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Abstract: Rapid object recognition in the industrial field is the key to intelligent manufacturing.
The research on fast recognition methods based on deep learning was the focus of researchers in
recent years, but the balance between detection speed and accuracy was not well solved. In this
paper, a fast recognition method for electronic components in a complex background is presented.
Firstly, we built the image dataset, including image acquisition, image augmentation, and image
labeling. Secondly, a fast recognition method based on deep learning was proposed. The balance
between detection accuracy and detection speed was solved through the lightweight improvement of
YOLO (You Only Look Once)-V3 network model. Finally, the experiment was completed, and the
proposed method was compared with several popular detection methods. The results showed that
the accuracy reached 95.21% and the speed was 0.0794 s, which proved the superiority of this method
for electronic component detection.
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1. Introduction

Based on the environment of “Made in China 2025”, intelligent manufacturing became one of
the key development fields [1,2]. Machine vision is an important development field of intelligent
manufacturing, because image information can be obtained, which accurately judges the state
information of industrial target products, so as to prepare for subsequent automatic operation.
At present, some important links in the assembly line of integrated circuit board are still completed
by skilled workers, such as inserting pins of electronic components (as shown in Figure 1) into
corresponding holes (as shown in Figure 2), and quality control of finished products. Not only does
manual labor consume time, but the results of installing and testing are affected by the dedication level
and work experience of the installers. With the development of computer technology and information
processing technology, object recognition based on deep learning is one of the most popular directions
in machine vision field. Due to the complex background of industrial target products, problems such
as aliasing, occlusion, and shadow often occur, and there is inter-class similarity, which leads to certain
difficulties in object recognition.

Many researchers completed several studies in the field of object recognition. For example,
Radeva et al. [3] introduced probability modeling using the Bayesian classification method in
high-dimensional space to realize cork appearance detection and classification. Akhloufi et al. [4]
proposed an effective color texture classification framework for the classification of complex industrial
products, which was realized by combining the statistical features calculated by the generalized
isotropic symbiosis matrix extracted from the ribbon with the image entropy. However, the limitation
of these method is that it is difficult to identify products with similar color and same texture.
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Hao et al. [5] proposed a color threshold determination (CTD) method to identify color markers, aiming
at the problem where traditional identification methods have low recognition accuracy or cannot
be recognized in complex scenes and multi-objects. The Adaboost cascade classifier based on the
Histograms of Oriented Gradients (HOG) [6] feature was used to determine the color of each pixel in
the candidate region of interest. Then, the color feature was matched according to the preset threshold,
and the matching region was reserved to obtain the final recognition result. This method has good
performance in the task of color mark recognition in complex scene, but it is not suitable for the situation
of dense and overlapping target objects. Due to the complex background and multi-target aliasing, there
is a great similarity between the objects; thus, these detection algorithms cannot accurately segment
each object area in the heavily overlapping industrial product objects, which makes it challenging to
use traditional detection algorithms to recognize the objects, as shown in Figure 1.
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In recent years, deep learning technology achieved great success in object recognition [7–10]. 
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time, because the model is scalable, it is more flexible in practical application. At present, deep 
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[16] method proposed by Girshick et al. was a successful case of applying deep learning to object 
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in Fast RCNN [17] and Faster RCNN [18]. In the literature [18], the region recommendation network 
(RPN) was firstly used to obtain the region of interest (ROI). The bounding boxes were then classified 
using a classifier. These algorithms provide guidance for industrial product detection. Although the 
accuracy of the R-CNN method is satisfactory, high computing force is needed, which leads to a low 
detection speed when using normal computers. 
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In recent years, deep learning technology achieved great success in object recognition [7–10].
Apart from the artificial features of traditional algorithms, deep learning algorithms conduct
representational learning on a large amount of data; thus, they are more generalized. At the same time,
because the model is scalable, it is more flexible in practical application. At present, deep learning
technology is widely used in industrial fields [10,11], such as industrial object classification [7,12],
industrial product defect detection [9,13], and fault diagnosis [14,15]. For example, the R-CNN [16]
method proposed by Girshick et al. was a successful case of applying deep learning to object recognition.
This method combines a classical regional recommendation network (RPN) and convolutional neural
network (CNN) for object detection and classification. It was further improved in Fast RCNN [17]
and Faster RCNN [18]. In the literature [18], the region recommendation network (RPN) was firstly
used to obtain the region of interest (ROI). The bounding boxes were then classified using a classifier.
These algorithms provide guidance for industrial product detection. Although the accuracy of the
R-CNN method is satisfactory, high computing force is needed, which leads to a low detection speed
when using normal computers.

