The Kinetic Mechanism of Formation of the Bacteriophage T4 DNA Polymerase Sliding Clamp

Mark C. Young, Steven E. Weitzel and Peter H. von Hippel*

Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene OR 97403-1229, USA

DNA replication in bacteriophage T4 requires the assembly of a structure called the "sliding clamp" near the 3' end of the DNA strand that is to be extended. This structure is a trimer ring of the T4 gene 45 product (gp45) and serves to regulate the processivity of the DNA polymerase within the T4 DNA replication system. The placement of this ring is performed by an ATPase complex of the products of T4 genes 44 and 62 (gp44/62) that consists of four gp44 subunits and one gp62 subunit. In an effort to understand the role of ATP hydrolysis in processes occurring during the formation of the phage T4 DNA sliding clamp, we have performed direct substrate and product binding experiments and steady-state and presteady kinetic experiments on the gp44/62-gp45 system. Substrate (ATP) and product (ADP) binding studies show that the gp44/62 complex binds 4(±1) ATP molecules with a

\[K_d = 34(\pm 12) \text{mM} \]

and 3.7(±0.3) ADP molecules with a

\[K_d = 14(\pm 7) \text{mM} \]

The binding of the other reaction product (inorganic orthophosphate) could not be detected. Presteady-state kinetic analysis of ATP hydrolysis during the sliding-clamp-loading process indicates a biphasic progress curve, consisting of an initial rapid "burst" phase with an amplitude of four ATP molecules per gp44/62 complex and a rate of 15 s\(^{-1}\), followed by a second slower phase corresponding to the steady-state rate of ATP hydrolysis by this complex. The rate of the burst phase is kinetically consistent with the previously observed rate of T4 DNA polymerase holoenzyme formation. The burst amplitude depends solely on the concentration of gp44/62 ATP binding sites present. These results suggest that the formation of a single T4 sliding clamp requires the hydrolysis of four ATP molecules by one gp44/62 complex in a process requiring 0.5 to 1 second. A model describing the clamp-loading process is discussed in the context of these results.

Keywords: DNA replication; polymerase accessory proteins; ATPase; ATP binding; presteady-state kinetics

Introduction

A crucial quality for the physiological function of a DNA polymerase is processivity, which deter-

mines the extent to which the polymerase resists dissociation from the DNA template it is engaged in copying (Fairfield et al., 1983; Nossal & Alberts, 1983; Nossal, 1992; Young et al., 1992; von Hippel et al., 1994). Highly processive DNA synthesis allows the rapid and efficient replication of large genomes. In the bacteriophage T4 replication complex, this quality is imparted to DNA polymerase by the action of two protein complexes. The first appears to form a proteinaceous ring encircling the DNA (Gogol et al., 1992), and it has been shown to be a trimeric complex of the product of T4 gene 45 (gp45; Sanders et al., 1994). This ring forms a complex with DNA polymerase, thereby preventing dissociation of the polymerase from the DNA, yet allowing longitudinal movement of the
ring-polymerase complex (Reddy et al., 1993; Kaboord & Benkovic, 1993). Because of these characteristics, this processivity control structure has long been termed a “sliding clamp” (Huang et al., 1981).

The sliding clamp is capable of assembling with T4 polymerase on DNA under macromolecular crowding conditions (Reddy et al., 1993), but under normal *in vitro* conditions such spontaneous assembly does not occur. Rather this is usually accomplished by the second of the processivity protein complexes, which contains four gp44 subunits and one gp62 subunit (gp44/62; Jarvis et al., 1989b). The gp44/62 complex appears to function as a sliding-clamp-loading ATPase enzyme (Kaboord & Benkovic, 1993, 1995, 1996). The hydrolysis of ATP has long been known to be required for the clamp-loading process (Piperno & Alberts, 1978), but the detailed mechanism whereby this hydrolysis is coupled to the loading of the sliding clamp onto the DNA and the polymerase is not understood.

The T4 DNA replication system is archetypal in the sense that this mode of attaining processive synthesis is conserved in both bacterial and eukaryotic replication systems (O’Donnell, 1987, 1992; Brush et al., 1995). The clamp cognates of the gp45 trimer in *Escherichia coli* and *Saccharomyces cerevisiae* are the β subunit dimer of DNA polymerase III and the PCNA trimer, respectively. Analogs of the gp44/62 complex also exist as the γ complex of *E. coli*, and the RF-C complex in *S. cerevisiae*. The crystal structures of both of the other clamp proteins have been determined (Kong et al., 1992; Krishna et al., 1994). The overall structure of these clamps is that of a ring, which presumably encircles DNA in a manner similar to that of the T4 clamp (Gogol et al., 1992).

Since the structure of gp45 is that of a ring of three subunits, this poses the intriguing question of how a topologically closed ring of gp45 subunits can be induced to encircle DNA. A mental image of the reaction almost obligatorily includes conformational distortion (“opening” or partial disassembly) of the protein ring, and suggests that the role of gp44/62 and ATP hydrolysis is to produce the required ring distortion. Indeed, previous results indicate that relatively large changes in protein conformation do occur during clamp loading (Hockensmith et al., 1987, 1993; Capson et al., 1991). Any ultimate picture of the mechanism of clamp formation must include a dynamic description of both the protein structural changes involved and the chemical state of ATP during the various stages of the clamp-loading process. We are pursuing both avenues of study at the present time. Experiments designed to examine structural changes in the loading process are presented in the companion paper (Latham et al., 1996).

