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Abstract
Many migrating birds undertake extraordinary long flights. How birds are able to perform

such endurance flights of over 100-hour durations is still poorly understood. We examined

energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite
during natural flights using birds trained to follow an ultra-light aircraft. Because these birds

were tame, with foster parents, we were able to bleed them immediately prior to and after

each flight. Flight duration was experimentally designed ranging between one and almost

four hours continuous flights. Energy expenditure during flight was estimated using doubly-

labelled-water while physiological properties were assessed through blood chemistry

including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen

compounds. Instantaneous energy expenditure decreased with flight duration, and the

birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and

protein as fuel. This made flight both economic and tolerable. The observed effects resem-

ble classical exercise adaptations that can limit duration of exercise while reducing ener-

getic output. There were also in-flight benefits that enable power output variation from

cruising to manoeuvring. These adaptations share characteristics with physiological pro-

cesses that have facilitated other athletic feats in nature and might enable the extraordinary

long flights of migratory birds as well.

Introduction
Nonstop flapping flights across large geographic barriers such as deserts or oceans during
migration [1–3] are extreme and fascinating achievements, but the physiological adaptations
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associated with these feats are not thoroughly understood. Flight is energetically costly, and the
key to the mystery may therefore be the birds’ abilities to meet the energetic costs and to cope
with the negative impacts of long-term exercise. Costs and consequences of physical activity
should increase with its effort and duration [4]. The availability of fuel along with a variety of
other factors may change flight performance and could limit endurance. These other factors
include the accumulation of lactate and oxidative damage, dehydration, electrolyte imbalance
and acidosis, glycogen depletion, exceeding capacities for fat and protein catabolism, and oxy-
gen debt. All are known to contribute to muscle fatigue and thus limit performance and dura-
tion. Following the typical mammalian model of exercise, one would expect flight to be
accompanied by similar cost accumulations, fuel depletion, increased energy expenditure and
exhaustion. This view is partly supported by studies on migrating birds but has become difficult
to generalize in light of documented extremes in migratory performance, like the eight-day
trans-Pacific flight of a Godwit [1], or the 3400 km trans-Atlantic flight of a Northern Wheat-
ear [3].

In previous studies, the energetic costs of flight were described by employing aerodynamic
models [5, 6], flying birds in wind tunnels [7–16], or by measuring energy expenditure in free-
flying birds with calibrated heart-rate telemetry [17–19] and doubly labelled water (DLW)
methods [20–23]. Physiological aspects of flight in birds was addressed by applying markers of
exercise physiology developed in studies of humans [2] to birds at migratory stopover sites [2–
39], to birds flying in a wind tunnel [40–42] or using homing pigeons [43–47]. While each of
these studies produced valuable insights, they are paralleled by conflicting results and interpre-
tations as well. Basic problems when comparing results were the lack of flight information,
focus on a single aspect and time point of the response, and that species differing in size and
flight modes were used. For example, in birds at migratory stopover sites nothing is known
about the previous flight, and these birds may have been already at the site for an unknown
period of time after landing before being trapped and examined. Only very few studies directly
linked physiological markers to flight energetics, and considered flight-duration [12, 16].

Taking advantage of the framework of a human-led migration with access to the birds
immediately prior and after a defined flight we aimed an integrated approach of using various
markers for different metabolic processes along with the changes thereof during flight. We
therefore combined simultaneously energetic measurements with an array of exercise physiol-
ogy markers, enabling us to develop a more comprehensive picture of flight metabolism, with
the ultimate aim to understand how birds achieve extreme long distance flights.

The hypothesis we investigate here is that physiological costs and cost accumulation can be
compensated for during long flights. If this is so, then migratory birds may simply fly as far as
their ecology dictates and their fuel reserves and body water requirements allow [16, 47–54].

In order to test our hypothesis, we introduced a new experimental approach to the study of
the physiology of bird flight using human led flights to control the conditions under which the
birds fly, and to take physiological measurements immediately before and after flights of
defined lengths. We combined techniques to simultaneously document markers of energy
expenditure, metabolite use (i.e. the change in concentration of plasma metabolites), respira-
tion, water content and electrolyte balance. The techniques were then applied to defined flight
performances in the Northern Bald Ibis (Geronticus eremite; NBI). NBI are migratory: docu-
mented migration routes are over 3000 km with individual non-stop flights of 500 km [55],
and they show all the characteristics of the migrant models that have been used to date [56]
including pre-migratory fattening as documented in this study (S5 Fig).