To overcome this problem, Redmon et al. [19] proposed a new neural network, YOLO, which can
directly predict the target boundary box. The network is simpler and faster than R-CNN under
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the premise of high accuracy. The RPN network is not needed in the YOLO network, as it directly
performs regression to detect the object in the image; thus, the detection speed is faster. Although the
latest version of the YOLO network (YOLO-V3 [20]) improved the accuracy and speed of detection,
and rendered it more suitable for small object detection, real-time detection in industrial applications
requires too much hardware; thus, the network structure needs to be lightweight. Therefore, Google
proposed the lightweight model Mobilenet [21] to improve the detection speed of the neural network
algorithm. Mobilenet, based on streamlined architecture, uses depth-separable convolution to build
lightweight deep neural networks. Mobilenet is an efficient network architecture; it can be used to
build small, low-latency, and low-performance models by setting parameters.

Inspired by the above studies, this paper plans to use the improved YOLO-V3 algorithm for
real-time detection of electronic components, though combining the Mobilenet network to improve the
YOLO-V3 network.

The rest of this article is organized as follows: Section 2 introduces the construction of image dataset
including image acquisition, image data enhancement, and label making. The improved YOLO-V3
algorithm is introduced in Section 3. Section 4 introduces the relevant contents of the experiment,
and the proposed method is compared with the latest detection methods; then, the experimental result
is discussed. Section 5 presents the conclusion and future prospects of this paper.

2. Dataset

2.1. Image Acquisition

In this study, 200 target images were acquired using a camera with 3264 × 2448 resolution, and the
capturing distance was approximately 250–300 mm. The images were taken by an integrated circuit
manufacturing company in Zhenjiang City, Jiangsu Province, China. The image data used in this
paper were collected at the assembly line of the company using conventional lighting, a process which
consumed one week.

The images included four different electronic components, as shown in Figure 3. Due to the large
number of electronic components, there was inevitable overlap. The first electronic component was a
capacitor of 470 µF, with the largest volume. The second type was a capacitor of 220 µF. Due to its
similar shape to the capacitor of 470 µF, it was easily confused, which posed a challenge to machine
vision. The third type was a capacitor of 22 µF, which was small, light-yellow, and different from the
first two components. The last one was an inductor with reddish-brown color, but in small quantities.
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2.2. Image Data Augmentation

Insufficient data in deep network training can lead to overfitting, which makes the model’s
generalization ability worse. Therefore, the dataset needs to be augmented to improve the diversity of
the sample. We used four data augmentation technologies: contrast enhancement processing, add noise
processing, brightness transformation, and blur processing, as shown in Figure 4. The number of
images was expanded from 200 to 1000, as shown in Table 1.
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Table 1. The number of images generated by data augmentation technologies.

Original Data Contrast Noise Brightness Blur Total

Number of images 200 200 200 200 200 1000

2.2.1. Contrast Enhancement Processing

Due to the particularity of machine vision, the colors in the image are inconsistent with the real
environment under different lighting conditions. This may result in unclear outlines of electronic
components in the images captured by industrial cameras, and the color contrast is not strong,
thus affecting the recognition ability of the model. Therefore, the contrast enhancement algorithm was
used to improve the contrast between the contour of the electronic component and the background
color. Contrast enhancement is the stretching or compression of the range of brightness values in an
image into the brightness display range specified by the display system, thereby increasing the overall
or partial contrast of the image. Each luminance value in the original image was mapped to new values
in the new image such that values between 0.3 and 1 mapped to values between 0 and 1.

