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Currently planned second-generation gravitational-wave laser interferometers such as Advanced LIGO

exploit the extensively investigated signal-recycling technique. Candidate Advanced LIGO configurations

are usually designed to have two resonances within the detection band, around which the sensitivity is

enhanced: a stable optical resonance and an unstable optomechanical resonance—which is upshifted from

the pendulum frequency due to the so-called optical-spring effect. As an alternative to a feedback control

system, we propose an all-optical stabilization scheme, in which a second optical spring is employed, and

the test mass is trapped by a stable ponderomotive potential well induced by two carrier light fields whose

detunings have opposite signs. The double optical spring also brings additional flexibility in reshaping the

noise spectral density and optimizing toward specific gravitational-wave sources. The presented scheme

can be extended easily to a multi-optical-spring system that allows further optimization.
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I. INTRODUCTION

The large-scale laser interferometers LIGO [1], VIRGO
[2], GEO [3] and TAMA [4] represent the first generation
of interferometric gravitational-wave (GW) detectors (in-
terferometers for short). Next-generation interferometers,
such as Advanced LIGO [5], plan to use the so-called
detuned signal-recycling (SR) technique—in which an
additional mirror is placed behind the dark port of a
Michelson interferometer in order to modify the optical
resonance structure of the interferometer: depending on the
location and the reflectivity of this signal-recycling mirror,
the eigenfrequency and quality factor of the optical reso-
nance can be adjusted [6–8]. As shown theoretically by
Buonanno and Chen [9–11] and experimentally by Somiya
et al. [12] and Miyakawa et al. [13], detuned signal recy-
cling makes the power inside the interferometer dependent
on the motion of the mirrors, creating an optical spring.
With optical power as high as planned for second-
generation interferometers, detuned signal-recycling inter-
ferometers are characterized by two resonances within the
detection band. One resonance is optical in nature, while
the other one is due to the optical spring: the eigenfre-
quency of the test masses can be shifted from that of the
pendulum up into the detection band. The general principle
underlying the optical-spring effect in signal-recycling
interferometers is identical to that explained by
Braginsky and Khalili [14] for a single detuned cavity
(cf. [11]), which had been employed in their proposal of
the optical bar detection scheme [15].

One concern that arises with the use of the optical spring
is that it always causes instability: depending on the sign of
the detuning, the optical force either brings antidamping or

creates an antispring. Buonanno and Chen have shown in
Ref. [10] that one can cope with the instability by incor-
porating a linear feedback control which ideally would not
modify the noise spectral density of the GW detector. In
practice, however, the need for control inside the detection
band can cause undesirable complexity in the control
system or additional classical noise.
Here we propose an alternative way to suppress the

instability, by injecting a second carrier field from the
bright port (cf. Fig. 1). We shall assume these carriers
have different polarizations (as in Ref. [16]), so that there
is no direct coupling between the two fields (although they
both directly couple to the mirrors). Differently from
Ref. [16], in which the second carrier does not enter the
arm cavity at all, in this proposal, the second carrier
resonates in the arm cavity but is subject to different SR
detuning and SRmirror reflectivity. Nevertheless, similarly
to Ref. [16], a homodyne detection must be performed at
the dark port around each of the two carriers, with the two
outputs combined with appropriate filters. The main pur-
pose of this second carrier is to create a second optical
spring that forms a stable optical spring together with the
first one—even though each individual optical spring, act-
ing alone, would be unstable. Such a stable, double optical
spring (DOS) is possible at least in two ways. The first way
(weak stabilization) relies on the observation that the ratio
between the optical-spring constant’s real part (strength of
spring/antispring) and its imaginary part (strength of
damping/antidamping) depends on the detuning frequency
of the carrier—the detunings of the two carriers can be
arranged such that the first one has a stronger spring and a
weaker antidamping, while the second one has a weaker
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antispring and a stronger damping. In this case, stabiliza-
tion can be achieved with a weak second carrier, which
does not modify the sensitivity of the interferometer by
much. The second way (annihilation) requires the two
carriers to have equal power and exactly opposite detun-
ings, such that their optical springs exactly cancel each
other, and the test masses’ differential motion behaves as a
free mass again. Interestingly, this configuration gives ex-
actly the noise spectrum that had been expected by the GW
community [17] at the time an interferometer with detuned
signal recycling was not thoroughly studied, i.e., before
Refs. [9–11] were published.

Although straightforward to understand, weak stabiliza-
tion and annihilation are by no means the only possibilities.
In fact, an additional benefit of the DOS technique is that it
increases the flexibility in shaping the noise curves: for any
specific source, the noise spectrum can be optimized cor-
respondingly over the parameter subspace of the two car-
riers, subject to the constraint that the resulting dynamics
must be stable. In this paper, we will carry out an optimi-
zation for neutron-star–neutron-star binary inspirals—us-
ing both the current noise budget of Advanced LIGO and a
plausible noise budget for interferometers right beyond the
second generation. Note that the parameters for the
Advanced LIGO configuration as well as for the other
single-optical-spring configuration have been obtained by
using the same optimization.

The DOS technique can also be used for the stabilization
of the optical-spring ponderomotive squeezer, which gen-

erates frequency-independent squeezed vacuum below the
optical-spring frequency [18,19]. The stable optomechan-
ical resonance has already been demonstrated experimen-
tally [20].
This paper is organized as follows: In Sec. II we shall

motivate the stabilization process and study the classical
dynamics of the double-optical-spring systems. In Sec. III
we recall the necessary basics in order to calculate the
input-output relation of a DOS interferometer. In Sec. IV
different applications of the DOS are discussed, and our
scheme is extended to a multi-optical-spring system. In
Sec. V we summarize our main conclusions.