Our research was done within the framework of an autumnal human-led migration from SE
Germany to central Italy with captive-bred birds [57]. The setup enabled us to document phys-
iological reactions to flights of various lengths. Birds were hand-raised and trained to fly after
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an ultra-light aircraft, and land on command. It was possible to sample blood immediately
before and after flights with exact knowledge of the intermediate performance. The birds’ flight
speeds were regulated by the aircraft and held constant over time. In order to keep birds in con-
tinuous flapping-flight, migration bouts occurred in the morning before thermals had devel-
oped and would have the birds enforced to soar. Flight lengths were varied to relate energetics,
fuel consumption and costs to exercise duration. We predicted that flight responses would
reflect adaptations to oxygen debt, the change from glycogen to fat reserves as a muscle energy
source and the accumulation of potentially adverse metabolic products. We initially analysed
the results on the bases of all pre- to post-flight changes for the parameters. Thereafter we mod-
elled the temporal patterns of pre-post changes with flight duration to document how energy
expenditure, fuel use and cost accumulation had changed in-flight.

Material and Methods

2.1. Methods
The project was carried out in the framework of a re-establishment program for the NBI in
Central Europe (see www.waldrapp.eu). In the project, young NBI are hand-reared and trained
to migrate to a wintering area in their first autumn. Birds are escorted along a migration route
with microlight aircraft, from the German Prealps (Burghausen, 48°12.711' N, 13° 20.776' E) to
central Italy (Laguna di Orbetello, 42°26.252' N, 11°11.645' E). The present study was con-
ducted during the escorts of 2008. Flight training before migration enabled us to sample
repeated flights of varying flight duration. Training began with first flight and continued until
the flock was able to reliably follow the aircraft, taking off and landing on command. Training
ended two weeks ahead of the start of the escorted migration flights in late August. To the end
of the training period flight mode of the trained birds was similar to the one of a group of free-
ranging birds at the Konrad Lorenz Forschungsstelle at Grünau, Austria. Escorted flights took
place in the morning in order to avoid midday thermal turbulences. With this restriction, they
were limited to about six hours. The end points of each flight were small recreation airports.
After landing, an aviary was set up to house the birds until the next flight. Two double-seated
microlights were used. A foster parent sat behind the pilot. Flight speed was maintained
between 35 and 45 km/h. It was adjusted in-flight to the behaviour of the flock. Flight altitudes
were 50 to 400 meters above ground at above levels of up to 1380 m depending on geological
and meteorological conditions. Adverse winds constrained the microlights so flights only
occurred on days with stable weather conditions. The total direct flight distance was 1162 km.
The flights were planned in advance and dependent on the presence of airports along the route
where the birds were allowed to land. Flight duration often deviated from plan as a result of
weather conditions or the animals’ unwillingness to continue flight. In those cases, no blood
samples were taken.

The analyses of in-flight physiology were based on comparisons of pre- and post-flight mea-
surements. Prerequisites for data inclusion were; a) continuous flight between samples, b) suc-
cessful documentation of flight duration and speed and, c) the exact coordination of the flight
with the ground movement of apparatus and personnel necessary for immediate post-flight
sampling. The specific characteristics of the flights and the numbers of individuals sampled are
in the supplementary information (S1 Table). In 2008, there were 13 flights of which eleven
were sampled successfully with durations of 65 to 205 minutes.

2.2. Sampling
Animals were sampled in the morning before take-off (on average (± SD) 43±13 minutes
before flight), and immediately after landing. The lag between landing and individual sampling
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was on average 35±15 (3–69) minutes (S1 Fig). The times were noted and used to correct the
data (see below). All birds were sampled during pre-migration as control values for the DLW
analysis. Every other flight four to six other individuals were chosen per flight (S1 Table). Indi-
vidual samples were separated by at least three days.

The birds were accustomed to handling from hatch. For blood collection, the bird was taken
into the caretaker’s lap and its head was covered with a lightproof sack. For pre-flight measure-
ments, blood was extracted from the Vena jugularis dextra. Post-flight samples were drawn
from the cutaneous Vena basilica. The change in sample sources was to avoid hematomas and
flight impairment after wing vein sampling. We are aware that the site of bleeding could have
affected our measurements but there is no evidence in literature that there is a significant dif-
ference in haematological values between jugular and brachial vein values [58–59]. For deter-
mining resting energy metabolism a further blood sample was drawn the day after a flight. A
2.5 ml pre-heparinized syringe with a 25-gauge needle was used to collect 1.5 ml of whole
blood. The handling-bleeding intervals were slightly longer post-flight but differences were not
significant and not related to flight duration (S2 Table).