Here we discuss experiments that have been undertaken to elucidate the kinetic mechanism of ATP hydrolysis by the clamp-loading complex, gp44/62. We present binding experiments that determine the number of ATP molecules bound by the gp44/62 complex. This result, in combination with pre-steady-state kinetic experiments that determine the number of these bound ATP molecules that are used during the clamp-loading process, together with ADP-ATP exchange studies and binding experiments with ADP, illuminate the core mechanistic events that occur in the clamp-loading process. Finally, steady-state kinetic studies are used to shed light on an additional aspect of ATP hydrolysis by gp44/62.

Results

Binding of ATP to gp44/62

The gp44/62 complex contains four gp44 subunits, each potentially capable of binding ATP (Jarvis et al., 1989a; Rush et al., 1989). Direct binding studies of the ATP substrate (and the ADP and inorganic orthophosphate (Pi) products) to gp44/62 have not previously been performed. We have undertaken such studies in order to determine both the stoichiometry and the strengths of binding of these components. Figure 1A shows the combined results of two typical [γ-32P]ATP binding experiments, using 5 μM gp44/62 complexes. The high concentration of gp44/62 used in these experiments necessitated the use of a large volume of gp44/62 stock solution for each binding point. The gp44/62 storage buffer contained 50 mM potassium phosphate (KP). Since it was conceivable that Pi, a product of the gp44/62 ATPase reaction, could have an effect on the binding of ATP, the gp44/62 stock solution was dialyzed against storage buffer minus Pi for these experiments. The data may be fitted to a simple binding curve (defined by equation (2), see Experimental Procedures) with a plateau value (n) of 21(±1) μM (4(±0.2) ATP molecules per gp44/62 complex), and a Kd of 38(±8) μM. This indicates that there are four identical binding sites for ATP on the gp44/62 complex.

To determine whether Pi, affected the binding of ATP to gp44/62, binding experiments with 23 mM Pi present were also carried out. Figure 1B presents the combined ATP binding data of five experiments performed in the presence of Pi. The data were again fitted to equation (2), with a plateau value of 17(±2) μM (3.4(±0.4) ATP molecules per gp44/62 complex) and a Kd of 30(±15) μM. No differences, beyond experimental error, were observed in the measured dissociation constants and stoichiometry of ATP binding in the presence and absence of Pi. Since Pi is a product of the ATPase reaction and would be expected to interfere with ATP binding if present at the active site, these data indicate that the dissociation constant of Pi, is >23 mM. In support of this, efforts to use these titration procedures to detect direct binding of 32P, to gp44/62 were completely unsuccessful. However, the sensitivity of this technique limits useful Pi concentrations to the submillimolar range.
All of the above binding experiments were carried out in the presence of 2.3 mM Mg$^{2+}$. Since the hydrolysis of ATP by isolated gp44/62 is very slow ($k_{cat} < 0.5 \text{ min}^{-1}$ at room temperature, see below), and each point on the binding curve was completed within two minutes, very little of the starting ATP was converted to ADP during the experiment. Given that the binding constant of ADP is comparable to that of ATP (see the next section), we conclude that the curves in Figures 1 and 2 satisfactorily reflect the binding of ATP to gp44/62.

Finally, a study of the effect of ATP on the intrinsic fluorescence of gp44/62 (data not shown) was also performed to provide a different measure of ATP binding. A slight (ca. 5% at plateau) quenching of gp44/62 fluorescence by ATP was observed, and a dissociation constant of $20(\pm 10) \mu M$ was measured using this technique. This result is consistent with the ATP binding constant measured by Centricon filtration (see above).

Binding of ADP to gp44/62

Figure 2 shows the binding of 5 μM gp44/62 to $[\gamma^{-32}\text{P}]$ADP in the presence and absence of P$_i$. Both sets of data are adequately fitted by binding equation (2), with a plateau value of $21(\pm 0.7) \mu M$ (4(1) ADP molecules per gp44/62 complex) and a K_d of $16(\pm 7) \mu M$. It is interesting that the product of the ATPase reaction, ADP, binds gp44/62 with an affinity that is comparable to, and perhaps slightly greater than, that of ATP. The presence of P$_i$ had no discernible effect on the binding of ADP to gp44/62, again indicating a very high K_d for this product of the ATPase reaction.

