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Abstract
This paper describes a detailed comparison of several state-of-
the-art speech recognition techniques applied to a limited Ara-
bic broadcast news dataset. The different approaches were all
trained on 50 hours of transcribed audio from the Al-Jazeera
news channel. The best results were obtained using i-vector-
based speaker adaptation in a training scenario using the Min-
imum Phone Error (MPE) criteria combined with sequential
Deep Neural Network (DNN) training. We report results for
two different types of test data: broadcast news reports, with a
best word error rate (WER) of 17.86%, and a broadcast conver-
sations with a best WER of 29.85%. The overall WER on this
test set is 25.6%.
Index Terms: Arabic, ASR system, Kaldi

1. Introduction
Arabic speech recognition is a challenging task for several rea-
sons: the number of different dialects spoken around the world,
the impressive number of synonyms, the morphological rich-
ness of the language and the fact that some uttered sounds
are not transcribed in the written texts. With the objective to
improve the accuracy of Arabic speech recognition systems,
the Qatar Computing Research Institute (QCRI) and MIT have
started a collaboration with an initial focus on the broadcast
news domain, and a preliminary system developed with 50
hours of broadcast news collected from the Al-Jazeera channel.

The first objective is to build a state-of-the-art broadcast
news transcription system that is tuned and optimized for of-
fline broadcast domain. Initially, the focus has been on Modern
Standard Arabic (MSA).

Building Automatic Speech Recognition (ASR) systems for
Arabic is not new, and has been addressed by many researchers,
especially through the DARPA GALE program. GALE MSA
data contains more than 1800 hours of recordings (with most
of those not transcribed). For this reason, most published re-
sults have been accomplished using much more data than are
currently publicly available [1, 2, 3, 4]. The most comparable
system is described by Rybach et al. [3]. Using 450 hours
from GALE database, they obtain a WER of 25.9% for broad-
cast news reports (BR) and 33.9% for broadcast conversation
(BC). The combination of several systems with ROVER give
them a small improvement over single system performances.
Using new state of the art techniques on similar audio (record-
ings from Al Jazeera) allowed to reduce the WER to 17.86%

(BR) and 29.85% (BC). In this experiment, only one system
was used.

This paper describes practical aspects in building a Broad-
cast news transcription system by discussing both Language
Model (LM) and Acoustic Modeling (AM) aspects. Results
with different state-of-the-art acoustic modeling techniques, in-
cluding those based on deep neural networks (DNNs), are
shown. In addition, the i-vector framework, combined with fM-
LLR features, is used to improve the efficiency of the speaker
adaptation process.

The rest of this paper is organized as follows: Section 2
describes the training data; Section 3 will illustrate the ASR
system and report experimental results; Section 4 concludes and
suggests future work.

2. Training Data
2.1. The Database

The QCRI automatic Arabic speech recognition corpus consists
of broadcast news reports and conversational shows spoken only
in MSA. The Al-Jazeera channel is the main source for collect-
ing this data. The recordings have been segmented and tran-
scribed to avoid any non-speech segments such as music and
background noise. The recordings were made using satellite
cable sampled at 16kHz. The development dataset consists of
one hour of speech, and is composed of broadcast news reports.
No conversational shows have been included. However, a two
hour test set has been designed and collected consisting of both
kind of data types used in the training corpora.

2.2. Diacritization

Building an Arabic speech recognition system has several chal-
lenges. The most important one consists of the optional use of
diacritics in written text, which are absent the majority of time.
The diacritics role is to specify short vowels and consonant dou-
bles. For example, the word I.

��
J
�
» (kutub)1 is usually written

I.
�
J» (ktb). Unfortunately, automatically adding diacritics is not

an easy task since a given word can have several diacritized
versions, depending on the context in which the word has been
used. For example, the word I.

�
J» (ktb) can be either vowelized

I.

��
J
�
» (kutub), which means book, or I.

��
J
�
» (katab), which means

1Buckwalter transliteration is Romanized Arabic [5]
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wrote. This is an extremely important problem when training
the acoustic models since several diacritized phonemes will not
be available in the lexicon. Diacritics are also helpful for build-
ing a good language model, since they result in more accurate
n-gram probabilities, since word contexts are more efficiently
used. A drawback of diacritized language models is the increase
of the vocabulary size, and the resulting need for a larger text
corpus.

Another challenge comes from the fact that Arabic is a mor-
phemically rich language, creating lexical varieties and data
sparseness. This phenomena leads to huge out-of-vocabulary
(OOV) rates, and high language model (LM) perplexities. Ry-
bach et al.[3] report an OOV rate of 5.6% on a language model
for MSA with a vocabulary of 256K words. A similar language
model in English generally has an OOV rate lower than 0.7%.