II. CLASSICAL DYNAMICS

In this section, we consider the classical dynamics of
double-optical-spring stabilization. For the mechanical de-
grees of freedom, we consider only the differential mode

x � xantisym ¼ ðxðnÞETM � xðnÞITMÞ � ðxðeÞETM � xðeÞITMÞ (1)

between the interferometer’s test masses, which is sensed
at the dark port by both carriers. Before coupling to the
light, the differential mode has an eigenfrequency of
� 1 Hz (that of the suspension system) and effective
mass of m=4, where m is the mass of each individual
mirror. Since the pendulum frequency is far below the
detection band, we will simply treat the mirrors as free
masses. For a carrier with angular frequency !0 that is
resonant in the arms, when the mirrors are held fixed, the
optical resonant frequency of the differential optical mode
(to be precise, the one that is closest to this carrier) is given
by!0 � �� i�, where, in terms of interferometer parame-
ters, � and � are given by (cf. [11])

� ¼ �o

2�SR sinð2�Þ
1þ ð�SRÞ2 þ 2�SR cosð2�Þ ; (2)

� ¼ �o

1� ð�SRÞ2
1þ ð�SRÞ2 þ 2�SR cosð2�Þ ; (3)

where �0 ¼ Tc=ð4LÞ is the half linewidth of the arm cavity
(T the power transmissivity of the input mirrors (ITMs), c
the speed of light, and L the arm length), �SR is the
amplitude reflectivity of the signal-recycling mirror, and
� the detuning phase of the carrier in the SR cavity (single
trip). In reality, when two carriers are both resonant in the
arm cavity, their detuning phases in the signal-recycling
cavity must differ by

�� ¼ 2�nlSR
c

ð��ÞFSR; n ¼ 0;�1;�2; . . . ; (4)

where ð��ÞFSR is the free spectral range of the arm cavities.
This constraint must be taken into account in practical
designs of DOS interferometers.
Now with optomechanical coupling, let us first consider

a single detuned carrier. Treating the mirrors as free masses

 

FIG. 1 (color online). Schematic plot of a power- and signal-
recycled Michelson interferometer with arm cavities and a
double optical spring, which is realized by injecting two carriers
with orthogonal polarizations. Both carriers are split at the beam
splitter (BS) and transmitted through the ITMs into the arm
cavities consisting of ITMs and the end mirrors (ETMs); they
both resonate in the arm cavity. Two additional cavities are
realized by the SRM and the power-recycling mirror (PRM).
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to start with, the classical equation of motion of the differ-
ential mode can be written in frequency domain as

�m

4
�2xð�Þ ¼ �Kosð�Þxð�Þ þ Fext; (5)

where m=4 is the reduced mass and Fext is any external
classical force. The frequency-dependent optical-spring
constant is given by [11]

Kos ¼ �m�

4

�

ð�� �þ i�Þð�þ �þ i�Þ ; (6)

where � is given by

� ¼ 8P!0

mLc
; (7)

with P the carrier’s circulating power in the arms. Note that
� has units of Hz3.

Before treating a full-power interferometer, it is instruc-
tive to first draw our attention to a weakly coupled regime,
assuming that optical frequency scales (effective detuning
� and effective bandwidth �) are much larger than the
resulting optomechanical resonant frequency. In the
weakly coupled regime, one can expand the optical-spring
constant (cf., e.g., Ref. [10]) as

Kosð�Þ � m��

4ð�2 þ �2Þ
�
1þ i

2��

ð�2 þ �2Þ
�
� K � i��;

(8)

where K and � are both real constants. Analogous to a
mechanical spring, K describes the restoring force while �
denotes the damping. Real and imaginary parts of the
optical-spring constant are proportional to �, which is in
turn proportional to the carrier power P. Inserting Eq. (8)
into Eq. (5), stability requires

K > 0 and �> 0; (9)

or basically positive spring constant and positive damping.
From Eq. (8), it is straightforward to deduce that the

stability condition (9) can never be fulfilled by a single
optical system, since a positive detuning produces always
antidamping (�< 0) while a negative detuning always
comes along with an antirestoring force (K < 0). In
Fig. 2, for fixed circulating power and effective linewidth
(�), as the effective detuning (�) shifts from �1 to 1, we
plot the trajectory mapped out by ðK;�Þ. We use two
different powers, with outer trajectory corresponding to a
higher power. Indeed, these1-shaped trajectories are con-
fined within quadrants with K � �< 0. In case of a double
optical spring, each individual spring, as we change its
detuning frequency, has its own1-shaped trajectory. When
two optical springs combine, their complex spring con-
stants add up, which can be depicted by a vector addition in
Fig. 2. By adjusting the detunings for the first and second
carriers it is possible to find many stable compositions,
with one of them depicted in Fig. 2. In this configuration, a

relatively strong optical spring is stabilized by a relatively
weak antispring generated by a lower power. This is pos-
sible because the stronger optical spring is generated by a
carrier with a relatively high optical quality factor j�=�j,
which tends to yield a stronger restoring (or antirestoring)
than damping (or antidamping), while the weak antispring
is generated by a carrier with a low optical quality factor,
which tends to yield a stronger damping (or antidamping)
than restoring (or antirestoring). A lower optical power of
the second carrier allows the damping of the second spring
to match that of the first one, while makes the antirestoring
of the second spring much weaker than the restoring of the
first spring. Mathematically, this weak stabilization can be
summarized as

jKð1Þj
j�ð1Þj � jKð2Þj

j�ð2Þj ; j�ð1Þj � j�ð2Þj ) jKð1Þj � jKð2Þj:
(10)

