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Abstract: Pulmonary arterial hypertension (PAH) is characterized by an important occlusive vascular
remodeling with the production of new endothelial cells, smooth muscle cells, myofibroblasts, and
fibroblasts. Identifying the cellular processes leading to vascular proliferation and dysfunction is a
major goal in order to decipher the mechanisms leading to PAH development. In addition to in situ
proliferation of vascular cells, studies from the past 20 years have unveiled the role of circulating
and resident vascular in pulmonary vascular remodeling. This review aims at summarizing the
current knowledge on the different progenitor and stem cells that have been shown to participate in
pulmonary vascular lesions and on the pathways regulating their recruitment during PAH. Finally,
this review also addresses the therapeutic potential of circulating endothelial progenitor cells and
mesenchymal stem cells.

Keywords: pulmonary arterial hypertension; vascular remodeling; progenitor cells; stem cells;
endothelial cells; smooth muscle cells; pericytes

1. Introduction

The origin of the vascular remodeling occurring during the various forms of pul-
monary arterial hypertension (PAH) is still unexplained, although some pathological
conditions or gene defects are known to favor the development of the disease. This remod-
eling can predominate in the arterial compartment in PAH or the venous side in pulmonary
veno-occlusive disease (PVOD) through the production of new endothelial cells (EC), my-
ofibroblasts, vascular smooth muscle cells (SMC), and also through extracellular matrix
changes with intimal and medial fibrosis in the intima [1]. It leads to vessel narrowing and
stiffening and ultimately to complex occlusive vascular lesions, called plexiform lesions,
containing proliferative and apoptosis-resistant EC. In order to elucidate the mechanisms
of the remodeling, advances have been made to identify the cellular processes leading to
endothelium and medial cell proliferation. Because it is difficult to explain the pathological
process solely by in situ proliferation of resident vascular cells, the contribution of extra-
vascular cells invading the vascular wall was explored. These vascular progenitor and stem
cells are undifferentiated cells that can produce new vascular cells and are characterized
by their self-renewal capacities and ability to form colonies (colony-forming unit or CFU).
Their differentiation potential varies from large in stem cells, such as mesenchymal stem
cells, to low in progenitor cells limited to a few lineages. Identification of the invading cells
is important to give insight into the active pathological process and to design treatments
for the disease by inhibiting this process. These cells can be either mobilized from cellular
niches located within the vessel wall, or in its vicinity, in the lung interstitium, or from
distant tissues, mainly the bone marrow, through the circulation to differentiate in their
tissular target destination (Figure 1). Additional mechanisms of cell trans-differentiation or
cell transition can be involved that are able to change the vessel morphology. However,
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identifying the cell population involved in the remodeling does not provide the primum
movens of the remodeling as their recruitment is under the control of signaling pathways
regulated by ligands bound to their cognate receptors. Indeed, these cellular mechanisms
can be shared among different types of PAH of various origins. As such, the Bone Mor-
phogenetic Proteins (BMP) paradigm is an important clue for deciphering the pathological
scenario as this pathway is downregulated in subjects carrying a heterozygous loss of
function mutation of the BMP receptor type 2 gene (BMPR2) but also in BMPR2 mutation
non-carrier PAH patients. This signaling pathway dysregulation plays a major role, and
some studies have indeed demonstrated that it also controls progenitor and stem cell
behavior. Thus recent results of a protector effect of a BMP treatment in Bmpr2 mutated
mice [2] or of a proteic compound acting as a Transforming Growth Factor β (TGF-β) decay
molecule designed to counterbalance the deficient BMP pathway [3] could also involve
regulation of vascular progenitor and stem cells.
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Figure 1. Role of Stem/progenitor cells in pulmonary hypertension-associated vascular remodeling.
Pulmonary hypertension is characterized by excessive pulmonary vascular occlusive remodeling
with an increased medial thickness of normally muscularized arterioles and muscularization of
previously non-muscularized arterioles. This remodeling involves the production of new endothelial
cells, myofibroblasts (MF), vascular smooth muscle cells, fibroblasts, and extracellular matrix changes
leading to the formation of a neointima between the endothelium and the internal elastic lamina,
to medial hypertrophy and vascular/perivascular fibrosis and inflammation. Circulating (EPC
and MSC) and resident vascular stem/progenitor cells (EPC, activated SMC, SPC, pericytes, MSC)
were identified. These cells can be either mobilized from cellular niches within or close to the
vessel wall or in the lung interstitium, or from distant tissues, mainly the bone marrow, through
the circulation. In advanced lesions, EC are able to undergo an endothelial–mesenchymal transition
(EndMT) and to transdifferentiate into SMC-like cells. Thick black arrows represent differentiation
fates of progenitor/stem cells.
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Here, we will review the various types of progenitor and stem cells that have been
shown to be involved in pulmonary vascular remodeling during pulmonary hypertension
(PH) and the signaling pathways that can modulate their recruitment.

2. Endothelial Progenitor Cells

Almost a quarter of a century ago, in Science, Asahara and colleagues first reported
the identification and purification of circulating endothelial progenitor cells (EPC) based
on two cell surface antigens, CD34 and Vascular Endothelial Growth Factor Receptor 2
(VEGFR-2) [4]. These cells are derived from the postnatal bone marrow (BM), enter the
peripheral blood, differentiate into endothelial cells (EC), and participate in the formation
of new blood vessels or repair the damaged EC into mature resident vessels [5]. Since EPC
and hematopoietic stem cells share a common embryonic precursor, these cells could share
several markers, such as c-kit, CD133, Sca-1 (in mouse), VE-cadherin (Vascular Endothe-
lial cadherin), VEGFR-2, and CD105, which can make their characterization complicated.
So far, two distinct subsets of EPCs have been well-described: the early outgrowth EPC
are derived from the hematopoietic lineage and originate from the BM, and the late out-
growth EPC are derived from endothelial lineage and could arise from tissue vascular
niches [6–8]. Indeed, in postnatal life, early progenitor phenotype could be represented
by CD133+/CD34+/VEGFR-2+ cells and are located mainly in the BM. Then, during their
differentiation, EPC lose CD133 and start to express CD31, VE-cadherin, and von Wille-
brand Factor (vWF). These more mature EPC are found in the peripheral circulation and
within specific regions of the adult blood vessel wall, the subendothelial zone of the intima,
or in the vasculogenic zone between the media and adventitial layers (for review on EPC,
see [9]). In addition, some of these resident vascular progenitor cells possess a bilineage
potential and are also able to differentiate into vascular smooth muscle cells, both in vitro
and in vivo [10].