Stoichiometry of 2’-(or 3’)-O-(trinitrophenyl)ATP (TNP-ATP) binding to gp44/62

A further independent measure of the stoichiometry of ATP binding to gp44/62 was sought. The fluorescent ATP analog TNP-ATP has been used in other systems to study ATP-enzyme interaction (Hiratsuka, 1976; Moczydlowski & Fortes, 1981a,b). The fluorescence of the attached trinitrophenyl group is very sensitive to the surrounding solvent environment, being severely quenched in water and less quenched in organic solvent. Thus this compound usually shows a fluorescence enhancement in going from bulk solution to an enzyme ATP-binding pocket (Hiratsuka, 1976). Fluorescence emission spectra of 1 μM TNP-ATP in the presence and absence of 1.1 μM gp44/62 are presented in Figure 3A. This result shows that the expected change in fluorescence intensity also applies to the gp44/62 system, in that TNP-ATP shows a fivefold fluorescence enhancement upon binding to the gp44/62 complex (Figure 3A, curve b; curve a represents the baseline fluorescence spectrum of the probe free in solution).

A fluorescence titration in which TNP-ATP is added to a fixed (1 μM) concentration of gp44/62 is shown in Figure 3B. The stoichiometry of binding of this ATP analog to gp44/62 may be estimated by the intersection of the asymptote to the binding curve at low TNP-ATP concentrations and the asymptote to the plateau. It is apparent from Figure 3B that the intersection point is approximately 2 μM, which corresponds to two molecules of TNP-ATP bound per gp44/62 complex.

Steady-state kinetics of gp44/62

The steady-state kinetic parameters of the gp44/62-gp45 system have been presented elsewhere (Jarvis et al., 1989b; Berdis & Benkovic, 1996). Nonetheless, in preparation for the presteady-state kinetic studies, some steady-state experiments were performed here as well. All experiments were
performed assuming that the K_m for the DNA cofactor (in units of molecules of template-primer DNA) was <100 nM (Jarvis et al., 1989b), and were run at a DNA concentration of 1 mM. A K_m for ATP of ca 200 μM was also assumed for all reactions (Jarvis et al., 1989b; Berdis & Benkovic, 1996).

Figure 4A shows representative time courses for the hydrolysis of ATP by gp44/62 alone, by gp44/62 + gp45, by gp44/62 + DNA, and by gp44/62 + gp45 + DNA (the complete system), all at initial ATP concentrations of 100 μM. As expected, gp44/62 in isolation has the lowest ATPase activity of the set. The data can be fitted adequately to a single exponential function ($[\text{P}_i] = [\text{ATP}]_0 (1 - e^{-kt})$) at this ATP concentration. The rate of ATP hydrolysis by gp44/62 + gp45 is 30-fold faster than that catalyzed by gp44/62 alone, corresponding to a rate of 10 μM/minute. This gp44/62 + gp45 ATPase rate is also adequately fitted by a single exponential model.

The addition of 50/30-mer DNA to gp44/62 increases the basal rate of the system tenfold (to 2.7 μM/minute). The gp44/62 + DNA data do not fit a single exponential function with an end point at 100 mM P_i, but rather a biphasic kinetic model such as that defined by equation (4) (see Experimental Procedures). After the initial phase, characterized by a rate of 2.7 μM/minute, the reaction slows to approximately the same rate as seen with gp44/62 alone (ca. 1 μM/minute).

The complete system (gp44/62 + gp45 + 50/30-mer DNA) produces the largest ATPase rate (Mace & Alberts, 1984a; Jarvis et al., 1989b). As seen for the gp44/62 + DNA ATPase results, these data also fit a biphasic kinetic model with an initial fast rate of 156 μM/minute followed by a slow phase of 0.5 μM/minute. The rate of the slow phase is again of the same order of magnitude as that seen with the gp44/62 ATPase alone. Figure 4B shows steady-state time courses for the complete reaction at different ATP concentrations. The K_m for ATP in the complete reaction was measured as 400(±238) μM, and the k_{cat} was determined to be 248(±50) min⁻¹. This K_m value, measured at 22°C, is in reasonable agreement with an earlier value of ~200 μM, measured at 37°C by Jarvis et al. (1989b).

Presteady-state ATPase kinetics

In order to probe the initial events leading to formation of the T4 sliding clamp, presteady-state kinetic studies of the gp44/62 ATPase were conducted. Three key characteristics of the reaction were under scrutiny. (1) Are the rates of ATP hydrolysis and subsequent events (equation (4)) sufficiently different to give the time course a biphasic nature? (2) If this is the case, can the size of the initial phase (the "burst") be used to estimate the number of ATP molecules bound and hydrolyzed during the burst? (3) Is the rate of the initial phase consistent with the observed rate of holoenzyme formation measured by Kaboord & Benkovic (1993)?

Figure 5 shows the results of a quench-flow experiment with 1.1 μM gp44/62, 1 μM gp45 and 1 μM 50/30-mer DNA, at 200 μM ATP. These data clearly show that the complete ATPase reaction is biphasic in nature, suggesting that events after ATP hydrolysis are rate limiting and lead to the steady state. The data of Figure 5 were fitted to equation (4) (see Experimental Procedures) with a burst amplitude of 6(±1) μM, a rapid initial phase of 600 min⁻¹ (10 s⁻¹), and a slow phase of 190 min⁻¹ (3.0 s⁻¹). The rate of the slow phase is very close to the projected initial steady-state rate for this ATP concentration (see above). Results from a number of such presteady-state experiments at various concentrations of ATP and gp45 are summarized in Table 1.
Discussion