As another (rather extreme) example of DOS stabilization,
we note that, when the two carriers have the same power
and bandwidth, but the opposite detuning, their optical-
spring constants exactly cancel with each other. In fact, this
cancellation, or annihilation, is valid for an arbitrarily
strong coupling; cf. Eq. (6). Mathematically, this can be
summarized as

Kosð�; �; �;�Þ þ Kosð�; �;��;�Þ ¼ 0: (11)

K

Γ

Antistable

Dynamically

unstable

Statically

unstable

Stable

−0.38

1.88

1.130.24

−1.88

−0.41

−1.32

1.60

0.95

−2.25

−1.13

0.38

FIG. 2 (color online). Real and imaginary parts of the spring
constant Kos in the weakly coupled regime [Eq. (8)]. For each
trajectory the circulating power and bandwidth are fixed to a
certain value while detuning varies from �1 to 1. Outer
trajectory corresponds to a higher circulating power. Example
values of �=� are marked on the trajectories.
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As stated before, the stability condition given in Eq. (9)
is an approximation valid only in the weakly coupled
regime. A more precise statement regarding the stability
of the two carrier system is given by the condition that all
roots of the characteristic equation

�m

4
�2 þ Kð1Þ

os ð�Þ þ Kð2Þ
os ð�Þ ¼ 0 (12)

must have negative imaginary parts. In Fig. 3, we explore
high-power DOS stabilization by tracing the real and
imaginary parts of the optomechanical eigenfrequency,
obtained numerically solving Eq. (12). We first consider
single-optical-spring configurations with power increasing
from 0 to 800 KW (from the leftmost dot to the top dot). In
this case both the real part of the optomechanical resonant
frequency and the antidamping increase. Then we fix the
first carrier at 800 kWand increase the second carrier (up to
8 and 80 kW, respectively, for two different choices of
linewidth and detuning), which stabilizes the system by
adding damping while only slightly decreases the optome-
chanical resonant frequency by a few hertz (from the top
dot to the two lower-right dots). Here we do not plot the
optical resonances, which for the circulating power con-
sidered here remain stable.

Before ending this section, we note that, when pendulum
frequency is not neglected, there does exist a stable single-
optical-spring regime where an increase in mechanical
resonant frequency is associated with an increase in damp-
ing. But this requires that the optical frequency scales be

lower than the pendulum frequency, which is not desirable
in the case of GW detectors. Such a regime was experi-
mentally investigated by Schliesser et al. [21].

III. INPUT-OUTPUT RELATION AND COMBINED
NOISE SPECTRAL DENSITY

In this section, we consider the sensitivity of stable DOS
interferometers. Since the two carrier fields are different in
polarization and frequency, both fields can be measured
independently, and we effectively obtain two interferome-
ters in one scheme, both sensing the same differential mode
[Eq. (1)] of mirror motion. The input optical vacuum
fluctuations associated with the two carriers, on the other
hand, are independent.
Throughout this paper, we will assume that GWs with

amplitude h are incident from right above the detector
plane, with a polarization that maximizes the response of
our L-shaped Michelson interferometer. In the following
we will list the Heisenberg equations of motion in the
frequency domain [9–11,22,23] for the antisymmetric
mode of motion of the arm cavity mirrors x̂ and for the

two measurement outputs ŷðiÞ:

x̂ ¼ �Rxxð�Þ½F̂ð1Þð�Þ þ F̂ð2Þð�Þ þ ðRð1Þ
FFð�Þ

þ Rð2Þ
FFð�ÞÞx̂� þ Lhþ 	̂noise; (13)

ŷð1Þ ¼ Ŷð1Þ
1 ð�Þ sin
 ð1Þ þ Ŷð1Þ

2 ð�Þ cos
 ð1Þ
þ ½Rð1Þ

Y1F
ð�Þ sin
 ð1Þ þ Rð1Þ

Y2F
ð�Þ cos
 ð1Þ�x̂; (14)

ŷð2Þ ¼ Ŷð2Þ
1 ð�Þ sin
 ð2Þ þ Ŷð2Þ

2 ð�Þ cos
 ð2Þ
þ ½Rð2Þ

Y1F
ð�Þ sin
 ð2Þ þ Rð2Þ

Y2F
ð�Þ cos
 ð2Þ�x̂: (15)

Note that we have labeled all quantities with superscripts
(1) and (2) for the first carrier and the second carrier,
respectively. It was shown in Ref. [24] that the interfer-
ometer’s output is only marginally influenced by seismic
noise, thermal noise and radiation pressure noise intro-
duced at the beam splitter, since the carrier light incident
on the beam splitter is weak and the arm cavities prevent
fluctuations from building up. The outgoing sideband fields
at the dark port around the two different carrier fields are
split, and each is sensed independently by a homodyne
detection scheme, which measures a certain combination
of amplitude and phase quadratures (described by the

phases 
 ð1Þ;ð2Þ). The operator F̂ðiÞ in Eq. (13) describes the
radiation pressure forces which would act on fixed mirrors
due to the incoming vacuum fields at the dark port. The

operators ŶðiÞ
j in Eqs. (14) and (15) account for the out-

going fluctuations in the quadratures in case of fixed mir-

rors. (In the language of Ref. [11], F̂ðiÞ and ŶðiÞ
j are free

quantities.) The operators 	̂noise describe the classical dis-
placement noise of the differential mode. The quantity