Many endothelial progenitor cell populations have been identified in the adult lung,
in particular in the context of pulmonary hypertension (PH). Studies have displayed con-
trasted results on the regulation of circulating EPC during PAH by measuring blood cells
expressing different combinations of the markers CD133, CD34, and VEGFR-2. Circulating
EPC were found reduced in some cases inversely correlated with the increase in the mean
pulmonary arterial pressure (mPAP) [11–16]. However, others have shown that an elevated
number in human idiopathic PAH and pulmonary fibrosis lung samples could be correlated
with the severity of the disease and high pulmonary arterial pressure [17–21]. These results
suggested a compensatory EPC proliferation in patients with end-stage PAH [22], and the
higher the mPAP is, the more EPCs are consumed to repair pulmonary endothelium, caus-
ing a reduction in the number of EPCs [13]. CD133+ or CD133+/KDR+ cells were also found
within arterial lesions in PAH patients suggesting that these EPCs may indeed participate
in the vascular remodeling process by generating new EC [17,18,21]. EC in vascular lesions
are characterized by a hyperproliferative and apoptosis-resistant phenotype in PH patients
compared with control lung tissues [23,24]. Functional studies using late-outgrowth pro-
genitor cells from familial PAH patients (with BMPR2 gene mutations) demonstrated the
presence of hyperproliferative endothelial phenotype (CD45+/CD133+/c-kit+/CXCR4+) in
remodeled pulmonary arteries, occlusive and plexiform lesions, with impaired ability to
form vascular networks and altered BMPR2 pathway [18]. These observations are similar
to the phenotypic descriptions of alterations in pulmonary ECs that have been previously
established in PAH [11,25]. Using the chronic hypoxia (CH)-induced PH model, studies
showed an increase in the number of circulating EPCs in hypoxic animals [26] and observed
that the neovascularization capacity of EPCs from hypoxic mice was impaired compared
with EPCs from controls [27]. In addition, several studies suggested that circulating BM-
derived progenitor cells (EPC and c-kit+) are deleterious and contribute to the disease
pathogenesis. Mice transplanted with BM-derived CD133+ progenitor cells from patients
with PAH, but not from healthy controls, exhibited morbidity and/or death due to features
of PAH [28]. BM c-kit+ cells from CH animals were found hyperproliferative, and their
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transplantation into control animals promoted occlusive pulmonary arteriopathy in rats
under exposure to CH [29]. They contribute to pulmonary vascular remodeling in the
adventitia and the vasa vasorum of pulmonary arteries [30], and their recruitment was
found to depend on serotonin 5-HT2B receptor expression [31].

Other works revealed that mouse tissue-resident EPC predominantly contribute to pul-
monary vascular repair after endotoxin-induced injury [32] or in response to hypoxia [27,33]
compared with BM-derived cells. Indeed, in adult rat lung, a vasculogenic resident mi-
crovascular endothelial cell population expressing endothelial cell markers (CD31, CD144,
endothelial Nitric Oxide Synthase -eNOS-, or vWF), progenitor cell antigens (CD34 and
CD309) and negative for CD45 has been isolated [34]. Nijmeh et al. described a high prolif-
erative potential colony-forming endothelial progenitor-like cells in the calf pulmonary
artery adventitial vasa vasorum. These cells are more numerous in the hypoxic calf and
have higher expression levels of CD31, CD105, and c-kit than normoxic animals [35]. In
human pulmonary vasculature, the presence of endothelial progenitor cell population was
also described, expressing c-kit [36], CD31, vWF, eNOS, CD34, and caveolin-1 markers [37];
they are more proliferative and numerous in PAH patients.

3. SMC Progenitor Cells (SPC)

Resident SPC were identified through their involvement in vascular neointimal lesions
during atherosclerosis or after endothelium injury. They also show an important role in
ischemia-induced vascular regeneration (for review, see [38]). These resident cells have been
characterized using a large variety of markers which makes it difficult to compare between
the various studies. However, lineage-tracing experiments have given new insights into
their differentiation potential.

Neomuscularization of normally non-muscularized pulmonary arterioles and abnor-
mal muscularization of partially muscularized vessels are characteristic of PAH [1]. One of
the major players in this process is the SMCs present in the media of pulmonary arteries.
Adult vascular SMCs are quiescent, contractile, highly differentiated and specialized cells,
identified by the combined expression of specific markers, such as α-Smooth Muscle Actin
(α-SMA), Smooth Muscle-Myosin Heavy Chain (SM-MHC), Smooth Muscle 22α (SM22α),
h1-calponin, and smoothelin. During PAH, SMCs can undergo a phenotypic transition
process switching from a quiescent contractile state to a proliferative, migratory, and/or
secretory state, associated with decreased expression of their specific marker genes [39–41].
This phenotypic switch is dependent on the microenvironment and partly related to en-
dothelial dysfunction. An imbalance between vasodilatory, antiproliferative factors (nitric
oxide and prostacyclin) and vasoconstrictive pro-proliferative molecules (endothelin-1,
angiotensin II, and thromboxane) enhances SMC contractility but also stimulates their
proliferation leading to the accumulation of dedifferentiated SMC in the neointima of
remodeled vessels. In addition, other EC-derived growth factors (Platelet-Derived Growth
Factor or PDGF, Vascular Endothelial Growth Factor or VEGF, Fibroblast Growth Factor or
FGF, Interleukin 6 or IL-6) will, in turn, stimulate the proliferation and migration of SMC.
The increased EC expression of Stromal cell-Derived Factor 1 (SDF-1) and Macrophage
Migration Inhibitory Factor (MIF) can induce marked FoxM1 expression in SMC, inducing
their proliferation as well [1,42]. Moreover, the reduced BMPR2 signaling also leads to
increased SMC proliferation [43].