The richness in the Arabic language can lead to mistakes in
the transcription, if a transcriber is more faithful to the speech
rather than the language guidelines. For example, consider
the following transcription: ø



ñ

�
®Ë@ ú




�
¯C

	
g


B@ Ð@

	Q�
�ËB


@ @

	
Yë (h*A

Al<ltzAm Al>xlAqy Alqwy ). This transcription is not wrong
according to the audio, but from the linguistic point of view, the
sentence should be transcribed by: øñ

�
®Ë@ ú




�
¯C

	
g


B@ Ð@

	Q�
�ËB@ @

	
Yë

(h*A AlAltzAm Al>xlAqy AlqwY). In this example, the > has
been changed for A and y by Y. A text normalization process ap-
plied to transcriptions should produces a linguistically correct
transcription.

In this work, MADA [6] is used to implement a morpho-
logical decomposition to normalize and vowelize the text by re-
trieving the missing diacritics. Since several vowelizations for
a specific word are possible, a confidence score is provided for
each candidate. MADA has been widely used for both Statisti-
cal Machine Translation [7, 8], and in ASR to address the afore-
mentioned challenges. See [6] for more information regarding
MADA operation details.

2.3. Lexicon

The lexicon has been created with rules proposed by Biadsy et
al. [9]. They describe rules for representing glottal stops, short
vowels, coarticulation of the definite article Al, nunnation, diph-
thongs, word ending p (/t/), and case endings, while ignoring
geminates. Table 1 summarizes the rules used to create the lex-
icon.

3. ASR Systems
3.1. Language Modeling

The language model has been built from manually transcribed,
and automatically diacritized transcriptions (430K words) of
Al-Jazeera broadcast news, and from automatically diacritized
texts (109 million of words) downloaded from the Al-Jazeera
web site. The vocabulary contains 400K words, a combination
of words in audio transcriptions and the 400K more frequent
words in Al-Jazeera web site texts.

The development set discussed in Section 2.1 has been used
to choose the interpolation coefficient in the mixing of both text
sources. The OOV rate on the test set is 3.1%.

3.2. Acoustic Modeling

This section describes the acoustic modeling techniques that
have been studied for this project. All models have been created
with Kaldi [10], an open-source speech recognition system. The

Rule Source Target
Long Vowel (Dagger Alif) /‘/ /ae:/
Long Vowel (Madda) /|/ /ae:/
Nunnations /AF/ /ae n/

/F/ /ae n/
/K/ /ih n/
/N/ /uh n/

Glottal Stop (Hamza) /[’}&<>]/ /q/
p word ending
(tah-marbuta) /p/ /t/

Long Vowel (Alif
Maqsura) /Y/ /ae:/

Geminates (Shadda) /∼/ //
Diphthongs /u w $cons/ /uw/

/ih y $cons/ /ih:/
Suffix ’uwoA’ (Waw Al
Jama’a) /uh w ae:$/ /uw/

Definite Article (Al) /Al/ /ae l/
Word Middle Long Vowel
(Hamzat Wasl) /{/ //

Definite Article Al (Sun
Letters) /ˆaw l $sun/ /ˆae $sun/

Additional Variants to Lexicon.
p Word Ending
(tah-marbuta) /p {ae, uh, ih, F, K, N} $/ //

Short Vowel Word Ending /{ae, uh, ih}$/ //
Using regular expressions. ˆ means first character. /$/ is end of word.
$italics indicates variable. {a,b, . . .} is a set.
$cons = { b, d, dd, t, tt, k, kq, q, f, th, dh, zh, z, s, ss, sh, gh, kh, ai, h,
hh, jh, m, n, w, l, r, y}
$sun = {t, th, d, dh, t, z, s, sh, tt, ss, dd, zh, l, n}

Table 1: Summary of Rules by Biadsy et al. [9].

only exception is the extraction of bottleneck features presented
in section 3.2.3 for which our own DNN library has been used.

3.2.1. Gaussian Mixture Model (GMM) Systems

Several acoustic modeling approaches have been explored and
compared in the context of the Al-Jazeera dataset. The first
system is based on a GMM technique applied to model cep-
stral features. These acoustic features correspond to 12 MFCC
components, energy, and their first and second derivatives. The
trained speech recognizer contains 4,000 state distributions with
a total 128,000 Gaussian components.

The second system is also a GMM-based system where a
speaker adaptation approach was applied to make acoustic mod-
els more appropriate to a specific speaker. The method used
in this work is fMLLR, a widely used technique for speaker
adaptation proposed by Povey et al. [11] . However, since the
only speaker information available from the database is speaker
turns, features are adapted on an utterance basis. This system
operates on a different feature set compared to the first system.
These features consist of stacking 13 MFCC speech frames with
a context window of 9 frames. These features were then pro-
jected in a new space of dimension 40 using a Linear Discrimi-
nant Analysis (LDA) transform.