0 10 20 30 40 50
Re res 2π Hz

3

2

1

0

1

2

3

4

Im
re

s
2π

H
z

P 1 0, P 2 0

P 1 800 kW, P 2 0

P 1 800 kW, P 2 80 kW

P 1 800 kW, P 2 8 kW

FIG. 3 (color online). Example of the DOS stabilization pro-
cess, as illustrated by trajectories of the optomechanical resonant
frequency in the complex plane [Eq. (12)]. The test masses start
off as free masses (gray dot). As the first carrier light (�ð1Þ ¼
2� 120 Hz and �ð1Þ ¼ 2� 290 Hz) is turned on, it causes an
upshift of the mechanical resonant frequency, as well as a mild
antidamping. The trajectory ends at the upper right (blue) dot,
with Pð1Þ ¼ 800 kW. Subsequently, the second carrier is also
turned on, bringing a damping while slightly downshifting the
optomechanical resonant frequency. For �ð2Þ ¼ 2� 5 Hz, �ð2Þ ¼
�2� 55 Hz, the trajectory ends at the right (red) dot, with Pð2Þ ¼
8 kW; while for �ð2Þ ¼ 2� 60 Hz, �ð2Þ ¼ �2� 60 Hz the trajec-
tory ends at the lower right (green) dot, with Pð2Þ ¼ 80 kW.
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Rxx � �4=ðm�2Þ is the mechanical susceptibility of the

differential mode, the susceptibilities RðiÞ
FF ¼ �KðiÞ

os [cf.
Eq. (6)] correspond to the optical-spring constants, and

RðiÞ
YiF

are optical transfer functions from the differential

mode to the outgoing quadrature fields.

According to Ref. [11], the free quantities F̂ðiÞ and ŶðiÞ
j

are related to incoming amplitude and phase quadratures

âðiÞ1 and âðiÞ2 as

F̂ ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðiÞ�ðiÞm@

2

s
ði�� �ðiÞÞâðiÞ1 þ �ðiÞâðiÞ2
ð�þ i�ðiÞÞ2 � ð�ðiÞÞ2 ; (16)

Ŷ ðiÞ
1 ¼ ½ð�ðiÞÞ2 � ð�ðiÞÞ2 ��2�âðiÞ1 þ 2�ðiÞ�ðiÞâðiÞ2

ð�þ i�ðiÞÞ2 � ð�ðiÞÞ2 ; (17)

Ŷ ðiÞ
2 ¼ ½ð�ðiÞÞ2 � ð�ðiÞÞ2 ��2�âðiÞ2 � 2�ðiÞ�ðiÞâðiÞ1

ð�þ i�ðiÞÞ2 � ð�ðiÞÞ2 : (18)

For vacuum fluctuations, we have

hâðiÞk ð�ÞðâðjÞl Þyð�0Þisym ¼ ��ð���0Þ�ij�kl: (19)

The optical transfer functions are given by [11]

RðiÞ
Y1F

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðiÞ�ðiÞm

2@

s
�ðiÞ

ð�þ i�ðiÞÞ2 � ð�ðiÞÞ2 ; (20)

RðiÞ
Y2F

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðiÞ�ðiÞm

2@

s
�ðiÞ � i�

ð�þ i�ðiÞÞ2 � ð�ðiÞÞ2 : (21)

Finally, the classical noise operator 	̂noise satisfies

h	̂noiseð�Þ	̂y
noiseð�0Þisym ¼ ��ð���0ÞL2Sclh ð�Þ; (22)

where Sclh is the classical noise in the gravitational-wave

strain.
The outgoing sideband fields at the dark port around the

two different carriers are detected independently via ho-
modyne detection. We seek a linear combination of the

two measurement output channels, ŷð1Þ and ŷð2Þ given in
Eqs. (14) and (15):

ŷ ¼ K1ð�Þŷð1Þ þ K2ð�Þŷð2Þ; (23)

which has optimal sensitivity to the GW strain h. Namely,
one has to minimize the h-referred noise spectral density
by varying the two filter functions Kið�Þ. The optimal
solution can be found by a straightforward calculation
described in detail for a general multichannel interferome-
ter in the appendix.

IV. EXAMPLE CONFIGURATIONS

In this section, different example configurations of a
double-optical-spring interferometer are discussed. At first
the considerations are restricted to quantum noise only in

order to clarify two distinct regimes of our proposed
scheme. Subsequently a configuration with a realistic clas-
sical noise budget is investigated and optimized for
neutron-star–neutron-star binary inspirals. Finally, we
lower the classical noise budget and explore whether
DOS configurations can take full advantage of this im-
provement. We are aiming at applying the DOS configu-
ration as an upgrade candidate for the Advanced LIGO
detector.