A small population of SMC primed to proliferate was identified in pulmonary ar-
terioles, localized close to the muscularized-non-muscularized zone border [44]. Upon
CH, these α-SMA+/SM-MHC+/ PDGF receptor type β (PDGFRβ)+ SMC follow a se-
quential program of dedifferentiation/redifferentiation to spread along the initially non-
muscularized zone. This transition is characterized by a decrease in SM-MHC expression
(terminal marker of differentiation) and the expression of the pluripotential factor Kruppel-
Like Factor 4 (KLF4) induced by the activation of PDGFRβ following the increase in
pulmonary EC-derived PDGF-B production. Increased KLF4 expressing PDGFRβ+/KLF4+

SMC were found in remodeling pulmonary arteries in the CH mouse model as well as in



Cells 2021, 10, 1338 5 of 24

pulmonary arterioles of PH and PAH patients with a strong correlation with proliferative
SMCs [44–46].

The new SMCs observed during neomuscularization can also originate from other
stem/progenitor cells. Pericytes are mural cells that strongly interact with endothelial
cells maintaining the structure of pre-capillary arterioles, capillaries, and post-capillary
venules. They have been proposed as a source of SMC-like cells (for review on pericytes
and fibroblasts, see [47]) and are considered to be close to multipotent mesenchymal stem
cell (MSC) as they both are perivascular and display large osteogenic, chondrogenic, and
adipogenic differentiation capacities (for review on MSC, see [48]). The heterogeneity of
these multipotent cells does not allow the definition of specific markers, but their expression
profile often involves markers such as PDGFRβ, NG2 Neural/Glial Antigen 2), CD146,
Regulator Of G Protein Signaling 5 (RGS5), 3G5. They have been defined in alveolar regions
as NG2+/PDGFRβ+/α-SMA− [47] but also as α-SMA−/CD34−/CD31−/CD146+ in the
lung and other organs [49,50]. Involvement of pericytes in PAH was first suggested by
Meyrick and Reid in 1980, then by Patel et al., who proposed that a pericyte recruitment
deregulation was the cause of the development of PH in two infants with Adams–Oliver
syndrome [51,52]. Increased NG2+/3G5+ pericyte coverage of pulmonary vessels was
indeed demonstrated in PH models induced by CH or monocrotaline (MCT) injection
with early recruitment of pulmonary pericytes participating in vascular remodeling, as
demonstrated using elegant lineage tracing models [53–55]. The increase in pericyte
coverage is also found in the lungs of patients with idiopathic PAH (iPAH) and heritable
PAH (hPAH) patients with a low proportion of α-SMA+/SM22+ pericytes in contrast to
pericytes from control lungs, which are negative for these two SMC markers [54]. Moreover,
SMCs and pericytes from PAH patients showed significantly overlapping transcriptomic
profiles compared to healthy donors [55].

Other resident pulmonary MSC with a potential to differentiate into SMC-like cells
have also been identified. The side population of progenitor cells, characterized by ATP
Binding Cassette Subfamily G Member 2 (ABCG2) expression, are clonogenic and multi-
potent and co-express other stem/progenitor cell markers, such as c-kit, Sca-1, CD34 [56].
In vitro, they are able to differentiate into α-SMA+ SMC/myofibroblasts and NG2+ per-
icytes. Moreover, in vivo, when activated by increased reactive oxygen species, they
contribute to CH-induced pulmonary vascular remodeling by adopting a contractile phe-
notype (α-SMA+) [56]. More recently, our team has also identified several cell populations
of Paternally Widely 1 (PW1)-expressing resident mesenchymal progenitor cells present in
both mice and humans. These progenitor cells proliferate and differentiate into SMC as
early as after 4 days of CH, contributing to the muscularization and neomuscularization
of pulmonary vessels [50]. The early recruited progenitor cells co-express PW1, CD34,
Sca-1, PDGF Receptor type α (PDGFRα), and for some of them, c-kit. Their role in human
pulmonary vascular remodeling is suggested by increased numbers of PW1+ perivascular
cells and by the presence of PW1+/α-SMA+ medial SMC in iPAH patient lungs.

EC are able to undergo an endothelial–mesenchymal transition (EndMT) and to trans-
differentiate into SMC-like [57]. Both in vitro and in vivo experiments, including elegant
lineage tracing studies, have shown that ECs can adopt during PH a transient phenotype
with co-expression of endothelial and SMC markers [58–61]. Since decreased BMPR2
expression was consistently observed in PAH, Ranchoux et al. established a genetically
modified rat model with a heterozygous Bmpr2 mutation and showed that EndMT and
BMPR2 signaling alteration are linked and involved in advanced PH lesions [62]. EC under-
going EndMT start to express typical factors such as Twist [62], Slug, Snail [60], followed
by expression of mesenchymal genes (α-SMA, vimentin) and even SMC specific proteins
SM-MHC [58]. In human PAH lung samples, the presence of α-SMA+ cells expressing
endothelial markers, such as VE-cadherin, CD31, or vWF, in the intima and neointima
strongly supports that a neointimal cell population could originate from the endothelial
cell lineage [58–60,62]. EndMT is promoted by inflammatory cytokines, such as TGF-β,
Tumor Necrosis Factor-α (TNF-α), Interleukin 1β (IL-1β), and also by endothelin-1 [59].



Cells 2021, 10, 1338 6 of 24

In addition, Hopper et al. have observed that BMPR2 expression reduction in pulmonary
artery endothelial cells (using siRNA in vitro and EC-specific Bmpr2 knockout mice in vivo)
triggers an increase in High Mobility Group AT-hook 1 (HMGA1) factor and smooth muscle
cell protein expressions (α-SMA, SM22α, h1-calponin), and a decrease in CD31 expression,
meaning that EndMT is induced by the loss of BMPR2 requiring the HMGA1 factor in
PAH [63].