In the third system, we explore the use of SGMM technique.
It was first introduced by Povey et al.[12] in the context of mod-
eling low-resource languages. This model is based on a Univer-
sal Background Model (UBM) of 700 Gaussian components,
which has been estimated on our Al-Jazeera training dataset.

In the last system, we investigated the use of discriminative
training in the context of SGMM modeling. This training was
based on the Maximum Mutual Information (MMI) criteria.
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System WER
Reports Conversations Overall

Basic GMM 28.01% 42.62% 37.42%
Basic GMM+fMLLR 23.65% 37.69% 32.70%

SGMM+fMLLR 21.56% 36.05% 30.90%
SGMM+fMLLR+MMI 20.90% 33.67% 29.13%

Table 2: WER of GMM-Based systems

The results obtained by the four systems are reported in Ta-
ble 2. As expected, the results show that Broadcast news reports
are easier that conversational speech with 8.46% different in the
word error rate (WER). Not surprisingly, the SGMM system
provided the best results for both types of data. However, the
discriminative training did not help significantly for the report
condition.

3.2.2. DNN Systems

Using DNNs for ASR acoustic modeling has become very pop-
ular in recent years. In an ASR system, the DNN is used to es-
timate the posteriors of each state in the HMM model [13, 14].
For the training process, the targets of the DNN are generated
by a forced alignment using a GMM-based system. The DNN
is then trained using the back-propagation algorithm.

The DNN used in this work has five layers of 2048 nodes.
The input features are similar to the ones used on the SGMM
which consists of 12 MFCCs plus energy. The resulting speech
frames were stacked with a context window of nine frames,
and reduced to 40 dimension using LDA. The projected vec-
tors were then expanded by concatenating 11 frames, producing
feature vectors of dimension 40x11=440 as described in [15].

Similarly to GMM modeling, a DNN can be trained us-
ing a discriminative approach using sequence-based criteria.
Veselý et al. showed that discriminative training on DNN im-
proves the performance of the ASR system [16]. Discriminative
training using the MPE criterion has been used in our experi-
ments in order to train the DNN.

Results are presented in Table 3. As expected, the best re-
sults are obtained with the sequentially trained DNN. In these
experiments, the results have been improved by 2.25% absolute
over the DNN trained with the cross-entropy criterion. The re-
sults also show that fMLLR does not improve the results of the
DNN, and a plausible explanation is that DNN already implic-
itly normalizes the speaker effects. This can be also explained
by the fact that fMLLR achieved a significant improvement of
2.3% absolute WER in the case of SGMM modeling.

System WER
Reports Conversations Overall

DNN 21.05% 34.71% 29.85%
DNN+fMLLR 20.51% 34.03% 29.22%

DNN+fMLLR+MPE 18.93% 30.27% 26.24%

Table 3: WER using a hybrid DNN/HMM decoder.

3.2.3. Bottleneck Features

Bottleneck features is another way to incorporate DNN into
HMM. The DNN is used to extract more discriminative features
from the original set. These features can then be modeled with

the GMM framework allowing the use of all optimization tech-
nics developed in the last two decades. This is done by training
a DNN as before and then using the activation of a narrow hid-
den ”bottleneck” layer as features for GMMs.

In this work, we used the low rank stacked bottleneck
(LrSBN) scheme as proposed by Zhang et al.[17]. The LrSBN
approach, summarized in Figure 1, is used to extract features
for the GMM system. The input of the first layer is made of
23 critical-band energies are obtained from a Mel filter-bank.
Each of the 23+2 dimensions is then multiplied by a Hamming
window across time, and a DCT is applied for dimensionality
reduction. The 0th to 5th coefficients are retained, resulting in
a feature of dimensionality (23 + 2) x 6 = 150.

Input features

First stage network

Low-rank matrix factorization
Context +/- 15 down 
sampled by factor 5

Second stage network

LrSBN features

Low-rank matrix factorization

Figure 1: Diagram of bottleneck feature extraction.

The input features of the second DNN are the outputs of the
bottleneck layer from the first DNN. The context expansion is
done by concatenating frames with time offsets 10, 5, 0, 5, 10.
Thus, the overall time context seen by the second DNN is 31
frames. Both DNNs use same setup of 5 hidden sigmoid layers
and 1 linear bottleneck layer, and both use tied-states as target
outputs. The targets are generated by forced alignment from
the HMM baseline. No pre-training is used. Finally, the raw
BN outputs from the second DNN are whitened using a global
PCA and used as features for a conventional CD-HMM system.
More details about the architecture can be found in [17].

The LrSBN features are then used to train a GMM system
similar to those presented in section 3.2.1. The input feature
vector is the concatenation of 13 MFCC features with their cor-
responding derivative and second derivative and the LrSBN fea-
tures. As for the system in section 3.2.1, the trained systems
contain 4000 distributions for total of 128000 Gaussians. Ta-
ble 4 shows results with LrSBN features.