After collection, 200 μl capillaries with whole blood were flame-sealed for the doubly-
labelled-water analyses and haematocrit tubes were filled for centrifugation. Thereafter, 65 μl
of whole blood was injected into the CG4+ cartridge of a i-STAT blood analyzer, another ali-
quot was applied to an EC4 cartridge. The i-STAT is a commercial point-of-care device for
blood chemistry parameters, validated in birds as well [60–62]. CG4+ was used to determine
pH, pCO2 and pO2; EC4 for haematocrit (HCT), sodium (Na) and potassium (K). The remain-
ing blood was centrifuged at 12.000 rpm for 10 minutes. Two plasma aliquots were prepared
and frozen immediately for further analyses.

2.3. Physiological parameters
2.3.1. Energy expenditure. Energy expenditure was measured using the DLWmethod

[63–64] by a pre-flight injection of doubly labelled water (DLW) containing 2H and 18O iso-
topes (a standard mixture of 99.9% 2H water and 98.44% 18O water and a ratio of 2H to 18O of
3:2). Animals were held by the human foster parents and a 1ml DLW solution was injected in
the pectoral muscle (M. pectoralis profundus). The injection times were noted (S3 Table). The
injections occurred at least one hour before pre-flight blood sampling to ensure equilibration.
The time point of injection had no effect on the data analysis because pre- and post-flight
blood measurements were compared. The samples were stored at 5°C and later sent to the Cen-
tre for Isotope Research (University of Groningen). The analyses were done without knowledge
of the flight protocol. The general procedure for analysis of 18O and 2H determination followed
[65–67]. Briefly, after the blood was distilled in a vacuum line, δ18O and δ2H measurements
were performed in automatic batches using a High Temperature pyrolysis unit (Hekatech) cou-
pled to a GVI Isoprime Isotope Ratio Mass Spectrometer for the actual isotope analysis [68]. In
the complete analysis scheme, several quality checks were incorporated, including the spread
of initial values for similar situations, the spread of δ2H/δ18O ratios for initials and finals, and
both absolute and relative differences. Local water standards (gravimetrically prepared from
pure 2H- and 18O-water), covering the entire enrichment range of the blood samples, were
applied for calibration purposes. Converting CO2 production into energy demands followed
the calculations of Speakman [64] and Visser et al. [65] using a fixed respiratory quotient (RQ)
of 0.8, in order to get comparable results to other published measurements of flight energy
demands [20–23]. The error in the derived calorific equivalence of produced CO2 is less than
5% [64]. To assess energy expenditure for the flight only, corrections were made for the interval
between sampling and take-off, and between landing and sampling. The corresponding post-

Ibis Flight

PLOS ONE | DOI:10.1371/journal.pone.0134433 September 16, 2015 4 / 17



flight resting expenditures were used as a proxy for the corrections. Total energy expenditure
was estimated by determining the decay rate of isotopes between pre- and post-flight samples.
Resting energy expenditure was calculated from the time interval between the post-flight sam-
ple and the recovery day sample.

2.3.2. Blood chemistry parameters. Four groups of physiological parameters were chosen
to study: 1) metabolites, 2) blood gases, lactate and phosphagens, 3) electrolytes and phos-
phates and 4) reactive oxygen metabolites (ROMs, a measure of oxidative damage). Metabolite
analyses included plasma concentrations of triglycerides TRIG, free fatty acids FFA, glycerol
GLY, ß-hydroxybutyrateHBA, glucose GLUC, total protein TP, uric acid URIC and UREA.
With the exceptions of FFA and GLY, these were measured on a bench-top analyzer at the
UVM [69–71], using a Roche Hitachi 911 Chemistry Analyzer (S4 Table). Two-level, daily
quality controls were performed. FFA and GLY were measured manually in duplicate at the
University of Vienna using the EnzyChrom Free Fatty Acid Assay Kit (BioAssay Systems) and
the Sigma Aldrich Free Glycerol Determination Kit (FG0100).