Bone marrow transplantation experiments also demonstrated the recruitment of cir-
culating stem/progenitor cells participating in pulmonary vascular remodeling during
PH. Indeed, lungs from CH chimeric mice show an accumulation of BM-derived cells,
expressing α-SMA for some of them, indicating the acquisition of a SMC-like profile [64,65].
However, the role of recruited progenitor cells is somewhat disputed as it was less consis-
tent in some studies [27,50,66,67]. Currently, there are no consensus markers for these circu-
lating SMC progenitor cells, but c-kit is commonly used to define them. In hypoxic lungs,
an accumulation of c-kit+/Sca-1+/α-SMA+ cells [30,68,69] as well as VEGFR-2+/c-kit+

cells [26] has been observed in vessels. C-kit+ cells were among the first stem/progenitor
cells to be identified in and around vessels, and c-kit is considered as a stem cell marker.
Resident c-kit+ progenitor cells are found in the adventitia of large vessels where they can
produce new SMC participating in regenerating the vascular wall after injury [70]. One
major difficulty with the c-kit marker is that it is also expressed on bone marrow-derived
cells that are found in tissues as CD45+/c-kit+ cells. These circulating cells have been
shown to be recruited in the adventitia of lung vessels in PAH models as Sca-1+/c-kit+

cells [68]. In vitro, they can differentiate into EC and SMC [30,71]. However, in vivo bone
marrow transplantation experiments did not demonstrate their participation in lung ves-
sels neomuscularization or remodeling in the CH model [27,67]. We have identified a
pulmonary population of CD34+/CXCR4+/c-kit+ progenitor cells, which are recruited
during early CH and may participate in neomuscularization [50]. Our data suggest that
they are resident, as they do not express CD45. It is still difficult to define the respective
role and time course of resident and circulating c-kit+ cells without further lineage tracing
experiments. In PAH patients, increased numbers of circulating CD34+/CD133+/c-kit+

cells were observed in association with c-kit+ cells in remodeled arteries [36]. However,
only rare c-kit+ cells co-expressed α-SMA, indicating that in patients either they are not a
major contributor to SMC and myofibroblasts or that they have lost c-kit expression.

Among bone marrow-derived progenitor cells, there is a subpopulation called fibro-
cytes that coexpress CD34, monocyte lineage markers, such as CD45, CD14, and CD11, and
fibroblast proteins collagen-I, collagen-III, and vimentin (for review on fibrocytes, see [72]).
They produce extracellular matrix (ECM) components, and they can also differentiate
into α-SMA+ myofibroblast and may participate in tissue injury during inflammation
or ischemic process, aberrant healing, and angiogenesis. Fibrocytes contribute to lung
fibrogenesis in several types of fibrotic diseases, including idiopathic pulmonary fibrosis,
scleroderma, and pulmonary hypertension [72,73]. The mechanism underlying the recruit-
ment of fibrocytes during vascular remodeling still needs more insight. Accumulation of
stem and progenitor cells at sites of injury requires CXC chemokine receptor 4 (CXCR4), a
G-protein coupled receptor for CXC chemokine ligand 12 (CXCL12) [74,75]. In PAH, Farkas
et al. studied the role of CXCR4+ cells in the accumulation of c-kit+ cells in Sugen/hypoxia
rats. They proposed that one of this cell’s subpopulations, expressing α-SMA, localized in
and around the pulmonary lesions, could be fibrocytes [76]. Moreover, it has been shown
that the number of circulating fibrocytes has significantly increased in PH individuals
compared with controls [77]. Further investigations are required to explore fibrocytes as a
cell population playing a key role in vascular remodeling in pulmonary hypertension.

4. Mechanisms for Stem/Progenitor Cell Recruitment during PH

The role of stem/progenitor cells in lung vessel homeostasis has yet to be studied.
Published studies have focused on their activation, recruitment, proliferation, and differen-
tiation in the course of PH development (Figure 2).
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Figure 2. Schematic representation of the main known signaling mechanisms for stem/progenitor
cell recruitment during PH. Receptors (CXCR4, CXCR7, BMPR2, TGF-βR, PDGFR, FGFR2, IL-6R,
ETR, Fzd, Patch, Notch) and ligands (CXCL12/SDF-1, BMPs, TGF-β, PDGFs, FGF-2, ET-1, Wnt, SHH,
Notch ligands, respectively) are represented at the membrane of progenitor/stem cells regulating
their mobilization, proliferation, migration, and/or differentiation during PH development. The
balance between BMP and TGF-β signaling is disrupted, leading to progenitor/stem cell recruitment
and participation in remodeling. Aberrant HIF-1α activation enhances the proliferative responses
and differentiation of SPC, SMC, and pericytes to mitogens, such as PDGF and FGF-2 via PDGFR
and FGFR2 receptors. Disrupted glucose metabolism with an increase in the O-GlcNAcylation, the
glycolysis, and the pentose phosphate pathways could induce progenitor/stem cell recruitment and
also participate in the stabilization of HIF-1α. BMP and TGF-β receptors are multimodal receptors
consisting of various combinations of type I and type II. BMPR2 and TGF-βRII are represented here.
ETR = ETA or ETB receptors. Black arrows represent the increased or decreased activity of pathways
observed during PH development. Thick green arrows represent the positive effect of pathways on
progenitor/stem cell recruitment or function. Dotted green arrows represent potential regulatory
pathways derived from studies in other systems. The red dotted line represents a reduced inhibitory
effect of the BMPR2 pathway on progenitor/stem cell recruitment or function.

4.1. BMP

Impaired BMPR2 signaling is observed as a common feature in PAH pathogenesis [1].
This member of the TGF-β superfamily of signaling molecules represents the main suscep-
tibility factor for PAH development [78]. Since its first discovery, numerous studies have
shown the important role of the BMP pathway in controlling vascular cell function. It was
first demonstrated that BMP signaling is critical to induce SMC progenitor cell differentia-
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tion during development in the gut [79] and the muscle [80]. In adult lungs, dysfunctional
BMPR2 signaling is associated with β-catenin activation and results in pulmonary ABCG2+

mesenchymal progenitor cell expansion but without terminal differentiation as pericytes
and as α-SMA+ SMC-like cells [81], leading to dysfunctional microvessels. Taken together,
these data point to BMP as promoters of SMC differentiation that could be impaired with
the deficient BMPR2 signaling that takes place in PAH. Reduced BMPR2 signaling also
increases the number of circulating EPC [18] and promotes EndMT [29], the transition of
PAH EC to smooth muscle-like cells [63]. Hence, although BMP signaling is essential for
stem cell self-renewal and fate determination [82], studies addressing BMP regulation of
pulmonary vascular progenitors are still needed.