2.2.2. Add Noise Processing

Adding noise means randomly adding a small amount of noise to the image, and the noise can
randomly disturb the RGB of each pixel of the image. This method prevents the neural network from
fitting all features of the input image, thereby preventing overfitting. Gaussian noise was added to this
experiment. Gaussian noise often appears as an isolated pixel or pixel block that tends to cause strong
visual effects on the image. This method added Gaussian white noise of mean 0.1 and variance 0.02 to
the original images.

2.2.3. Brightness Transformation

On the assembly line, camera shooting is in an open environment, which causes ambient light
to affect the brightness of the detection target, thus affecting the detection effect. Therefore, we used
brightness transformation to simulate the brightness change caused by ambient light to the detection
target, thereby improving the robustness of the model. In this paper, the original RGB values of the
picture were multiplied by 1.5 to improve the overall brightness of the picture.

2.2.4. Blur Processing

This involves using a blurred template to produce a blurred image. In actual application scenarios,
the image may be unclear due to the camera’s far distance, incorrect focal length, or camera movement.
Therefore, this article used a rotationally symmetric Gaussian lowpass filter of size [5, 5] with standard
deviation 5 to generate a blurred image. The blurred images were taken as samples to further improve
the robustness of the detection model.

2.3. Image Annotation and Dataset Production

We used professional software to create image labels and combined them with images to generate
the dataset. In order to better compare the performance of different algorithms, the labels in the
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dataset were uniformly converted into the PASCAL VOC2007 [22] format. The dataset was divided
into three parts: the training set, the validation set, and the test set. The role of training data is to train
the detection model, calculate the gradient, and update the weights. The validation data are used
to avoid overfitting, while it can also be used to determine some super parameters (the size of the
epoch, learning rate). Testing data are adopted to test the performance of the model. In this paper,
the composition ratio of training set, verification set, and test set was 35%, 35%, and 30%, respectively.
This article only focuses on the upper electronic components, whereas the components that block more
than 70% were not considered. In particular, the two ends of the captured electronic components were
not considered. Thus, the number of objects after augmentation was as shown in Table 2.

Table 2. The numbers of different labels.

Labels Capacitor of 470 µF Capacitor of 220 µF Capacitor of 22 µF Inductor

No. 6195 21,575 10,050 5340

3. Method

For our object, a new YOLO-based network is proposed, which is a combination of YOLO-V3
and Mobilenet.

3.1. YOLO-V3

The YOLO (you only look once) network is an end-to-end [23] object detection model. Unlike the
Faster R-CNN network, the YOLO network converts the classification regression problem directly into
a regression problem. The YOLO detection model is shown in Figure 5. The YOLO network divides
each image in the training set into S × S grids. If the center position of an object ground truth falls in
the grid, the grid is responsible for detecting the target. Each grid predicts B bounding boxes and their
confidence scores, as well as C objects belonging to a class of probability information. The bounding
box information contains five data values, which are x, y, w, h and confidence, where x and y refer to
the coordinates of the center position of the bounding box of the object predicted by the current grid,
and w and h are the width and height of the bounding box. The definition of confidence is as follows:

Con f idence = pr(Object) × IoUtruth
pred , pr(Object) ∈ {0, 1}, (1)

where pr is an abbreviation for precision; when the target is in the grid, pr(Object) = 1; otherwise, it is
equal to 0. IoUtruth

pred is used to indicate the consistency between the actual and predicted bounding boxes.
Confidence reflects whether the grid contains objects and the accuracy of the predicted bounding
box when it contains objects. When multiple bounding boxes detect the same target, non-maximum
suppression (NMS) [24] is used to select the best bounding box.

Although YOLO offers faster speed than the Faster RCNN, it has a relatively high detection error.
To solve this problem, the concept of “anchor” in Faster R-CNN was introduced in YOLO-V2 [25].
At the same time, YOLO-V2 optimized the network structure, using the convolution layer instead of the
fully connected layer in the YOLO output layer, named Darknet19. YOLO-V2 also used high-resolution
classifiers, direct location prediction, batch normalization, multi-scale training, and other methods,
which greatly improved the detection accuracy compared to YOLO. However, YOLO-V2 was not ideal
for multi-scale object detection.