The work of a number of researchers has suggested that ATP is used to form the clamp as part of the DNA polymerase holoenzyme, rather than to maintain it or to move it along DNA as synthesis progresses (Piperno & Alberts, 1978; Newport et al., 1980; Huang et al., 1981; Jarvis et al., 1991). On the other hand, other work (Newport et al., 1980; Selick et al., 1987; Jarvis et al., 1991) indicates that ATP is required periodically during DNA synthesis on primed single-stranded templates. The latter set of studies suggested the possibility that this periodic requirement for ATP might reflect a timing, or “clocking”, mechanism in which ATP hydrolysis drives the formation of an activated state of the accessory proteins complex that is characterized by a finite decay constant or relaxation time. This decay constant was envisioned to determine the frequency of further activation events as DNA synthesis proceeded. Based on what is now known about the formation of the DNA polymerase holoenzyme in this and other systems, the most likely candidate for the “activated complex” is the loaded gp45 sliding clamp itself. In these terms the “clock decay constant” would then correspond to the dissociation rate of the clamp from the holoenzyme-DNA complex.

Kinetic data on the chemical and structural events leading up to the formation of the T4 sliding clamp are essential for an understanding of the role of ATP hydrolysis in the clamp-loading process. No data on the pre-steady-state ATPase kinetics of the gp44/62-gp45 system had been available (however see Berdis & Benkovic, 1996). We have attempted to fill this gap using a dual approach. Elucidation of the kinetics of ATP usage in forming the sliding clamp represents a first step. The identification and characterization of the structural intermediates in the process, and their kinetics of interconversion, is also necessary. These two lines of research converge in the connection between the rates of ATP hydrolysis and the rates of structural changes. Here, we focus on the kinetic mechanism of ATP hydrolysis as the first phase in clarifying the role of this substrate in the placement of the gp45 clamp onto DNA. In the companion paper (Latham et al., 1996) we approach some aspects of the related structural problems.

The gp44/62 complex contains four gp44 ATPase subunits and has the ability, in principle, to bind four ATP molecules per complex. The actual binding affinities of the sites in multisubunit enzymes can have profound mechanistic consequences (Lazdunski, 1974; Stitt, 1988; Geiselmann et al., 1993). Our work on the processivity clamp-loading system that is presented here shows that the gp44/62 complex binds four ATP molecules, even in the presence of up to 23 mM P, (Figures 1A, B and 3B), with an average dissociation constant of 34(±12) μM. There is no evidence of binding site heterogeneity in the binding of either...
ATP or ADP. The dissociation constant of 34(±12) μM is considerably smaller than the measured K_m for ATP of the fully activated ATPase complex (Jarvis et al., 1989b), but is consistent with burst amplitudes obtained in the presteady-state experiments (see below).

The binding of ADP to the gp44/62 complex is much like that of ATP, but shows a slightly smaller dissociation constant of 16(±7) μM (Figure 2). The presence of P_i does not affect the stoichiometry or affinity of ADP binding. As mentioned above (see Results), the fact that neither ATP nor ADP binding is affected by the presence of up to 23 mM P_i shows that the dissociation constant of P_i is ≥23 mM. Using the measured binding constants for ATP and ADP, the overall equilibrium constant of $\sim 2.7 \times 10^6$ M$^{-1}$ for the reaction $ATP \leftrightarrow ADP + P_i$ (Alberty, 1968; Shikama & Nakamura, 1973), and the estimate of 23 mM for the dissociation constant of P_i, we can calculate the approximate “internal” equilibrium constant for the overall gp44/62-catalyzed ATPase reaction $E\cdot ATP \leftrightarrow E\cdot ADP\cdot P_i$ as approximately 2.8×10^8 M$^{-1}$.

To further study the internal thermodynamics of the reaction we attempted to use gp44/62 to catalyze the reverse reaction of ATP synthesis from ADP and P_i at constant concentrations of [α-32P]ADP and concentrations of P_i up to 200 mM. No conversion of [α-32P]ADP into [α-32P]ATP was observed under any of the conditions tested (data not shown), further supporting the idea that P_i binding is extremely weak or that the internal forward equilibrium constant is very large.

The binding of the fluorescent ATP analog TNP-ATP shows an apparent heterogeneity in the
Presteady-state time course for the ATPase activity of the gp44/62 (1.1 μM) + gp45 (1 μM) + 50/30-mer DNA (1 μM) accessory proteins system at 200 μM ATP. The data were fitted to the biphasic model of equations (4) and (5).

Figure 5.

ATP binding sites of gp44/62. The gp44/62 complex binds two TNP-ATP molecules (Figure 3B). This could indicate a true binding site heterogeneity that is not detectable in either the direct binding studies on ATP and ADP, or it could suggest that the large trinitrophenyl groups of the two bound TNP-ATP molecules occlude the remaining two ATP binding sites. The latter explanation would suggest that two of the binding sites are quite close in space. The fact that TNP-ATP is not a substrate for gp44/62 suggests that the presence of four filled ATP sites is necessary for activity, or may indicate that the binding mode of the analog is different from that of the substrates and products. Further investigation of this issue is required.