A. Quantum noise examples

Here we study the quantum noise spectrum of two
special regimes of DOS: weak stabilization and
annihilation.
Weak stabilization.—In this scenario, we use a relatively

weak second carrier to stabilize a typical Advanced LIGO
configuration. In Fig. 3, examples were already given, in
which a second carrier of 8 and 80 kW, respectively, has
been used to stabilize the narrowband mode of Advanced
LIGO (cf. Table I), while Fig. 4 provides the region of all
possible second carriers, given circulating power of 8, 40
and 80 kW.
In Fig. 5, we plot the noise spectra of DOS interferome-

ters that correspond to the two stabilizing configurations in
Fig. 3, namely, with the first carrier identical to the carrier
of the Advanced LIGO narrowband mode, with resonant
frequencies and powers of the second carrier given in
Fig. 3, and a phase readout quadrature associated with

the second carrier (i.e., 
 ð2Þ ¼ 0). As we see from Fig. 5,
the DOS noise spectra in both cases do not differ much
from that of the Advanced LIGO narrowband mode.
Annihilation.—Now we turn to a different situation

where both carriers have half the Advanced LIGO circu-
lating power, namely, 400 kW with the two detunings
exactly opposite. In this case the two optical springs cancel
each other, and the total effective ponderomotive rigidity
vanishes. For Fig. 6 the two detection angles also have
opposite signs, while the absolute values of the two detun-
ings (detection angles) agree with the detuning (detection
angle) in the case of the conventional Advanced LIGO
configurations (cf. Table I). All other parameters are left
unchanged.
The sensitivity does not change in the high-frequency

regime where shot noise is the limiting factor (cf. Fig. 6).
This is because, generally, the noise spectral density of the
shot noise remains unchanged under reversing the sign of
the detuning and the detection angle. With the optimal
filter (cf. Fig. 7), we obtain the same shot noise as the
Advanced LIGO configuration, as the total power is con-
served. In the low-frequency regime the sensitivity is
slightly improved compared to the single-optical-spring
interferometer. It is well known that the quantum-noise
limited sensitivity of single-optical-spring interferometers
at frequencies below the optomechanical resonance is
dramatically lower than the sensitivity of non-optical-
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spring interferometers because the strong restoring force
due to the single optical spring suppresses the response of
the interferometer’s differential mode to GWs. In a double-
optical-spring interferometer the second carrier usually
results in a less rigid or completely canceled effective
optical spring. This effect appears in the first example
where only a weak second carrier is used (cf. Fig. 5) and
becomes more significant here in the case of canceled
optical springs (cf. Fig. 6). For intermediate frequencies
the sensitivity becomes worse due to the absence of the
optomechanical resonance gain. In this regime the output

associated with the carrier having positive detuning usually
has more sensitivity than the other one. Therefore, as
shown in Fig. 7, the filters make sure that only this output
contributes to the total output. Note that when the two
outputs are filtered appropriately, the total noise curve
can in fact be below the single contributions.
Since the optomechanical resonance disappears com-

pletely, the noise spectral density in this configuration is
equal to

Shð�Þ ¼ Sshotð�Þ þ S2SQLð�Þ
4Sshotð�Þ : (24)

Here Sshotð�Þ denotes the shot-noise spectral density of a
detuned single carrier interferometer with the same total
power as in the canceled optical-spring configuration. The

TABLE I. Parameter values for single-optical-spring Advanced LIGO interferometer configurations used throughout the calcula-
tions. The narrowband configuration is optimized for NS-NS binaries using the current Advanced LIGO noise budget. For the
broadband operational mode, we allow a 10% decrease in the detectable distance for NS-NS binaries assuming the current Advanced
LIGO noise budget, while maximizing the contribution to SNR from frequencies above 500 Hz.

Symbol Physical meaning AdvLIGO narrowband AdvLIGO broadband

m Single mirror mass 40 kg 40 kg

2�c=!ð1Þ
0 Laser wavelength 1064 nm 1064 nm

Pð1Þ Circulating power 800 kW 800 kW

Lð1Þ Interferometer arm length 4 km 4 km

�ð1Þ Detuning phase of SR cavity 2� 0:242 2� 0:247
�SR Signal-recycling mirror reflectivity

ffiffiffiffiffiffiffiffiffi
0:93

p ffiffiffiffiffiffiffiffiffi
0:93

p
�o Cavity half bandwidth 2� 15 Hz 2� 15 Hz

 ð1Þ Detection angle 2� 0:347 2� 0:45
� Effective half bandwidth 2� 120 Hz 2� 395 Hz
� Effective detuning 2� 290 Hz 2� 411 Hz

0 20 40 60 80

∋2 2π Hz

100

80

60

40

20

λ
2

2π
H

z

FIG. 4 (color online). Allowable regions for the optical reso-
nances of the second carrier, given a circulating power of 8, 40
and 80 kW, in order to stabilize a 800 kW first carrier that
corresponds to the Advanced LIGO narrowband mode (cf.
Table I).