In order to solve the above problem, YOLO-V3 proposed a method using the Resnet model and
the feature pyramid networks for object detection [26] (FPN) architecture. The feature extractor for
YOLO-V3 was a residual model that contained 53 convolutional layers, also known as Darknet53.
From the perspective of the network structure, it can be constructed deeper, thereby improving the
detection accuracy. Another point was to use the FPN architecture to achieve multi-scale prediction,
making YOLO-V3 more effective for detecting small targets than YOLO-V2.
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3.2. MobileNet Structure

The MobileNet model is based on depthwise separable convolutions which consist of two layers:
depthwise convolutions and pointwise convolutions. The depthwise convolution applies a 3 × 3
convolution to apply a single filter to each input channel. The pointwise convolution applies a 1 × 1
convolution to output a deep convolution. Standard convolution can either filter or combine inputs into
a new set of outputs. The depthwise separable convolutions divide it into two layers, a separate layer
for filtering and another separate layer for combining, as shown in Figure 6. MobileNet’s detection
time is 8–9 times faster than standard convolution at the expense of smaller detection accuracy.
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3.3. Mixup Method

The Mixup method [27] was proven to play a significant role in the classification network.
Subsequently, Zhang et al. [28] optimized this method and applied it to the field of object detection and
achieved good results. The Mixup method is understood to be a data enhancement method that makes
the neural network model appear linear when processing the region between samples. This linear
modeling reduces the incompatibility of predicting data outside of the training sample. The Mixup
method for object detection is shown in Figure 7.
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3.4. The Proposed Algorithm

Figure 8 shows our proposed YOLOV3–Mobilenet network architecture, which uses the YOLO-V3
framework as the basic network architecture, uses the Mobilenet architecture to replace the original
Darknet53 architecture, streamlines the network layer, and splits a standard convolution layer into
depthwise convolutions and pointwise convolutions, where the former is responsible for applying a
single filter to each input channel and the latter is responsible for combining the upper convolution.
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The specific network parameters of YOLOV3–Mobilenet are shown in Figure 9. To better handle
high-resolution images, we resized the resolution of the input image from the original 256 × 256 pixels
to 416 × 416 pixels. The first layer of the improved network uses 3 × 3 standard convolutions. Starting
from the second layer, the network splits the 3 × 3 standard convolution frame into 3 × 3 depthwise
convolutions (Conv dw) and 1 × 1 pointwise convolutions (Conv). Specifically, the structure of the 3 × 3
Conv-BN-ReLU is changed into a 3 × 3 depthwise Conv-BN-ReLU-1 × 1 Conv-BN-ReLU structure,
which is a contribution of convolution (Conv), batch normalization (BN), and rectified linear units
(ReLU). Because the role of pointwise convolutions is to combine the results of the previous depthwise
convolutions, you can delete the residual layer, which is responsible for the combination in the original
network. The improved network reduces network layers and adopts the Mobilenet filters parameter
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setting, which makes the detection speed of the network closer to Mobilenet, and also ensures the
detection accuracy to the greatest extent.
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In the training process, we also used the Mixup method to improve the detection accuracy of the
network. The Mixup method combines two images with a certain ratio, which increases the sample size
of the image, thereby effectively improving the robustness of the system and enhancing the prediction
ability of the model outside the training data range. At the same time, the Mixup method can make the
model training more stable and reduce the fluctuations during training.

4. Experiments and Discussion

The YOLOV3–Mobilenet model was built on MXNet [29]. The detection model was trained
and tested on the Dell Precision T7810 workstation. The workstation’s parameters were as follows:
Xeon E5-2650 (central processing unit, CPU), 64 GB random-access memory (RAM), Nvidia Qudaro
K5200 (graphics processing unit, GPU), 8 GB display memory, and Ubuntu 16.04 (operating system,
OS). The initialization parameters of the network are shown in Table 3.

Table 3. Initialization parameters of YOLOV3–Mobilenet network.