The steady-state rates of ATP hydrolysis by gp44/62 and gp44/62 + gp45 that we measured here are in rough agreement with previously determined values (Mace & Alberts, 1984a,b; Jarvis et al., 1989b). The rates determined in this study are probably somewhat smaller than those of the latter authors because they were collected at 22°C rather than at 37°C. However, when the template-primer DNA cofactor was included in the system, the situation became more complex. Both the gp44/62 and the gp44/62 + gp45 ATPase systems initially showed rates consistent with previous results, but these initial phases were followed by slower phases whose rates were about equal to those catalyzed by the gp44/62 complex in isolation (Figure 4A and B). The meaning of this phenomenon is unclear, but some possibilities can be ruled out. Thus we can state that this slow phase does not reflect any nuclease contamination of the proteins, since both protein preparations were assayed for such contamination when initially purified. Furthermore, since the kinetics of gp44/62 and gp44/62 + gp45 do not show the slowdown of the apparent rate (as manifested by the appearance of biphasic kinetics), the proteins are not inherently unstable over these reaction times.

One possibility is that this anomaly is due to the buildup of ADP at later times in the reaction. We have performed assays of the complete accessory protein system in the presence of increasing concentrations of ADP. We find that ADP does severely inhibit the ATPase activity of gp44/62 under these conditions, and that the onset of this inhibition occurs when the ratio of ADP to ATP is about 3:1 (data not shown). This is similar to the ADP:ATP ratios at which the slow second phase appears (Figure 4A and B). The work of Hockensmith et al. (1993) has shown that gp44/62 does not bind to DNA in the presence of gp45 and ADP. Presumably this effect is due either to a stable gp44/62-gp45-ADP complex, or to a sequestering of DNA by gp45, which binds to DNA in the presence of ADP (Hockensmith et al., 1993). The latter mode of inhibition could explain why the rate of the slow second phase appears to be comparable to the rate of ATP hydrolysis by the gp44/62 complex alone, since the gp44/62 would be prevented from binding to DNA by competition with gp45. The above authors have also noted that gp44/62 does bind to DNA in the presence of ADP, although this binding is clearly different from that observed in

Table 1. Kinetic characteristics of presteady-state ATP hydrolysis by gp44/62 + gp45 + primer-template DNA

<table>
<thead>
<tr>
<th>Reaction components</th>
<th>Burst amplitude (μM)</th>
<th>Burst rate (μM s⁻¹)</th>
<th>Steady-state rate (μM s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP (μM)</td>
<td>gp44/62 (μM)</td>
<td>gp45 (μM)</td>
<td>gp44/62 (μM)</td>
</tr>
<tr>
<td>100</td>
<td>1.1</td>
<td>1.1</td>
<td>3.8 (±0.5)</td>
</tr>
<tr>
<td>200</td>
<td>1.1</td>
<td>1.1</td>
<td>6.3 (±1)</td>
</tr>
<tr>
<td>500</td>
<td>1.1</td>
<td>1.1</td>
<td>4.4 (±1.6)</td>
</tr>
<tr>
<td>1000</td>
<td>1.1</td>
<td>1.1</td>
<td>5.2 (±1.4)</td>
</tr>
<tr>
<td>1000</td>
<td>1.1</td>
<td>2.2</td>
<td>5.3 (±0.5)</td>
</tr>
<tr>
<td>1000</td>
<td>1.1</td>
<td>0.5</td>
<td>5.1 (±1)</td>
</tr>
<tr>
<td>100</td>
<td>0.55</td>
<td>0.5</td>
<td>1.5 (±0.5)</td>
</tr>
</tbody>
</table>

Reactions were run in Hepes-Pol buffer at room temperature in the quench-flow apparatus described in Experimental Procedures. Measures of precision were obtained from the correlation matrix of the non-linear fits of individual time courses. In some cases the values shown represent averages of two to three measurements.
Figure 6. A proposed model of the mechanism of ATP hydrolysis by the fully activated gp44/62 ATPase, based on the data presented here. The process begins with the binding of four ATP molecules to the gp44/62 complex, with a binding constant of $3 \times 10^4 \text{ M}^{-1}$ (obtained from Figure 1). This is followed by the rapid binding of gp45 and DNA to the ATP-gp44/62 complex, as discussed in the text. The binding constant of $2 \times 10^8 \text{ M}^{-1}$ for the interaction of these complexes is from Latham et al. (1996), the binding constant for template-primer DNA to the activated complex is the reciprocal of the Michaelis constant for the activation of the gp44/62 + gp45 ATPase by DNA (Jarvis et al., 1989b). The rate-limiting step during the observed fast phase (see Results and Figure 5) is the hydrolysis of the four ATP molecules, the result of which is to place the gp45 ring into position to encircle the DNA. Although the exact point at which Pi dissociates from gp44/62 is not certain, its high dissociation constant suggests that it dissociates rapidly after ATP hydrolysis. The gp44/62 then dissociates from the loaded gp45 clamp, which in turn dissociates from the DNA. The gp44/62 complex is recycled in the slow phase by the rate-limiting dissociation of the ADP product. The dissociation constant from gp44/62 shown for ADP is from Figure 2.

the presence of ATP or the non-hydrolyzable ATP analog ATPgS. The data in Figure 5A on the gp44/62 + DNA system would suggest that the binding of gp44/62 to DNA promoted by ADP produces a complex incapable of hydrolyzing ATP properly. Although these ideas are consistent with our data, further work must be done to examine this phenomenon.