The results show that the improvement obtained in experi-
ments of section 3.2.1 using ”LDA” features and speaker adap-
tation is not as good when the LrSNB features approach is used.
This is because the second DNN takes into account a similar
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System WER
Reports Conversations Overall

Basic GMM 20.04% 34.08% 29.09%
Basic GMM+fMLLR 19.70% 33.62% 28.67%

Table 4: WER with bottleneck features.

context window and also because the fMLLR speaker adapta-
tion is implicitly estimated by the DNN. These results are con-
sistent with those obtained in section 3.2.2.

3.2.4. Speaker Adaptation with I-Vector

The i-vector approach [18] is a powerful technique that sum-
marizes all the updates happening during the adaptation of
the Universal Background Model (UBM)2 mean components
(named also GMM supervector) to a given utterance sequence
of frames. All this information is modeled in a low dimensional
space named the total variability space. In the i-vector frame-
work, each speech utterance can be represented by GMM su-
pervector, which is assumed to be generated as follows:

M = m+ Twu

where m is the speaker independent and channel indepen-
dent supervector (which can be taken to be the UBM supervec-
tor), T is a rectangular matrix of low rank, and wu is a random
vector having a standard normal distribution prior N(0, 1). The
i-vector is a Maximum A Posteriori (MAP) point estimates of
the latent variable w adapting the corresponding GMM (super-
vector m) to a given recording.

The i-vector approach was first introduced in speaker and
language recognition. Recently, it has been successfully applied
for speaker and channel adaptation in speech recognition [19].
Adding speaker characteristics to the audio features allow the
DNN to learn more efficiently how each speaker can produce
a specific phoneme. For example, ½Ë

	
X (*lk) can also be pro-

nounced ½Ë 	P (zlk) by some people. The DNN will tend to give
a better probability to the most used form of phones.

Similarly to [19], we trained two i-vector extractors of di-
mension 100 each. The two systems are based on two different
UBMs of 512 Gaussians each have been trained on two kind of
features. The first set of features is the same one as described in
Section 3.2.1 which is 40-dimension of LDA transformed fea-
ture of nine stacked MFCC frames of dimension 13. The sec-
ond features consist of applying the fMLLR speaker adaptation
transform to the first set of feature vectors. In our experiments,
the GMM sizes are much smaller than those used in [19] be-
cause the training data set is limited.

For a given utterance, the i-vector wu is created. Then, the
i-vector is concatenated to the feature vector. Figure 2 describes
how the feature frames and i-vector are combined in order to be
feed to the DNN.

Table 5 shows the results that try to answer the question
if the i-vector can provide complementary information to the
fMLLR approach since both techniques are used for speaker
adaptation.

The results show that i-vector provides different informa-
tion about speakers, allowing a WER improvement up to 1.12%

2A UBM is a large GMM trained on a large amount of data to repre-
sent general feature characteristics. This model plays the role of a prior
on how all the sounds look like.

!
"

!
"

#$%&'($)"*+,$-&.("/
'
"

!"

Figure 2: Using i-vector as a speaker feature vector

System WER
Reports Conversations Overall

DNN 21.05% 34.71% 29.85%
DNN+i-vector 20.51% 34.38% 29.44%
DNN+fMLLR 20.51% 34.03% 29.22%

DNN+fMLLR+i-vector 19.55% 32.91% 28.16%
DNN+fMLLR+MPE 18.93% 30.27% 26.24%

DNN+fMLLR+ivec+MPE 17.99% 30.08% 25.78%

Table 5: WER when using i-vector for speaker adaptation.

absolute. It’s interesting to see that the improvement is simi-
lar with and without speaker adapted features. That means that
both techniques are really complementary.

These results are similar to those published in [19]. It’s in-
teresting to see that their approach still work even with a limited
amount of training data. Based on these results, it will be in-
teresting to incorporate the i-vector framework into the LrSBN
scheme described in section 3.2.3.

4. Conclusion
This paper described the Arabic transcription system built for
Al-Jazeera with a limited amount of data. The use of most
recent speech recognition techniques have been used to train
different systems. The best system presented is the hybrid
DNN/HMM approach in which the DNN is sequentially trained
using the MPE criterion for which a WER of 25.78% has been
obtained. The input vector of the DNN was a combination of
fMLLR adapted MFCC-based features combined to a i-vector
extracted from the utterance.

A much more recordings of different type of shows and con-
taining different dialects are available from Al-Jazeera. They
have not been considered in this work because no transcriptions
were available. A semi-supervised approach will be studied to
take advantage of these data to improve the accuracy and the
robustness of the transcription system. Another important step
in the project is to build a speech recognition system that will
work on different Arabic dialects by using the non-transcribed
data combined with a dialect detection algorithm.
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