Size of Input
Images Batch Size Momentum Learning Rate

Scheduler Mode Learning Rate Training Epoch

416 × 416 8 0.9 Step 0.0001 200

4.1. Evaluation Criterion

In order to evaluate the performance of our proposed network model, the evaluation criteria
described below were used.

4.1.1. Precision and Recall

For binary classification problems, according to the combination of the learner’s ground truth
class and the predictive class, the judging results can be divided into four types: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN). The confusion matrix of the classification
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results is shown in Table 4. Precision represents the ability of the model to identify related objects.
It is the percentage of correct predictions. Recall stands for the ability of the model to find all relevant
objects. It is the percentage of true positives detected in all ground truths.

Table 4. Confusion matrix of the classification results. TP—true positive; FP—false positive; TN—true
negative; FN—false negative.

Labeled
Predicted

Positive Negative

Positive TP FP

Negative FN TN

The precision (P) and recall (R) are defined as follows:

Precision =
TP

TP + FP
=

TP
all detections

. (2)

Recall =
TP

TP + FN
=

TP
all ground truths

. (3)

With recall as the horizontal axis and precision as the vertical axis, an accurate alignment curve
can be obtained, which is referred to as the P–R curve.

4.1.2. mAP

The dataset format of this paper is PASCAL VOC2007; thus, the 11-point interpolation average
precision calculation method was used to calculate the AP (average precision). The calculation step
was as follows: firstly, threshold values were set as [0, 0.1, 0.2, . . . , 1]. Then, whenever the recall value
is greater than a threshold (such as recall > 0.3), we get a corresponding maximum precision. In this
way, we calculated 11 precision values. AP was the average of these 11 precisions. The algorithm was
as follows:

AP =
1

11

∑
r∈{0.0,...,1.0}

APr =
1
11

∑
r∈{0,0,...,1,0}

pinterp(r), (4)

where
pinterp(r) = max

r̃≥r
p(̃r). (5)

The AP stands for the performance of the test model for each category, while the mAP represents
the performance of the test model across all categories, which is the average of all APs. The network
reports information about the progress of the model learning at the end of each epoch. Therefore,
the change of mAP can be seen during the model training process.

4.1.3. Loss Function

The loss function is an indicator of the performance of the model. The loss function in
YOLOV3–Mobilenet is defined as follows:

Loss = Errorcenter + Errorscale + Errorobj + Errorclass, (6)

where Errorcenter (prediction error of the box center) and Errorscale (prediction error of the box scale) are
defined as follows:

Errorcenter = λcoord

S2∑
i=0

B∑
j=0

1obj
i j

[
(xi − x̂i)

2 + (yi − ŷi)
2
]
, (7)
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Errorscale = λcoord

S2∑
i=0

B∑
j=0

1obj
i j

(√wi −
√

ŵi
)2
+

(√
hi −

√
ĥi

)2, (8)

where λcoord represents the weight of the coordinate error, S2 means the number of grids of the input
image, and B is the number of bounding boxes generated by each grid. We set the value of λcoord to 5,
the value of S to 13, and the value of B to 9. The value of 1obj

i j in the formula is related to the picture.

When there is an object in the j th bounding box in gird i, the value of 1ob j
i j is 1; otherwise, it is 0. (x̂i, ŷi)

and
(
ŵi, ĥi

)
respectively represent the center coordinates for width and height of the prediction box,

while (xi, yi) and (wi, hi) are the true values.
Errorobj (the confidence error), which means the objectness of the box, is defined as follows:

Errorobj =
S2∑

i=0

B∑
j=0

1obj
i j

(
Ci − Ĉi

)2
+ λnoobj

S2∑
i=0

B∑
j=0

1noobj
i j

(
Ci − Ĉi

)2
, (9)

where Ĉi is the confidence score of the j th bounding box in grid i, and the parameter 1noobj
i j is a

complement of 1obj
i j . When an object is detected in the j th bounding box in gird i, 1obj

i j is set to 1,

and 1noobj
i j is set to 0; otherwise, 1obj

i j takes 0 and 1noobj
i j takes 1. The function of the parameter λnoobj is to

weigh down the loss when detecting the background.
Errorclass (the classification error) is defined as follows:

Errorclass =
S2∑

i=0

1obj
i

∑
c∈classes

(pi(c) − p̂i(c))
2, (10)

where c represents the class to which the detected object belongs, pi(c) represents the actual likelihood
of the class c class in cell i, and p̂i(c) is the predicted value. The classification loss at each cell is the
squared error of the class conditional probabilities for each class.