As parameters for respiration we measured the whole blood partial pressures of oxygen and
carbon dioxide (pO2, pCO2), plasma lactate LACT, lactatedehydrogenase LDH and creatine
kinase CK activity. Oxygen and pCO2 measurements were done immediately after sampling
with the i-STAT cartridge CG4+. Haematocrit was measured after centrifugation. Potassium K
measurement is sensitive to storage and thus was done with the EC4 i-STAT cartridge after
sampling [72]. The other plasma parameters were measured later with the Hitachi 911 in com-
bination with an integrated ion-selective electrode (K and Na) and Roche Kit for inorganic
Phosphates (S4 Table).

2.3.3. Reactive oxygen metabolites. Reactive oxygen metabolites were measured at the
University of Groningen following the protocol of Costantini et al. [73]. In short, oxidative
damage was estimated as the plasma concentration of ROMs (primarily hydroperoxides,
ROOH) and measured by means of the d-ROM Test (Diacron, Grosseto, Italy). Plasma (20 μl)
was diluted in 400 μl of solution containing 0.01 M of acetic acid/sodium acetate buffer (pH
4.8) and N,N-diethyl-p-phenylenediamine as chromogen. After incubation at 37°C for 90 min-
utes, the pink coloured complex was measured with a spectrophotometer (Beckman Coulter
Du530) at 505 nm and the concentration was determined by comparison with a reference.
Results were expressed as mmol l-1 of H2O2. Serum antioxidant capacity (OXY) was measured
by the OXY-Adsorbent test (Diacron, Grosseto, Italy). This kit uses a colorimetric determina-
tion to quantify the ability of the antioxidant barrier to cope with the oxidant action of hypo-
chlorous acid (HOCl). Plasma (10 μl) was diluted 1:100 with distilled water. A 200 μl aliquot of
a titred HOCl solution was incubated with 5 μl of the diluted serum for 10 min at 37°C. Then,
5 μl of the same chromogen solution used for the ROMs determination was added.

An alkyl-substituted aromatic amine solubilised in the chromogen is oxidised by the resid-
ual HOCl and transformed into a pink derivative measured at 490 nm.

2.4. Statistics
Changes between post- and pre-flight values in the blood characteristics were expressed as the
difference between the post- und pre-flight values. In order to account for possible effects of
the time lag between landing and bleeding on the measurements linear regression analyses
were performed for each parameter. Though in only five of the 24 parameters the relationship
between the parameter values and time lag were significant, we used the residual to correct for
time lag effects in all post-flight plasma characteristics. In order to test the relationship between
energy expenditure and flight duration and between changes in the plasma characteristics and
flight duration, respectively, the post-/pre-flight difference values were used in a General Linear
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Repeated Measures Model approach with energy expenditure and plasma characteristics as
dependent variables, flight duration as fixed factor, and the individual bird as a random effect
and the sequence of flight (calendar date) as repeated measures. To visualize the relationship
between post-flight changes in plasma characteristics and flight duration in all parameters for
which GLM resulted in a significant relationship to flight duration, best-fit regression models
were applied and the best-fit line is shown. All statistics were performed with SPSS 21.0 (IBM,
New York). In all cases, p< 0.05 was considered significant.

2.5. Use of animals
The animals used in this work were obtained under licence from Zoo Vienna, Austria; Zoo
Zurich, Switzerland; Zoo Prague, Czech Republic; Konrad-Lorenz Research Station, Austria;
and Game Park Rosenegg, Austria. All experiments were under licence from and approved by
the Bundesministerium für Wissenschaft und Forschung, Referat für Tierversuchswesen und
Gentechnik, Vienna, Austria (BMWF-66.006/0014-II/3b/2010). Only animals in good health,
as approved by a participating veterinarian, were used for flights. To reduce stress, the head of
the bird was covered during manipulation and bleeding. The protocol was approved in the
field by the Office of Advisory Committee for Animal Experiments, University of Veterinary
Medicine, Vienna (protocol nr. 31/2009).