Presteady-state studies on the fully activated gp44/62 ATPase reveal two of the processes involved in loading the sliding clamp. These are a fast phase involving ATP hydrolysis with a rate of 5 to 30 s^{-1}, and a slower phase following the hydrolysis step with a rate of 3 to 5 s^{-1}. This latter phase corresponds to the initial steady-state rate. The amplitude of the fast phase is $4.4(\pm 1.0) \mu \text{M}$ (an average of the values in Table 1, omitting the last one), which corresponds to four ATP molecules hydrolyzed per gp44/62 complex. The duration of the fast phase is 0.2 to 1 second, which is slightly faster than the rate of T4 DNA polymerase holoenzyme formation as measured by Kaboord & Benkovic (1993). The fast phase is therefore implicated as the rate-limiting step in the formation of the sliding clamp. Our data also show that all four ATP molecules bound to the gp44/62 complex are hydrolyzed during the clamp-loading process.

This rate information, combined with the binding data, allows us to write a fairly detailed kinetic mechanism for the clamp loading reaction, as summarized in Figure 6. The clamp-loading process is defined as the steps beginning with the initial binding of ATP to gp44/62 at the point labelled “SLIDING CLAMP” in Figure 6. The fact that preincubation of the gp44/62 and gp45 proteins with DNA template-primer cofactor was not necessary to obtain the fast phase (see Experimental Procedures) suggests that the order of reaction as written is at least kinetically accessible, and that DNA binding is not rate limiting.

The binding of ATP can also be shown not to be rate limiting, since the burst amplitude is independent of ATP concentrations in excess of the measured dissociation constant of $34 \mu \text{M}$. The results of Latham et al. (1996), and an earlier observation (M. Reddy, personal communication), suggest the existence of a stable gp44/62-gp45 complex only during ATP hydrolysis. For this reason we write the ATP binding step first in Figure 6. In addition, we have not observed a burst of four ATP molecules per gp44/62 complex by gp44/62 + gp45 in the absence of DNA (data not shown). Therefore the binding of the DNA cofactor is placed before the hydrolysis of ATP in the mechanism. The rate-limiting step for the burst phase then must represent either the binding of the two protein complexes, or the hydrolysis of the four ATP molecules. We assume that after the hydrolysis of ATP (in approximately one second) the gp45 trimer encircles the DNA and is ready to bind the DNA polymerase, since Kaboord & Benkovic (1993) observed that holoenzyme formation also occurs at approximately this rate.

The fact that the burst amplitude is independent of the concentration of gp45 means that the rate-limiting step in the steady-state phase is dependent on events occurring within the gp44/62 complex. This conclusion was also reached by
Berdis & Benkovic (1996) in their studies on the role of ATP in DNA polymerase holoenzyme formation. When the ratio of gp45 to gp44/62 is 0.5:1, a burst amplitude of one gp44/62 equivalent is observed. This means that two rounds of gp45 loading are occurring during the burst phase. Therefore, during the first half of the burst phase, half of the gp44/62 is used to load all of the gp45 onto DNA. The loaded gp45 is then released from gp44/62. Finally, gp45 dissociates from the DNA, to be reused by the second half of the gp44/62 in the remainder of the burst phase. None of the above mentioned steps can be slower than the rate of the burst phase, thus they cannot be rate limiting. The simplest and most direct candidate for the rate-limiting step in the slow phase must therefore be the dissociation of either ADP or Pi. We consider ADP dissociation to be the more likely candidate in view of the high estimate of the dissociation constant of Pi. We cannot say with certainty that gp44/62 dissociates from DNA after the loading process, but this does seem likely in view of the small size of the DNA cofactor used in our experiments. Since the gp45 should cover most of the double-stranded portion of the 50/30-mer DNA (Munn & Alberts, 1991; Capson et al., 1991), any gp44/62 remaining on the DNA must be bound to the 20-base single-stranded section. It seems difficult to fit an additional gp44/62 into this complex. Even if the gp44/62 moved to the double-stranded portion after dissociation of gp45, it should block further loading reactions. These conclusions provide a basis for the structure-based arguments for ADP dissociation as the rate-limiting step put forward in the companion paper (Latham et al., 1996).

The interpretations presented here (Figure 6) provide a detailed mechanism for the kinetics of the chemical events associated with the loading of the T4 sliding clamp onto template-primer DNA (and thus presumably also onto the gp43 polymerase). Approaches to the exploration of the physical changes that accompany these chemical events, and their kinetics, are presented in the companion paper (Latham et al., 1996). Further extensions and refinements of these studies should provide a complete description of the operation of this central regulatory system of DNA replication.