4.1.4. Detection Speed

The detection speed was used to compare between different detection models, which was obtained
using the following method: firstly, eight different images were selected; then, the same model was
used to detect them three times, before finally taking the average of the three values.

4.2. Experimental Results

The dataset including four classes of electronic components was used to train the
YOLOV3–Mobilenet network. The P–R curve is shown in Figure 10. The mAP scores of the
corresponding electronic components are shown in Table 5.

Table 5. Mean average precision (mAP) results of the four electronic components.

Class mAP

Capacitor of 470 µF 0.9090

Capacitor of 220 µF 0.9955

Capacitor of 22 µF 0.9950

Inductor 0.9086

All 0.9521
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It can be seen from the above data that the overall test results were ideal, with an mAP of 95.21%.
However, Figure 10 shows that the curves of capacitor of 220 µF and capacitor of 22 µF were closer to
the upper right corner than the curves of capacitor of 470 µF and inductor, and their P–R values were
closer to the (1, 1) coordinate. This shows that the curves for capacitor of 220 µF and capacitor of 22 µF
were better than those for capacitor of 470 µF and inductor. The AP value in Table 5 also supports this
result. From the information in Table 2, it is known that capacitor of 220 µF and capacitor of 22 µF had
more training samples, resulting in better test results.

4.3. Comparison of Different Algorithms

In order to verify the performance of the proposed model, the YOLOV3–Mobilenet trained with
the dataset of the four electronic components was compared with YOLO V3, SSD (Single Shot Multibox
Detector) [30], and Faster R-CNN with Resnet 101 models. In this way, the superior performance of the
proposed method was demonstrated.

The mAP and detection speed of YOLOV3–Mobilenet, YOLO V3, SSD, and Faster R-CNN with
Resnet 101 are shown in Table 6. Figure 11 shows the P–R curves of different electronic components for
the detection models. The mAP curves of the four models are shown in Figure 12.

Table 6. mAP results and detection speed for several models.

Models YOLOV3–Mobilenet YOLO-V3 SSD Faster R-CNN
with Resnet 101

mAP 0.9521 0.9525 0.8904 0.9261

Detection speed (s) 0.0794 0.1569 0.1962 0.6188

From Figure 11, we can see that the curves of the YOLO V3 and YOLOV3–Mobilenet models had
significant advantages over SSD and Faster R-CNN, and their P–R values were closer to the coordinate
(1, 1). Combined with the detection speed in Table 6, it can be observed that the detection speed of
YOLOV3–Mobilenet was 49.4% higher than that of YOLO V3, and the advantage was remarkable.
Figure 12 shows that our method was close to the mAP value of YOLO V3, but we can see that our
method reached the steady state first.
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In order to facilitate the observation of the bounding box, a, b, c, and d were used to replace the
four electronic components (capacitor of 470 µF, capacitor of 220 µF, capacitor of 22 µF and inductor,
respectively). The test results of the model are shown in Figure 13.

After careful comparison, several phenomena could be found in Figure 13. The detection effects of
the YOLO V3 network and the YOLOV3–Mobilenet network were similar. There were lots of bounding
boxes in the image detected by the SSD network that were greater in number and larger than the
object, which affected the detection effect of the correct electronic components, the reason for which
may be that the setting of the NMS value of the SSD was not suitable for our object. In the Faster
R-CNN network, some detection errors occurred. In the upper right corner of Figure 13g, the ends of
an electronic component were detected, which was not the scope we considered, but the Faster R-CNN
misidentified it. Thus, we can conclude that Faster R-CNN was not well adapted to our object.
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4.4. Analysis of Influencing Factors

4.4.1. Influence of the Quantity of Experimental Data

In this section, we mainly analyze the impact of the size of the image dataset on the
YOLOV3–Mobilenet model. To achieve this, 50, 150, 250, 500, 750, and 1000 images were randomly
selected from the image dataset to form corresponding datasets. Then, the P–R curve (Figure 14) and
mAP value (Table 7) of the corresponding model were obtained.
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Table 7. mAP results of different dataset size.