Results and Discussion

3.1. Flight energy expenditure
Flight energy expenditure was significantly elevated above non-flight energy expenditure (Fig
1A; paired t-test: t41 = 12.307, p<0.001). Rate of energy expenditure decreased with flight dura-
tion but appears to level in longer flights (Fig 1B; GLMM, F = 12.969, p = 0.002). As flight dura-
tions were equally distributed over the season, and as energy expenditure did not correlate with
calendar date (partial correlation between energy expenditure and date controlled by flight
duration: rpar = -0.142, p = 0.383) training was not a factor in energy expenditure. As body
mass did not significantly vary with flight duration (S2 Fig), mass specific energy expenditure
(S3 Fig) decreased similarly with flight duration as did total energy expenditure (Fig 1B). Thus,
the instantaneous costs of flying are lower in longer flights enabling the birds longer flight

Fig 1. Energy expenditure during flight. A: Mean (± s.d.) energy expenditure (kJ h-1) during rest and during
flight.B: Relationship between flight energy expenditure EE (kJ h-1) and flight duration.

doi:10.1371/journal.pone.0134433.g001
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duration with the same amount of fuel. Total flight costs did not significantly increase with
flight duration (S4 Fig; Person correlation: r = 0.220, n = 41, p = 0.168). One reason for
increased energy expenditure in shorter flight could be, however, that the portion of taking off
and climbing is relatively larger in shorter flights and progressively “dilute” as flight duration
increases. Despite that, we did not observe any other modification of the birds’ flight behaviour
over flight time. Consequently, the change could be related to corresponding changes in fuel
metabolism and muscle efficiency.

3.2. Post-flight changes in plasma metabolites
As in many migrants, the NBI lost body fuel in the course of migration (S5 Fig) reflecting use
of metabolic fuels. This use of fuels was reflected in the dynamics of metabolic markers. Post-
flight plasma triglycerides (TRIG) were significantly lower than pre-flight, independent of
flight duration (Fig 2; S5 Table). The use of TRIG from lipid reserves with increasing flight
duration was also documented by the increased plasma levels of free fatty acids (FFA; Fig 2)
and plasma glycerol (GLYC; Fig 2). The use of fat as energy substrate was finally illustrated by
the increase in plasma levels of β-hydroxybutyrate (HBA; Fig 2), a by-product of lipid catabo-
lism. HBA can have negative physiological effects via ketoacidosis which may explain the
decrease of plasma pH with flight duration (Fig 4).

Fig 2. Post-flight versus pre-flight changes in plasma levels of fat and carbohydrate metabolites in relation to flight duration (flight-time in
minutes). Best-fit regression lines are shown for significant relationships with flight duration. Horizontal dotted lines show the respective zero (no change)
line.

doi:10.1371/journal.pone.0134433.g002
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Post-flight plasma glucose (GLUC; Fig 2) levels were significantly lower than pre-flight lev-
els and decreased with flight duration. Post-flight levels of markers for protein use and break-
down, plasma total protein (TP; Fig 3) and plasma uric acid (URIC; Fig 3), did not differ from
pre-flight values, but TP slightly decreased with flight duration while URIC increased, reflect-
ing the use of protein in addition to lipids similar to previous studies [25, 28, 39, 45]. However,
post-flight plasma urea (UREA; Fig 3) levels were low compared to pre-flight levels, contrasting
previous studies which reported elevated plasma UREA levels in homing pigeons immediately
after return [45]. This difference may reflect differences in protein use during flight which
might be less in migratory birds as compared to resident birds though trained for long homing
flights.

3.3. Blood gases and products of anaerobic metabolism
Blood gases, lactate and phosphagen kinase are parameters that interact with exercise, metabo-
lite use and gas exchange. A prelude for consideration here is that bird flight can enhance venti-
lation with accompanying costs and benefits. Venous pO2 decreased after flight (Fig 4, S5
Table) in short flights but the decrease in pO2 decreased with flight duration indicating recov-
ery from an oxygen debt with increasing flight time which might be due to increased ventila-
tion. Venous pCO2 decreased after flight with no relationship to flight duration. The decrease

Fig 3. Post-flight versus pre-flight changes in plasma levels of LDH, CK and protein metabolites in relation to flight duration. For further explanation
see Fig 2.

doi:10.1371/journal.pone.0134433.g003
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in blood pCO2 may be a direct product of increased metabolism and respiration. Increased
exhalation may decrease the potential for acidosis during exercise [74].

Post-flight lactate (LAC; Fig 2) differed significantly from pre-flight with elevated post-flight
levels but irrespective of flight duration, while lactate dehydrogenase activity (LDH; Fig 3) sig-
nificantly increased with flight-time (S5 Table). Lactate and lactate dehydrogenase activity are
directly related to oxygen availability. Increased levels signal anaerobic glycolysis. For long, lac-
tate was largely considered a dead-end waste product of glycolysis due to hypoxia, a major
cause of muscle fatigue, and a key factor in acidosis-induced tissue damage but is at present
seen as an important intermediary in numerous metabolic processes [75]. Consequently,
increased plasma lactate levels do not necessarily reflect muscle fatigue and impaired exercise
capabilities. Rather, lactate is considered to be substrate for oxidative pathways [76–78] which
may facilitate long endurance flights. Plasma-LDH increases are from muscle and liver sources
and thus related to both lactate production and metabolism.

