
Efficient algorithms for two extensions of LPF table
Computation of the LPnF table

- \(\text{LPnF}[i + 1] \geq \text{LPnF}[i] - 1 \)

\[
\begin{align*}
\text{LPnF}[i] & \quad \text{LPnF}[i + 1] \\
b \ a \ a \ b \ a & \quad b \ a \ a \ b \ a
\end{align*}
\]

- Boundary case (squares) — using runs [Kolpakov, Kucherov, 1999].
- General case — the alternating search (using: SUF and LCP for \(y \), and RMQ).
- \(O(n) \) running time.
Summary

Our results

- The LPrF and LPnF tables can be computed in $O(n)$ time.
- The optimal parsing of a text, using factors and/or reverse factors can be computed in $O(n)$ time.
Thank you for your attention!