FIG. 5 (color online). Noise spectrum of weak-stabilization
DOS configurations, with parameters corresponding to the con-
figuration in Fig. 3. Namely, the first carrier is identical to the
carrier in the Advanced LIGO narrowband mode (cf. Table I).
Two possible choices for the stabilizing second carrier are
(i) Pð2Þ ¼ 8 kW, �ð2Þ ¼ 2� 5 Hz, �ð2Þ ¼ �2� 55 Hz and
(ii) Pð2Þ ¼ 80 kW, �ð2Þ ¼ 2� 60 Hz, �ð2Þ ¼ �2� 60 Hz. Phase
quadrature detection (
 ð2Þ ¼ 0) in both cases.
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free-mass standard quantum limit (SQL) [25] for detecting
the gravitational-wave strain h with a Michelson interfer-
ometer with arm cavities is given by

SSQLð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8@

m�2L2

s
: (25)

B. Optimized configurations with the Advanced LIGO
classical noise budget

In the following we optimize the double-optical-spring
interferometer for neutron-star–neutron-star (NS-NS) bi-
nary inspirals. For such systems the last stable circular

orbit gives an upper frequency limit of fmax � 1570 Hz
and seismic noise defines a lower bound of fmin � 7 Hz;
the signal-to-noise ratio (SNR) in power achievable by
optimal filtering, for a source at a given radius, is given by

SNR 2 /
Z fmax

fmin

f�7=3

ShðfÞ df: (26)

Here ShðfÞ denotes the single-sided noise spectral density
of the interferometer. Note that this optimization strategy
tends to focus more on the low-frequency regime at the
expense of the sensitivity at higher frequencies—due to the

rather steep power law of f�7=3. Since the radius of de-
tectable range is proportional to the SNR at a fixed radius,
and the event rate is roughly the cube of the radius of
detectable range, the event rate is proportional to SNR3, or

event rate /
�Z fmax

fmin

f�7=3

ShðfÞ df
�
3=2

: (27)

For the optimization we have taken the current
Advanced LIGO classical noise budget into account (as
given in Bench [26]): each contribution to the total classi-
cal noise budget, i.e., suspension thermal noise, seismic
noise, thermal fluctuations in the coating and gravity gra-
dient noise, are presented in Figs. 8 and 9.
It turns out that the second carrier not only helps to

stabilize the interferometer but can also improve its sensi-
tivity. We first assume both carriers to have the same SR
mirror reflectivity; in this case the gain in NS-NS sensi-
tivity is maximized when the two optical springs totally
cancel each other (Fig. 8) at an equal power distribution in
the two carrier fields. Figure 8 also shows the contribution
of each carrier to the total noise spectral density.
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FIG. 7 (color online). Example by means of the broadband
configuration (cf. Fig. 6): squared absolute values of filter
functions for the two outputs. These curves actually account
for how much of the contributions is used—but they cannot show
how the correlations between the two outputs have influence on
the total output. The contributions correspond to measuring one
of the outputs alone without filtering—but still in the presence of
both carriers.
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FIG. 6 (color online). Noise spectrum of DOS configurations
with canceled optical springs, based on Advanced LIGO narrow-
band and broadband modes (cf. Table I). The detuning and
detection angle of the first carrier are identical to those of
Advanced LIGO narrowband mode, while those of the second
are opposite. The total power is equally divided into two parts
(Pð1Þ ¼ Pð2Þ ¼ 400 kW). Other parameters are left unchanged.
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FIG. 8 (color online). Comparison of single-optical-spring and
double carrier with canceled optical-spring Advanced LIGO
configuration: the same reflectivity of the SR mirror is assumed
for both carriers. We obtain 15% improvement in the event rate
for the DOS interferometer using the following parameters:

Pð1Þ ¼ Pð2Þ ¼ 400 kW, �ð1Þ
SRM ¼ �ð2Þ

SRM ¼ 0:87, �ð1Þ ¼ ��ð2Þ ¼
2� 0:233, 
 ð1Þ ¼ 2� 0:433 and 
 ð2Þ ¼ 0.
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If each carrier senses a different reflectivity of the SR
mirror, the interferometer’s sensitivity can be improved
further. With this additional degree of freedom the situation
of canceled optical springs is no longer the optimal choice
for NS-NS binaries. Each carrier can be optimized for a
different frequency regime such that they complement
each other. This is illustrated for an equal distribution of
the total power (400 kW for each carrier) in Fig. 9, where
one carrier ensures good sensitivity in the low-frequency
regime while the other one gives the main contribution at

frequencies above the optomechanical resonance as shown
by the contribution curves. The noise spectral density is
close to the classical noise level at low frequencies, and an
improvement in the event rate of 35.5% can be achieved for
NS-NS binaries for which the optimization was performed.
As a more general optimization is performed, allowing two
carriers to have different powers summing up to 800 kW, it

turns out that Pð1Þ ¼ 500 kW, Pð2Þ ¼ 300 kW achieves a
slightly better event rate improvement of 36.5%. Results
for different power distributions are given in Table II.
The sensitivity of all optimized configurations is basi-

cally improved at low frequencies at the expense of the
high frequencies. Therefore it might be necessary to carry
out an additional broadband optimization in order to
achieve a better sensitivity in the high-frequency regime.
This can be accomplished by first picking out all configu-
rations obeying an event rate which is at least a certain
fraction of the optimal event rate for NS-NS binary systems
[cf. Eq. (26)]. In a second step these configurations are
explored in the high-frequency regime by considering a
smaller frequency integration interval [500 Hz, 1570 Hz]
and selecting the optimal signal-to-noise ratio on this

interval. For the (Pð1Þ ¼ Pð2Þ ¼ 400 kW) configuration as
an example, we can achieve a sensitivity comparable to
Advanced LIGO on the [500 Hz, 1570 Hz] frequency band
while maintaining an improvement in the event rate (in-
tegrating again from fmin) of 16.5% compared to Advanced
LIGO (cf. Fig. 9).
After adding up all classical noise contribution shown in

Figs. 8 and 9 it turns out that the noise spectral density of
the double-optical-spring configuration—contrary to the
single optical spring in Advanced LIGO—almost follows
the borderline set by the classical noise in the low-
frequency regime. Let us write
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FIG. 9 (color online). Comparison of single- and double-opti-
cal-spring Advanced LIGO configurations: different SR mirror
reflectivities for first and second carriers are allowed. Parameters
are given in detail in the last row of the first block in Table II
for the narrowband configuration. For the broadband we have
�ð1Þ ¼ 2� 130 Hz, �ð1Þ ¼ 2� 5 Hz, 
 ð1Þ ¼ 2� 0:01, �ð2Þ ¼
�2� 230 Hz, �ð2Þ ¼ 2� 155Hz and 
 ð2Þ ¼ 2� 0:02. We obtain
a 35.5% improvement in the event rate in the case of the
narrowband configuration and 16.5% for the broadband configu-
ration.