Experimental Procedures

Reagents and materials

All chemicals and reagents used in these experiments were obtained from Sigma Chemical Co. (St. Louis, MO), Aldrich Chemical Co. (Milwaukee, WI), or Boehringer-Mannheim (Indianapolis, IN), and were used without further purification. QAE-Sephadex was from Sigma, Polyethyleneimine, with fluorescent indicator (PEI-F), cellulose thin-layer chromatography (TLC) plates were obtained from EM Separations Technology (Gibbstown, NJ). DE52 DEAE cellulose and F11 phosphocellulose were from Whatman LabSales (Hillsboro, OR). Q-Sepharose was obtained from PharmaCia-LKB Biotechnology, Inc. (Uppsala, Sweden). Hydroxyapatite was purchased from Bio-Rad (Hercules, CA). Single-stranded DNA-cellulose was prepared by the method of Alberts & Herrick (1971). Radioactive materials were purchased from DuPont New England Nuclear (Boston, MA). DNA oligonucleotides were synthesized and purified by either DNAExpress (Ft. Collins, CO) or Oligos, Etc. (Wilsonville, OR). The Centricron filters were from the Amicon Corp. (Beverly, MA). TNP-ATP was purchased from Molecular Probes, Inc. (Eugene, OR). The flame photometry standard for the phosphate assay (Lanza et al., 1979) was obtained from Bacharach (Pittsburgh, PA).

DNA template-primer cofactors

The DNA used in these experiments was a duplex primer-template construct made by the annealing of two synthetic oligonucleotides; a 50-mer DNA template strand and a 30-mer primer strand. The sequence and structure of this construct is:

\[
5'-CCCGCACGCTCGGCGTCGGAGCGTCGGCAGGTTGGTTGAGTAGGTCTTGTTTTGCCGGTCA-3' \\
3'-GGCGTCCGAGGCTCGGCGGTCAACCAACTCA-5'
\]

Synthesis of \([z-^{32}P]ADP\)

\([z-^{32}P]ADP\) was synthesized from \([z-^{32}P]ATP\) by hydrolysis with myosin. Reaction mixture volumes were typically 20 µl and contained 80 mM Tris-Cl (pH 7.5), 100 mM KCl, 10 mM MgCl₂, 2 mM CaCl₂, 100 µCi \([z-^{32}P]ATP\), and 1.2 µg myosin. This mixture was incubated at 25°C for 20 minutes, then applied to a 1 cm × 14.5 cm column of QAE-Sephadex that had been equilibrated in 0.1 M triethylammonium bicarbonate (TEAB; pH 7.7). After loading, the column was eluted with a linear gradient (150 ml) increasing in TEAB (pH 7.7) concentration from 0.1 to 1.0 M. Fractions of 2 ml were collected. Fractions containing the largest peak of radioactivity were collected, pooled and evaporated in a Speed-Vac twice to remove TEAB. The product was redissolved in 50 mM Hepes (pH 7.5) and used from this solution.

Proteins

E. coli bacterial strains containing the plasmids pTL151W, pTL45W and pTL43, which overproduce both gp44/62 and gp45, gp45 and gp43, respectively, were the generous gifts of Drs T. C. Lin and W. Konigsberg at Yale University. The T4 accessory proteins were purified from E. coli strains containing pTL151W. Lysis of the cells and centrifugation of the lysate was performed according to Reddy et al. (1992). The cleared cell lysate was applied to a 5 cm × 23 cm column of DE52 DEAE-cellulose pre-equilibrated in 40 mM Tris-Cl (pH 7.4), 1 mM MgCl₂, 12.5% (v/v) glycerol, and 1 mM DTT. Under these conditions, gp45 bound to DE52 (Jarvis et al., 1989a), and gp44/62 passed through the column. At this point the purification of the two protein complexes proceeded independently. Continuing with the gp45 purification, the DE52 column
was washed, then eluted with a linear NaCl gradient (2 l) from 50 mM to 0.2 M, collecting 15 ml fractions. Fractions containing gp45 were pooled and dialyzed versus 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 2 mM EDTA, 1 mM DTT, 25% glycerol. The dialyzed was passed over a 1.2 cm x 15 cm column of single-stranded (ss)DNA-cellulose. The flow-through fraction from this column was applied to a 1.5 cm x 20 cm column of Q-Sepharose, washed, and eluted with a linear NaCl gradient (600 ml) from 0 to 0.4 M. Fractions of 4 ml were collected. Fractions containing gp45 were dialyzed into 20 mM Hepes (pH 7.5), 50 mM potassium acetate (KOAc), 0.5 mM DTT, 50% glycerol. Purification of gp44/62 was continued by passing the flow-through fraction from the DE52 column over a 2.5 cm x 30 cm column of ssDNA-cellulose. The flow-through from this column was applied to a 2.5 cm x 36 cm column of P11 phosphocellulose, washed, and eluted with a linear KP gradient (2 l) from 20 to 150 mM, collecting 8 ml fractions. Fractions containing gp44/62 were pooled and dialyzed into 50 mM KPi (pH 7.0), 5 mM MgSO4, 0.5 mM DTT, 50% glycerol. Purification of gp44 was carried out by the method of Morris et al. (1979), from bacteria containing the plasmid pTL45W. This procedure was modified as follows: (1) no ammonium sulfate precipitation was performed and (2) the norleucine-Sepharose and second DEAE-cellulose column were replaced with a single Q-Sepharose column.