Plasma creatine kinase levels (CK) did not change significantly during flight (Fig 3). This is
in contrast to other studies which found CK increases in flight and was assumed them to reflect
muscle damage and changes in membrane permeability [24, 79]. Our results do not support
the muscle damage assumption although the few cases of birds with high post-flight CK levels
(Fig 3) raise the possibility that muscle damage might exceptionally occur. Thus, migrants may
avoid muscle damage behaviourally, or may have efficient biochemical and physiological
defences against exercise induced muscle injury [24] Phosphate (P), a marker for CK activity
and plasma P effects did not change during flight (Fig 5; S5 Table). All of the parameters are
associated with processes that differ from aerobic catabolism and oxidative phosphorylation in
terms of energy production. They are coupled to metabolic processes with very rapid and high
production rates of ATP that are also costly. The negative side is that they reduce the total ATP
yield [80]. There was evidence for the use of anaerobic pathways in-flight. As mentioned
above, they also documented the presence of a high anaerobic threshold in Ibis similar to that
found in well-trained human athletes [81].

Fig 4. Post-flight versus pre-flight changes in plasma levels of HCT, pH and blood gases in relation to
flight duration. For further explanation see Fig 2.

doi:10.1371/journal.pone.0134433.g004
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We did not find a decrease in haematocrit (HCT; Fig 4; S5 Table) after flight as it has been
reported in other studies [25, 42, 82]. However, data on changes in HCT in relation to flight
and energy expenditure are controversial [83].

3.4. Post-flight changes in plasma electrolytes
Among electrolytes, sodium (Na), potassium (K), magnesium (Mg), and phosphates (P) were
measured because of their relationships with exercise, blood gases and metabolism. Na
increased and K decreased in short flights but recovered to normal levels with increasing flight
duration (Fig 5; S5 Table). Both are paired in the sodium pump associated with a wide range of
physiological functions from osmolarity to excretion. In effect, there were shifts among cellular,
interstitial and plasma pools that occurred in-flight. The increase in Na is unlikely due to
potential evaporative water loss because Mg decreased as well, besides K (Fig 5; S5 Table),
and there was no change in HCT (Fig 4; S5 Table). Ca levels were significantly increased after
flight, irrespective of flight time (Fig 5; S5 Table). In homing pigeons no changes in plasma
electrolyte concentrations were found [45]. Although electrolytes serve a wide variety of
functional purposes and their concentration and balance in intra- and extracellular fluids are
tightly regulated is [84–85] we do not know much about changes due to exercise except their
link to water balance. Therefore, we can only speculate about the conflicting results and the
functional purposes. An increase in Na may support muscle function in terms of power output,

Fig 5. Post-flight versus pre-flight changes in plasma electrolytes in relation to flight duration. For further explanation see Fig 2.

doi:10.1371/journal.pone.0134433.g005
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cardiovascular performance, and lactate trafficking [84]. Similarly, the small but significant
decreases in the plasma levels of K, Mg and P may have been connected to alterations in muscle
activity as plasma volume did not increase. Phosphates interact directly with muscle power out-
put and indirectly with it via interaction with haemoglobin affecting oxygen binding [79]. Simi-
lar decreases in the plasma free phosphate pool during exercise have been related to muscle
uptake in mammal studies. For Mg, muscle uptake, to increase power output, and plasma
decreases are common phenomena in exercise physiology [74]. With increasing flight duration
these pre-/post-flight differences decreased indicating that the birds tapped into plasma stores
of specific electrolytes to increase flight efficiency and lessen the impact of extended exercise.

3.5. Reactive oxygen metabolites
Strenuous exercise is often seen as resulting in oxidative stress with increased oxygen consump-
tion and free radical production [40, 86]. To examine potential oxidative stress we monitored
serum reactive oxygen metabolites (ROMs) and total serum antioxidant capacity (OXY). Nei-
ther ROMs nor OXY changed significantly from pre- to post-flight nor in relation to flight
duration (Fig 6; S5 Table). OXY was measured as the ability of the serum antioxidant barrier to
cope with the oxidant action of hypochlorus acid. There were no correlations among ROMs,
OXY and flight duration (Pearson correlation; p>0.5). This is in contrast to previous reports
that flying birds are exposed to oxidative stress [40, 86]. Similar to Kestrels [87] NBI appear to
be able to cope with oxidative stress but the effective defence system is unknown.