4.2. TGF-β

TGF-β is a known regulator of mesenchymal stem cell proliferation and differen-
tiation [83]. This factor plays a major role in the development of PAH pathology, and
its pathway was found overactivated in vascular cells during PAH [54]. TGF-β induces
CD34+/PDGFRα+ progenitor cell [50] and pericyte differentiation into SMC [54,84] through
Smad2/3 phosphorylation [53]. It also induces MSC differentiation into SMC via Notch
pathway activation [85]. Pericytes from iPAH patients are more responsive to TGF-β due
to increased TGF-βRII receptors [53]. This may explain in part the reduced vascular remod-
eling after TGF-β signaling inhibition or during the expression of a dominant-negative
TGF-βRII mutant [86,87]. TGF-β signaling may also probably lead to lung ABCG2+ mes-
enchymal progenitor cell differentiation into profibrotic myofibroblasts as observed in
pulmonary fibrosis [84].

EPC regulation by TGF-β appears complex as on one side, it promotes EndMT in
pulmonary EC clones leading to SMC-like cell production in neointima [29], and on the
other side, it enhances circulating EPC angiogenic properties [88]. These various effects
may depend on the balance between Smad2-dependent TGF-β and Smad1/5/9-dependent
BMP signaling [29] and the inflammation [59].

4.3. FGF

Increased lung FGF-2 signaling has been associated with PAH. FGF-2 promotes per-
icyte proliferation and migration, and FGF-2 neutralizing beneficial antibody effects on
PH-induced neomuscularization were, in part, due to a decreased recruitment of peri-
cytes [54]. We have also observed that PW1+/CD34+ progenitor cells are more proliferative
when treated with FGF-2 (unpublished observation). Therefore, FGF-2 induction of progen-
itor cell recruitment could be an important pathway for PH-associated vascular remodeling,
in particular for intussusceptive angiogenesis [89].

Several studies showed that FGF10-FGFR2 signaling regulates SMC progenitor cells in
the lung parenchyma during development [90–92]. While the expression of both proteins
appears increased in iPAH [93], the role of the FGF-10 axis on PH-associated vascular
remodeling and vascular progenitor cell function has not yet been evaluated.

4.4. Inflammatory Cytokines IL-6 and TNF-α

Inflammation is an important hallmark of PAH, and Interleukin 6 has been shown to
be a major inflammatory cytokine involved in the pathology in patients and experimental
models [94]. IL-6 stimulates pericyte migration but not their proliferation nor their terminal
differentiation towards contractile α-SMA+ cells [54]. This signaling pathway contributes
to induce small pulmonary vessel pericyte coverage in the mouse CH model. IL-6 could
also potentiate the participation of EPC in vascular lesions as it stimulates their angiogenic
potential [95].

Macrophages can induce EC differentiation of the stem/progenitor cells while si-
multaneously inhibiting their differentiation in SMC. TNF-α treatment of EPC increased
migration and incorporation into vessel-like structures [96]. Mechanistically, both effects
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were mediated by macrophage-derived TNF-α via TNF-α receptor 1 and canonical nuclear
factor-κB activation [97].

4.5. SDF-1/CXCR4/CXCR7 Pathway

As emphasized above, several stem/progenitor cell types, in particular c-kit+ cells, ex-
press CXCR4 while pericytes express CXCR7. SDF-1/CXCL12, a ligand for both CXCR4 and
CXCR7, is a major mobilizing factor for bone marrow stem cells as EPC [98]. It is produced
by pulmonary EC and macrophages, in particular, during PAH [18,99] but may also be
derived from platelets [100]. Its role in mobilizing resident and circulating progenitor cells
has been demonstrated in PH models [50,68,71,76,99] and patients [36], whereas CXCR7
was not involved in c-kit+ cell recruitment and vascular remodeling [68]. CH induces an
early increase in lung SDF-1 concentration that is maintained during the course of CH mod-
els [68,76], in particular, via Hypoxia-Induced Factor (HIF)-1 and -2 induced transcriptional
regulation [101,102]. SDF-1 does not induce lung resident CD34+/PDGFRα+/CXCR4+

progenitor cell proliferation but rather regulates their migration and/or differentiation in
SMC [50] while it induces CXCR7+ pericyte proliferation and migration [53,99]. The role of
the SDF-1 pathway on circulating EPC participation in complex vascular lesions awaits
experimental evidence. Blocking SDF-1 reversed PH-associated vascular remodeling in
two severe rat PH models [99], supporting an important role for this factor in regulating
vascular progenitor cell recruitment and differentiation in SMC during PAH.

4.6. PDGF Pathway

The PDGF pathway is a central regulator of vessel structure and SMC function. Two
PDGFR receptor isoforms are present on pulmonary SMC progenitor cells: the PDGFRα [50]
and β [44,54], which can form homo- and heterodimers. The different PDGFs and PDGFRs
have been found activated in the pulmonary vessels of iPAH patients [103], and the benefi-
cial effect of Imatinib treatment (which inhibits PDGFR, c-kit, and c-abl) has been attributed
mostly to PDGFRβ inhibition [104]. Unfortunately, although Imatinib treatment showed
improvement in exercise capacity and hemodynamics in patients with advanced PAH,
it also led to serious adverse effects and high treatment discontinuation and was aban-
doned [105]. The roles of PDGF-B and PDGFRβ were demonstrated by genetic ablation,
which reduced CH-induced PH and remodeling while they were increased by PDGFRβ
constitutive activation [106,107]. This pathway is a major regulator for the recruitment of
pulmonary medial SMC by upregulating KLF4 transcription factor expression inducing
cell dedifferentiation to allow their migration and subsequently by promoting their clonal
proliferation [108]. PDGFRβ activation also led to mesenchymal Gli1+ progenitor cell
expansion [109], which seems to be regulated by a balance between the PDGFRβ pathway
and the hedgehog pathway (see below). PDGFRα activation could also be at play in
regulating progenitor cells. Indeed, this receptor is also highly expressed in iPAH patient
lungs [103], and its specific ligand PDGF-A regulates alveolar SMC production during lung
development [110] as well as gut SMC [79]. The PDGFRα activation mediates adventitial
MSC differentiation into myofibroblasts in arteriovenous fistula [111]. These results suggest
the PDGFRα pathway could also be at play during PAH-associated vascular remodeling.