Number of Images 50 150 250 500 750 1000

mAP 0.5923 0.8296 0.8837 0.9021 0.9239 0.9521

From these results, we can conclude that the detection performance of the YOLOV3–Mobilenet
model improved upon increasing the dataset size.

4.4.2. Influence of Data Augmentation Technologies

Four augmentation technologies were adopted in this paper. In order to explore the effect
of different augmentation technologies on the performance of the model, we conducted several
experiments. Experiments were conducted on the raw dataset and the augmentation (including four
technologies) dataset, and the dataset removed one technology at a time. Finally, corresponding mAP
values (Table 8) were obtained for comparison.

From the experimental results, data augmentation technologies greatly improved the performance
of the model, and the mAP value rose from 83.01% to 95.21%. This shows that using these data
augmentation technologies could efficiently improve the robustness and detection accuracy of the model.



Electronics 2019, 8, 825 15 of 18

Table 8. mAP results for various situations.

Data Augmentation Technologies mAP

Raw dataset 0.8301

Dataset after augmentation 0.9521

Remove contrast enhancement transformation 0.9480

Remove add noises processing 0.9077

Remove brightness transformation 0.9082

Remove blur processing 0.9171

As can be seen from Table 8, the three data augmentation technologies, including add noise
processing, brightness transformation, and blur processing, resulted in a decrease in mAP values by
4.44%, 4.39%, and 3.5%, respectively. This means that these three technologies had a greater impact on
mAP. In contrast, the removal of the contrast enhancement transformation technology resulted in a
0.41% drop in the mAP value, indicating that this technology had a weak effect on the performance of
the model.

4.4.3. Influence of Mixup Method

In the training process of our network model, the use of the Mixup training method resulted in a
0.27% improvement in mAP, indicating that the detection accuracy was improved to some extent by
this method, as shown in Table 9.

Table 9. mAP results for two different situations.

Method Training without Mixup Method Training with Mixup Method

mAP 0.9494 0.9521

It can be seen from Figure 15 that the model using the Mixup training method had a smaller loss
value during the training process, which was more stable than the training without the Mixup method,
which is why it was easy to converge. Figure 16 strongly supports the above conclusions.
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requirements. We also plan to deploy it in embedded devices, so that it can achieve better portability 
in use. In addition, we will also optimize the data augmentation technologies to further improve the 
detection accuracy. 
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Figure 16. mAP curves of the two methods.

5. Conclusions

In this paper, the improved YOLO V3 (YOLOV3–Mobilenet) model for detection of electronic
components in complex backgrounds was proposed. In order to balance the accuracy of detection and
speed, we incorporated the Mobilenet network framework to lighten the YOLO V3 network.

We collected 200 images containing four electronic components (capacitor of 470 µF, capacitor
of 220 µF, capacitor of 22 µF, and inductor), using four data augmentation technologies (contrast
enhancement processing, add noise processing, brightness conversion, and blurring) to build a dataset,
and manually labeled the dataset.

To prove the validity of our proposed method, it was compared with some of the latest
detection methods. The experimental results showed that, compared with the YOLO V3 model,
the YOLOV3–Mobilenet model had a significant improvement in detection speed with similar
accuracy. Furthermore, it had significant advantages compared with SSD and Faster R-CNN with
Resnet101 network.

YOLOV3–Mobilenet can now be used for the detection of electronic components, but there is still a
certain gap between its performance real-time detection. Future work will focus on optimizing existing
models to enable the detection of electronic components in video to meet real-time requirements.
We also plan to deploy it in embedded devices, so that it can achieve better portability in use. In addition,
we will also optimize the data augmentation technologies to further improve the detection accuracy.
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