ATPase substrate and product binding assays

The binding of ATP and ADP to gp44/62 was assayed by the method of Stitt (1988). All binding assays were performed at room temperature with a gp44/62 concentration of 5 μM in 50 mM Hepes (pH 7.5), 25% glycerol, 0.2 mM DTT, and varying amounts of ATP or ADP spiked with [γ-32P]ATP or [α-32P]ADP.

Some of the binding mixtures contained some inorganic phosphate (as KP, pH 7.0), or MgSO4, due to the presence of these components in the gp44/62 storage solution. When Pi was removed by dialysis, the total removal of Pi was confirmed by the assay of Lanzetta et al. (1979), with the modification that Sterox, which is no longer available, was replaced by a flame photometry standard solution. The activity of dialyzed protein preparations was checked against the stock protein using the ATPase assay described below for the steady-state kinetics. The fluorescence data were also fitted to the equation:

\[
F = F_{\text{max}} \left(1 - \frac{A}{K_a} - 4ne \right) \left[\text{ATP-TP} \right]_{\text{total}} \]
\[
A = \left[\text{ATP-TP} \right]_{\text{total}} + 2n + \frac{1}{K_a} \]

where \(K_a \) is the association constant, \(F_{\text{max}} \) is the plateau value, and \(F \) is the measured fluorescence at [ATP-TP]_{total}. ATP-TP was found not to be a substrate for the gp44/62 or the gp44/62 + gp45 + DNA systems.

Steady-state kinetic measurements

All steady-state kinetic assays were performed at 22°C (room temperature) with 1 μM gp44/62 in Hepes-Pol buffer (25 mM Hepes (pH 7.5), 160 mM KOAc, 6 mM MgCl2, 5 mM DTT). Reactions were initiated by the addition of either gp44/62, or a mixture of gp44/42 and gp45. Reactions were quenched by the addition of an equal volume of either 0.1 M HCl or 0.5 M EDTA (pH 8.0). Both quenching methods gave identical results, and 0.1 M HCl was used most frequently. Aliquots from the quenched reaction were delivered to a PEI-F cellulose TLC plate, and developed in 0.3 M KP, (pH 7.0). Radioactive spots containing Pi and ATP were quantified using an AMBIS radioactivity scanner.
the mechanism: the steady-state measurements. Data were fitted, using

in Results. Products of the reaction were analyzed as for

other protein and ATP concentrations were as specified

described above for the steady-state measurements. The

strategy described.

protocol were the same as those obtained with the other

ATP in the other. The results with this premixing

by incubating DNA and protein(s) in one syringe and

either quench solution. Experiments were also performed

varying length, and then were mixed with a quench

solution consisting of either 0.1 M HCl or 0.5 M EDTA

(pH 8.0). Indistinguishable results were obtained with

syringe were mixed, travelled through a reaction loop of

presteady-state measurement experiments.

amount of $[\gamma-^{32}\text{P}]\text{ATP}$) or ATP + DNA in the other

Enzyme solutions (either gp44/62 or gp44/62 + gp45) in

basic design of the experiments is shown in Figure 7.

Alberty, R. A. (1968). The effect of pH and metal ion

concentration on the equilibrium hydrolysis of

adenosine triphosphate to adenosine diphosphate. J. Biol. Chem. 243,

1337–1343.

5′-triphosphate hydrolysis in the assembly of the

bacteriophage T4 DNA replication holoenzyme complex. Biochemistry, 35,

9253–9265.

Fairfield, F. R., Newport, J. W., Dolejsi, M. K. & von

Figure 7. Scheme showing the basic design of the presteady-state measurement experiments.

ATP synthesis reactions

Reactions designed to detect the synthesis of ATP by

gp44/62 + 45 or gp44/62 + 45 + DNA were performed. Reactions were initiated by adding a solution of gp44/62 and gp45 to a mixture containing 2 μM DNA, 50 μM ADP, and 20 to 200 mM KPₐ in Hepes-Pol buffer. The final concentrations of gp44/62 and gp45 were both 2 μM in a reaction volume of 20 μL. Reactions were incubated at 37°C for varying times, then quenched by the addition of an equal volume of 0.1 M HCl. The reactions were then applied to PEI-F cellulose TLC plates and developed in 0.3 M KPₐ (pH 7.0). The developed TLC plates were quantified on an AMBIS radioanalytic scanner.

Acknowledgements

This research was supported by USPHS research grants GM-29158 and GM-135792 (to P.H.v.H.) and USPHS Individual Postdoctoral National Research Service Award AI-07568 (to M.C.Y.), and by an institutional grant from the Lucille P. Markey Charitable Trust. P.H.v.H. is an American Cancer Society Research Professor of Chemistry. We thank Drs Paola Pietroni and Gary Latham for a careful reading of the manuscript and for helpful comments. We also thank Drs Anthony Berdis and Stephen Benkovic of the Department of Chemistry at the Pennsylvania State University for communicating their related results prior to publication.

References

Kinetics of Sliding Clamp Formation

Edited by P. E. Wright

(Received 10 June 1996; received in revised form 5 September 1996; accepted 19 September 1996)