4.7. Wnt

Wnt (from Wingless in drosophila) signaling relies on canonical (via β-catenin activa-
tion) and non-canonical pathways activated by Wnt binding on Frizzled (Fzd) receptor (for
review, see [112]). Wnt activation during PAH was observed as a common transcriptional
signature in multiple pulmonary cell types [113], and both Wnt ligand and Wnt pathways
were found upregulated in iPAH patient vessels [114,115]. During lung development,
Wnt signaling activates SMC progenitor cell proliferation and is required to induce ex-
pression of PDGF receptors which are important for SMC differentiation [116]. Moreover,
recent results indicated that Dickkopf WNT Signaling Pathway Inhibitor 3 (Dkk3), a Wnt
modulator, can induce differentiation of aortic adventitial vascular Sca-1+ progenitor cells



Cells 2021, 10, 1338 10 of 24

and fibroblasts into SMC via activation Wnt pathways but also of the TGF-β/ Activating
Transcription Factor 6 (ATF6) pathway [117]. In addition, Dkk3 is able to signal by binding
the CXCR7 receptor to stimulate these Sca-1+ progenitor cells’ migration [118]. Recent
results on ABCG2+ mesenchymal cells suggest that Wnt activation prevents differentiation
of these progenitor cells towards EC through β-catenin activation [119]. This is in line with
other studies in which inhibition of Wnt signaling enhanced the angiogenic properties of
endothelial-colony-forming cells [120] and stimulated the release of vasculogenic progeni-
tor cells from bone marrow. On the other hand, activation of β-catenin in ES cells-derived
c-kit+/Sca-1+ progenitor cells led to increased EC differentiation and decreased SMC
markers [121], suggesting that Wnt signaling pathways in different progenitor cells may
lead to various differentiation fates. Indeed, recent data showed that canonical β-catenin
dependent Wnt signaling promotes EPC differentiation in adults [122] and during develop-
ment [123]. Taken together, these results obtained suggest that circulating and pulmonary
vascular progenitor cells are probably recruited by the increased Wnt signaling observed
during PAH.

4.8. Endothelin (ET-1)

Plasma ET-1 level is increased in animal models and PAH patients in correlation
with markers of severity, such as pulmonary vascular resistance [124]. Dual and selective
endothelin receptor antagonists constitute a major therapeutic strategy for PAH patients.
Some studies suggest that progenitor and stem cells could also be targeted by these ther-
apeutic molecules in addition to EC and SMC. Two groups have observed that ET-1
modulates the differentiation fate of various MSC, derived from adipose tissue or bone
marrow, in part through Akt activation [125,126]. In addition, ET-1 shows a strong cy-
toprotective effect on MSC viability [127]. ET-1 also promotes clonal expansion of ISL1+

vascular progenitor cells obtained from embryonic stem cells [128] and proliferation of
pericytes [129]. These results suggest that ET-1 may affect lung stem and progenitor cell
proliferation and differentiation during PH development. We have indeed observed that
CD34+/PW1+/PDGFRα+ progenitor cells express ET1A receptor (unpublished observa-
tions), indicating that they could be targeted by the increased ET-1 production observed
during PH.

4.9. Notch

Vascular progenitor cells are regulated by the Notch pathway. This signaling pathway
involves direct intercellular interactions mediated by membrane-bound Notch ligands
(Dll-1, Dll-4, Jag-1, Jag-2, and Dll-3) and Notch receptors (Notch 1 to 4). Following binding,
Notch receptors are cleaved by A Disintegrin And Metalloproteinase domain-containing
protein 10 (ADAM10) and γ-secretase releasing the notch intracellular domain (NICD) that
translocates to the nucleus to act as a transcription factor (for review, see [130]). Notch
stimulates the differentiation of Sca-1+/CD146− progenitor cells into pericytes [131], of
Tie1+ precursors in SMC [132], of PDGFRβ+ progenitor cells into SMC [133] and of MSC
into SMC [85,134]. In addition, differentiation of circulating CD34+/CD31+ EPC depends
on Notch1 [135].

The role of the Notch pathway in regulating PH-associated vascular pulmonary re-
modeling was demonstrated using γ-secretase inhibitors, which prevent Notch cleavage
necessary for intracellular signaling [136–138]. However, the impact of the different Notch
receptors is somewhat debated. Expressions of EC-associated Notch 1, of SMC-associated
Notch3, and of plexiform lesions-associated Notch 4, are enhanced in PAH patients’ vascu-
lar lesions [136,139,140]. Notch 1 and 3 were also found enhanced in PAH experimental
models, CH mice [136] and MCT rats [137], Sugen/hypoxia [140,141]. The Notch pathway
is activated within weeks 1-2 of CH, leading to pulmonary vascular remodeling [142]
and increased Hes/Hey family target genes expression [137]. Interestingly, in the study of
Steffes et al. [138], Notch 3 expression was restricted to some specific SMC in pulmonary
arterioles which participate in neointima formation. This is reminiscent of the scarce acti-
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vated SMC observed by Sheikh et al. in the pulmonary arteriolar wall during CH-induced
remodeling that participates in neomuscularization [44]. It will be very informative to
investigate whether these observations indeed involve the same type of primed SMC.