Conclusions
By using an integrated approach with combining parallel measurements of energy expenditure
and an array of exercise physiology markers in the Northern Bald Ibis we can draw conclusions
which we believe are indicative of principles that make moderate and long-distance migratory
flights possible. Our data support earlier results in flying pigeons [8] that during take-off and
early flight the birds primarily use their carbohydrate (glycogen) stores to fuel their flying. This
is the consequence of the need for more power output and the higher energy expenditure in

Fig 6. Post-flight versus pre-flight changes in plasma reactive oxygen metabolites in relation to flight
duration. For further explanation see Fig 2.

doi:10.1371/journal.pone.0134433.g006
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early flight. As these glycogen reserves last not long [8] they appear to become somehow anaer-
obic rather shortly after take-off. They then went quickly into fat metabolism and continued so
until the end of the flight. Utilizing fatty acids from lipolysis provided the birds with power and
were part and parcel to metabolic burden. With the continued loss of GLUC (Fig 2) and the ini-
tial but stable depletion of plasma TRIG (Fig 2) and TP pools (Fig 3) fatty acids were mobilized
from lipid stores and GLUC loss was perhaps compensated for, in part, with LAC and GLY
metabolism [88]. Plasma sodium increases and body fluid changes occurred early in flight and
they were an integral part of the physiological adaptation. They became more moderate with
prolonged exercise.

The absence of a continuous LAC increase (Fig 2) documented the balance between accu-
mulation and metabolism. LAC metabolism is part of a shuttling mechanism with both ana-
bolic and catabolic products. Similar LAC patterns during exercise have been described in
detail for mammals [74]. In line with recent ideas concerning its role in prolonged exercise
[89] LAC shuttling might even be advantageous for the birds during flight. The hypothesis pre-
dicts that stores are used during exercise to compensate for GLUC decreases. Hence GLY, LAC
and LDH interactions occurred that maintained or perhaps even improved exercise perfor-
mance during flight. Thereafter, although the birds returned to aerobic metabolism with
increasing flight duration they maintained an anaerobic capacity. Exercise around the anaero-
bic threshold is known to be an efficient exercise strategy in long distance human runners [74].
It is therefore not a surprising phenomenon in migrating birds.

Accumulations of HBA (Fig 2) could, in time, become a physiological burden for the birds.
Within our flight durations we did find plasma pH changes, so ketosis may become a problem.
However, the non-linear relationship between increase in post-flight HBA and flight duration
hints on an asymptotic levelling in HBA levels in very long flights. However, the effects of
ketone metabolism on brain function in birds are not known. Post-flight HBA increases are
known in other migrants, and it is assumed that birds have a high systemic tolerance for them,
similar to that for LAC [90]. CK is considered to be an indicator of strenuous exercise and mus-
cle damage [24, 79]. In contrast to mammals, CK has been found to have positive or enhancing
effect during exercise in other vertebrates like reptiles [91]. It may, therefore, also have had a
specific physiological role in-flight. It was liberated or leaked from muscle and liver sources ini-
tially and remained elevated as flight continued. In muscle CK shunts ATP into a pool of CrP
that increases the energetic base for contraction and lessens heat production. In this way, some
of the negative impacts of FFA metabolism in muscle [92–93] can be avoided. In essence, the
intramuscular CK effects have the potential of being a key element in the increased energetic
efficiency of longer flights by balancing need and availability.

The study has provided insights to flight physiology that support our initial hypothesis that
physiological stress and cost accumulations can be compensated for during flight and that as a
consequence migratory species are not particular constrained by physiological processes. It would
seem that they can fly as far as their ecology dictates and their fuel reserves and body water
requirements allow. Though derived from studying a medium distance migrant these results may
help to understand the extraordinary athletic feats of migrants crossing oceans and deserts [1–3]
without intermittent stopping. They also have consequences for the understanding of the evolu-
tion of migration strategies [94] and open up questions about the physiology of endurance exer-
cise that may have shaped the evolution of movement of many other animals as well.
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