TABLE II. Parameters for double-optical-spring scheme optimized for NS-NS binary systems. The total power is fixed to 800 kW.
The last column gives the improvement in the event rate for our proposed scheme compared to an optimized Advanced LIGO
configuration provided in the first row. For the upper part we adopted the current Advanced LIGO noise budget, and for the lower part
the gravity gradient noise and the suspension thermal noise are reduced by a factor of 10 and the coating thermal by a factor of 3.

Pð1Þ
in kW

Pð2Þ
in kW

�ð1Þ
in Hz

�ð2Þ
in Hz

�ð1Þ
in Hz

�ð2Þ
in Hz


 ð1Þ
in radians


 ð2Þ
in radians Improvement

High classical noise 800 0 2� 290 � � � 2� 120 � � � 2� 0:347 � � � � � �
750 50 2� 190 �2� 70 2� 50 2� 20 2� 0:125 2� 0:075 7%

700 100 2� 190 �2� 50 2� 40 2� 30 2� 0:0625 2� 0:475 22.5%

600 200 2� 180 �2� 40 2� 30 2� 50 2� 0:0125 2� 0:3875 34.5%

500 300 2� 150 �2� 50 2� 45 2� 60 2� 0:0125 2� 0:375 36.5%

450 350 2� 160 �2� 10 2� 30 2� 40 2� 0 2� 0:3 35.5%

400 400 2� 140 �2� 20 2� 20 2� 55 2� 0:01 2� 0:31 35.5%

Low classical noise 800 0 2� 170 � � � 2� 10 � � � 2� 0:263 � � � � � �
700 100 2� 165 �2� 75 2� 5 2� 25 2� 0:48 2� 0:02 32%

600 200 2� 150 �2� 20 2� 5 2� 45 2� 0:01 2� 0:36 52%

500 300 2� 140 �2� 20 2� 5 2� 45 2� 0:03 2� 0:33 74.5%

450 350 2� 135 �2� 25 2� 5 2� 50 2� 0:01 2� 0:33 83.5%

400 400 2� 127 �2� 11 2� 4 2� 46 2� 0:01 2� 0:3 110%
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� �
Z 150 Hz

fmin

f�7=3

ShðfÞ df=
Z 150 Hz

fmin

f�7=3

Sclh ðfÞ
df �

�Sclh
�Sh

¼
�Sclh

�Sclh þ �Sqh
; (28)

where �Sclh ,
�S
q
h and �Sh are weighted averages of classical,

quantum, and total noise spectrum in the low-frequency

band, respectively. For the Pð1Þ ¼ Pð2Þ ¼ 400 kW configu-
ration (cf. Fig. 9) we obtain

� � 0:81: (29)

This indicates that, at low frequencies (i.e., below 150 Hz),
the quantum noise is already a small fraction of the total
noise; improving quantum noise further does not signifi-
cantly improve sensitivity. Qualitatively, starting with a
level of � ¼ 0:81, further lowering �S

q
h by a factor of 2

only improves � from 0.81 to 0.88, which yields a 14%
increase in event rate.

C. Optimized configurations with a classical noise
budget beyond Advanced LIGO

It is likely that technical improvements will reduce the
classical noise floor in the future. In order to explore the
potential of our proposed configuration to increase the
quantum limited sensitivity by reshaping the noise curves
in an optimal way, we analyze the performance for a
reduced classical noise budget. For instance, the gravity
gradient noise is a limiting factor at lower frequencies. As
suggested in Ref. [27] this effect can be removed from the
recorded data by performing an independent measurement
of the ground’s density fluctuations near each test mass. We
assume it to be 1=10 (in amplitude) the current estimation
for Advanced LIGO [28]. Another limiting factor is given
by the thermal noise in the suspension system and mirrors.
We assume that the suspension thermal noise can be low-
ered by a factor of 10 in amplitude, while the internal
thermal noise of mirrors can be lowered by a factor of 3
in amplitude [28]. Such improvements may possibly be
realized by (i) optimizing the design of the mirror coating
structure and suspension wires, (ii) improving mechanical
quality factors of the mirror coating, substrate and suspen-
sion materials, and (iii) applying cryogenic techniques
[17,29–32].

Now we optimize the usual single-optical-spring con-
figuration as well as our proposed double-optical-spring
layout for this modified noise budget. Only now does the
potential of the two carrier interferometer become appar-
ent: for the new classical noise budget, the single-optical-
spring configuration can improve the event rate for NS-NS
binary inspirals only by 61%. But the DOS configuration
can do 238%. This corresponds to an improvement in the
event rate of the DOS compared to the optimized (with
respect to the new classical noise budget) single-optical-
spring configuration of 110% (cf. Table II).