4.10. Metabolism

In adults, several quiescent stem cells (hematopoietic, neural, muscle, hair follicle,
bone marrow MSC) exhibit a metabolism based on a high glycolytic activity to provide
energy. Differentiating recruited stem cells appear to shift to oxidative phosphorylation
with increased mitochondrial density [143]. However, other stem cells that are perma-
nently activated, such as intestinal stem cells or spermatogonia, instead seem to rely on
mitochondrial metabolism. Lung stem/progenitor cells metabolic behavior during PH
is still to be determined, but some lines of evidence suggest that it is probably altered as
shown for other cells. Thus, increases in aerobic glycolysis and upregulation of the pentose
phosphate pathway were observed in BMPR2 mutant human pulmonary microvascular
endothelial cells [144]. A Warburg-like glycolytic reprogramming has been observed in
pulmonary mesenchymal cells during PH, with increased glycolysis [145], activation of the
pentose phosphate pathway (for review, see [146]), and is associated with alterations in
proliferation, phenotypic changes, apoptosis. This could be linked to HIF-1α activation,
an important player in PH development [147,148] and a major inducer of glycolysis vs.
oxidative phosphorylation.

Glucose-6-phosphate dehydrogenase (G6PD), the first enzyme of the pentose phos-
phate pathway, may act as a link between reprogrammed metabolism and aberrant gene
regulation, but its role during PH is controversial. G6PD expression appears downregulated
in iPAH patients’ lungs, and G6PD deficiency leads to PH development in mouse [149]. On
the contrary, other studies showed that G6PD expression is increased in iPAH patients and
PH models [150,151] and that G6PD deficiency prevents PH development [152] through
epigenetic control of vascular cells. Variations in resident stem/progenitor cell metabolic
status during PH is still unknown, but Chettimada et al. demonstrated that circulating
hypoxic CD133+ progenitor cell proliferation is dependent on an increased G6PD activ-
ity which promotes their dedifferentiation [151]. Indeed, G6PD controls the chromatin
modifications by regulating histone deacetylase activity, and its inhibition enhances the
expression of SMC-restricted genes while decreasing the expression of the stem/progenitor
marker Sca-1 in cultured SMCs [153].

Another important pathway linked to glucose metabolism is the O-GlcNAcylation,
i.e., the glycosylation of intracellular proteins with N-acetyl-d-glucosamine, which was
found to be increased both in iPAH patients and in PH models [154]. This dynamic post-
translational modification leads to changes in protein function, trafficking, and localization
and regulates stem cell self-renewal, pluripotency, and differentiation, in part, via epigenetic
regulations (for review, see [46]). In particular, O-GlcNAcylation stabilizes HIF-1α [155],
SMAD4, a major regulator of TGF-β and BMP signaling pathways [156], or the EndMT
regulator SNAIL1 [157]. Therefore, modifications in O-GlcNAc transferase activity and
substrate level (glucose) may alter stem/progenitor cell function and participation in
vascular remodeling. Hence, TGF-β induction of aortic c-kit+ cell differentiation into
SMC was dependent on increased O-GlcNAcylation, with SRF and myocardin, the key
transcription factors for SMC differentiation, being two of the modified proteins [70].

Other important metabolism-linked proteins could also participate in progenitor/stem
cell regulation, such as Adenosine Monophosphate-Activated Protein Kinase (AMPK).
AMPK is known as a sensor of metabolic stress, which detects energetic disequilibrium,
and it has been shown to regulate EPC differentiation into EC [158]. In addition, AMPKα2
deficiency leads to increased PH severity in a mouse CH experimental model [159].
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5. Therapeutic Use of Stem/Progenitor Cells
5.1. Endothelial Progenitor Cells

EPC could be helpful diagnostically as circulating biomarkers for predicting risks,
may provide a source of vascular progenitor cells to facilitate neovascularization, and could
be manipulated in vitro to enhance their ability for vascular repair (Figure 3).
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Figure 3. Schematic illustration of stem/progenitor cells potential use for PH therapy. EPC could be
helpful diagnostically as circulating biomarkers for predicting risks, but their relevance continues
to be discussed. Circulating microparticles released by altered EC are increased in PAH patients,
and it seems to be correlated with pulmonary vascular resistance and predict a poor outcome. MSC
can be easily isolated from bone marrow, adipose tissue, peripheral blood, or umbilical cord blood
as well as EPC from bone marrow and peripheral blood. EPC, MSC, and derived exosomes can be
manipulated in order to boost their regeneration capacity and then injected via different delivery
routes to improve PH.

As mentioned previously, numerous studies have established differences in the num-
ber and the phenotype of EPC between PAH and control patients; levels of circulating
EC and EPC seem to be elevated in PAH patients, and the number of these cells could
be positively correlated with pulmonary artery pressure [18,20,160,161], but other works
reported opposite observations [11–15]. Therefore, the relevance of EPC continues to be
discussed as a potential biomarker for the PAH, and this is closely related to the choice
of markers used to discriminate these endothelial cell populations [162,163] and also to
the clinical PH case studied [164,165]. Moreover, circulating microparticles released by
vascular EC are increased in PAH patients, and their levels seem to be correlated with
pulmonary vascular resistance and predict a poor outcome [166–168]. These microparticles
are membrane-shed submicron vesicles released by altered EC, bearing endothelial surface
markers and which can modulate cellular function. In addition, PH can be induced in
healthy mice by injecting PH mouse-derived-extravesicles, raising the question that they
could mediate the disease [169]. Thus, EC and EPC microparticles may be considered as
biological markers and have importance in the pathogenesis of PAH (for review, see [170]).
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Alongside that, several investigations have shown that intravenous EPC transplan-
tation had beneficial effects in monocrotaline-induced PH models [171–174]. In mouse,
BM-derived cells limit pulmonary vascular remodeling induced by vascular injury but
not by hypoxia [175]. In addition, other studies have shown that transfer of VEGFR-2+/
Sca-1+/CXCR4+ cultured early-outgrowth EPCs failed to reverse CH-induced PH [27]
and that BM-derived late-outgrowth endothelial cell can contribute to vascular repair of
an injured systemic artery, but they cannot rescue injured pulmonary vasculature under
MCT-induced PH [176]. Likewise, BM-derived cell injection had no effects on pulmonary
hypertension in the pneumonectomized rats [66]. These publications suggest that the
sources of the transplanted cells and the PH study models (hypoxia versus monocrotaline)
may account for their differences in incorporation rate into the pulmonary endothelium
and their beneficial effects.

Thus, EPC has proven to be an endless reservoir of manipulation in order to take
full advantage of their regenerative capacity, sometimes by combining them with other
treatments, and to prevent their early death post-transplantation [177–179]. In rats, pre-
conditioning of EPC with pinocembrin, a flavonoid naturally abundant in propolis, leads
to an increase in nitric oxidase and VEGF production by EPC, and their transplantation
reduces monocrotaline-induced inflammation, the medial wall thickness, and ameliorates
the endothelial function [180]. EPC combined with sildenafil showed better results than
EPC treatment alone [181]. Nagaya et al. reported that adrenomedullin DNA-transduced
EPC improves pulmonary hemodynamics and increases survival rate compared with EPC
transplantation alone [172]. Interruption of the CD40 pathway in EPC increases their incor-
poration in the intima and might reduce their secretion of inflammatory cytokines [182]. In
a hyperkinetic PH rabbit model, EPC transfected with human HIF-1α are more efficient at
reversing the hypertrophy of the right ventricle, pulmonary remodeling, and increasing
the number of small pulmonary arteries than EPC transplantation alone [183]. In human,
in the Pulmonary Hypertension and Angiogenic Cell Therapy (PHACeT) trial, patients
with stable severe PAH received EPC overexpressing eNOS in order to restore the vascular
homeostasis and endothelial function. They showed a good tolerance and short-term
hemodynamic improvements [184].

Moreover, despite short retention time in lungs and poor efficacy for long-term in the
pulmonary vasculature, BMPR2-augmented EPC trigger upregulation of BMPR2 in the
pulmonary vessels and ameliorate monocrotaline-induced PH in rats because they might
release exosomes expressing VEGFR-2, CD54, and CD105, suggesting that future investiga-
tions using purified exosomes alone may be relevant to understand the mechanism [185]
and could represent advantages over EPC/EC-based therapy [186,187] (for review on
exosomes, see [188]). This supports a beneficial paracrine activity of EPC in addition to
their incorporation into pulmonary vessels as observed in MCT-treated rats [173].

5.2. MSC Therapy

MSC have aroused great interest as therapy for the past 20 years. These non-
hematopoietic multipotent cells can be easily isolated from bone marrow, adipose tis-
sue, peripheral blood, or umbilical cord blood. They display large differentiation capacities
(at least in vitro), immunomodulatory properties, important paracrine activity, and are
weakly immunogens due to lack of class II histocompatibility complex antigens [48]. Ro-
dent and human MSC administration in rodent PH models have proven the interesting
therapeutic properties of these cells in reversing vascular remodeling, mPAP increase,
pulmonary inflammation, and right ventricular hypertrophy (for review, see [189]). Careful
examination of recipient lungs revealed that very few MSC engrafted, suggesting that the
beneficial effects could be mainly paracrine [190]. Indeed, several authors have recently
shown that MSC-derived exosomes could attenuate PAH development in pre-clinical mod-
els [191,192]. Various studies also showed that modifying MSC could potentiate their effect:
e.g., by stimulating them with sphingosine 1 phosphate or transducing them with eNOS,
prostacyclin synthase, or heme oxygenase-1 expression vector [193–195]. As determined
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by searching the clinicaltrials.gov (accessed on 26 April 2021) database, these encouraging
results led to only a few clinical trials evaluating the beneficial effect of MSC treatment in
PH patients.

6. Conclusions and Perspectives

Growing evidence stated here and by others [38] establishes circulating and resident
progenitor and stem cells as important contributors in the vascular remodeling accompany-
ing PH. The lack of specific markers led many groups to propose their own set of markers,
and we thus need unifying studies to allow comparisons of the various cells involved. An-
other major drawback of progenitor/stem cell studies is that the link between the different
cell populations identified has not yet been analyzed. So far, it is not known whether they
are hierarchically connected or whether they belong to unrelated cell populations. For ex-
ample, transcriptomic studies in the heart suggested that c-kit+ cells were undifferentiated,
whereas Sca-1+ cells were closer to cardiomyocytes [196]. However, resident progenitor
cell fate is closely linked to the tissue in which they live. Hence, their transitional state and
markers and terminal differentiation may be different in the lung. Indeed, lineage tracing
approaches in the context of PH are lacking to prove the involvement of the different stem
and progenitor cells. In particular, lineage tracing investigations in mouse PH models
with more severe vascular remodeling, such as House Dust Mite mouse model [138], left
pneumonectomy/monocrotaline pyrrole mouse model [58], or mice with a EC specific-loss
of prolyl-4 hydroxylase 2 (PHD2) [197], could help us identify the fate of progenitor cells
and dissect the hierarchy between the different cell populations while getting closer to
human pathology pattern. In addition, genome editing advances using CRISPR/Cas9
promote new opportunities to generate Cre reporter rats for lineage tracing studies in MCT
and Sugen/hypoxia rat models.

Pathways regulating the recruitment of vascular progenitor/stem cells associated
with PH development have also been deciphered. This field may unveil new important
pathways that could be targeted in patients (such as humoral factors, extracellular matrix
composition, or mechanical stresses). Interestingly, the role of the Sonic hedgehog (SHH)
signaling pathway in pulmonary hypertension development has not been investigated
yet, but several results point to a role in regulating vascular progenitor cell function that
could be involved in vascular remodeling. First, SHH directly promotes circulating EPC
proliferation, migration, adhesion, and tube formation [198,199]. Second, Gli1, considered
by several authors as a marker for SMC or myofibroblast progenitor cells [200], is a direct
effector and target of SHH signaling pathway, and its expression coincides with SHH acti-
vated regions and regulates vascular progenitor cell fate and recruitment [109,134]. Third,
Sca-1+ vascular progenitor cells are clustered in a zone SHH signaling in the adventitial
layer of systemic arteries [201], where SHH may regulate their proliferation, self-renewal,
and survival [134,201]. Conversely, the recent discoveries of new genes with deleteri-
ous variants leading to PAH susceptibility, such as T-Box Transcription Factor 4 (TBX4)
and SRY-Box Transcription Factor 17 (SOX17) [78], or to PVOD, such as General Control
Nonderepressible 2 (GCN2) [202], are offering new leads to understand the regulation of
progenitor/stem cells during the course of the pathology.
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