Such a situation is presented in Fig. 10. The big gap
between the single-optical-spring total noise and the clas-
sical noise budget verifies that the single-optical-spring
Advanced LIGO configuration has not been limited by
classical noise at low frequencies. While this gap can be
partially filled by the double-optical-spring configuration,
there is still room for further improvement. For the con-
figuration used in Fig. 10 we evaluate

� � 0:3: (30)

In this case, lowering the quantum noise by a factor of 2
improves the event rate by 69%. One possibility of further
improvement would be to inject even more than two car-
riers and combine the corresponding output channels (cf.
the appendix).

V. CONCLUSION

While the concept of a stable DOS has motivated experi-
ments such as the one already carried out by Corbitt et al.
[20], in this paper, we have theoretically investigated the
benefit of a DOS configuration for second-generation
gravitational-wave detectors, in particular, in a follow-up
experiment to Advanced LIGO, possibly in combination
with other existing schemes, e.g., the local readout scheme
proposed in Ref. [16], as well as the injection of squeezed
vacuum [33–37].
In the DOS configuration, a second laser beam is in-

jected into signal-recycling interferometers at the bright
port which is, as the first carrier, resonant in the arm
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FIG. 10 (color online). Compared to Fig. 8 suspension thermal
noise and gravity gradient noise are lowered by a factor of 10 and
coating thermal noise by a factor of 3. The DOS configuration as
well as the single-optical-spring configuration are both opti-
mized with respect to the new noise budget. An improvement
in the event rate of 238% can be achieved by DOS configura-
tions, compared with 61% of single-optical-spring configura-
tions. The following parameters were used: Pð1Þ ¼
Pð2Þ ¼ 400 kW, �ð1Þ ¼ 2� 130 Hz, �ð2Þ ¼ �2� 10 Hz, �ð1Þ ¼
2� 5 Hz, �ð2Þ ¼ 2� 45 Hz, 
 ð1Þ ¼ 2� 0:46, 
 ð2Þ ¼ 2� 0:3. For
single-optical-spring optimization, parameters are given in the
first row of the second block in Table II.
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cavities and is also detuned in the signal-recycling cavity.
The two outputs are optimally filtered and combined. By
choosing appropriate detunings of the signal-recycling
cavity and homodyne detection angles, it is possible to
achieve a stable double optical spring while additionally
improving the sensitivity.

Taking into account the current classical noise budget
estimation for the Advanced LIGO detector, as well as
constraints on optical power, we have performed an opti-
mization of our double-carrier scheme towards the detec-
tion of compact binary inspirals specifying to neutron stars.
The DOS allows a 36% improvement in the event rate, and
we have shown that further improvement in the event rate
will largely be limited by classical noise. When consider-
ing a more optimistic classical noise budget, DOS inter-
ferometers are much more capable than single-optical-
spring interferometers in taking advantage of this improve-
ment: compared with 61% improvement in the event rate
achievable by single-optical-spring configurations, the
DOS allows 238%. Nevertheless the reduced classical
noise level leaves further room beyond DOS, which can
be exploited by employing more than two carrier fields.
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APPENDIX: OPTIMAL OUTPUT CHANNEL FOR
INTERFEROMETERS WITH MULTIPLE

CARRIERS

Here we analyze the optimal way of combining the
output channels obtained from homodyne detections at
the dark port of a multicarrier interferometer. The general
equation of motion for the mirror position in case of n
carriers reads [cf. Eq. (13)]:

x̂ ¼ �Rxxð�ÞXn
i¼1

½F̂ðiÞ þ RðiÞ
FFð�Þx̂� þ Lhþ 	̂noise: (A1)

The output corresponding to each of the n carrier fields is
given by [cf. Eqs. (14) and (15)]

ŷðiÞð�Þ ¼ ŶðiÞ
1 ð�Þ sin
 ðiÞ þ ŶðiÞ

2 ð�Þ cos
 ðiÞ
þ ½RðiÞ

Y1F
ð�Þ sin
 ðiÞ þ RðiÞ

Y2F
ð�Þ cos
 ðiÞ�x̂

� ~nTi ~�þ sih; (A2)

where ~� is a vector with 2nþ 1 entries which account for
2n quadrature operators and one operator modeling the
classical noise. Here ~ni describes the noise transfer func-
tions from the noise channels ~� into the output channels,
and si accounts for the signal-transfer functions. The com-
bined output is given by

ŷð�Þ ¼ Xn
i¼1

Kið�ÞŷðiÞð�Þ; (A3)

and one has to identify n optimal filter functions which
minimize the signal-referred noise spectral density of ŷ:

Shð�Þ ¼
P

n
i;j¼1ðNÞijKiK

	
jP

n
i;j¼1ðSÞijKiK

	
j

; (A4)

with

ðSÞij ¼ sis
	
j (A5)

and

ðNÞij ¼
X2nþ1

s;k¼1

ð ~nTi ÞsS�s�k
ð ~nyj Þk: (A6)

Here S�s�k
is the cross spectral density between �s and �k,

with

h�sð�Þ�y
k ð�0Þi ¼ 2��ð���0Þ S�s�k

ð�Þ
2

: (A7)

The inverse of the largest eigenvalue of the n
 nmatrix

M ¼ N�1 � S (A8)

provides the resulting minimum noise, and the correspond-
ing eigenvector gives the n optimal filter function Ki.
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