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Abstract: In this article, we consider a model of time-varying volatility which
generalizes the classical Black-Scholes model to include regime-switching
properties. Specifically, the unobservable state variables for stock fluctu-
ations are modeled by a Markov process, and the drift and volatility pa-
rameters take different values depending on the state of this hidden Markov
process. We provide a closed-form formula for the arbitrage-free price of the
European call option, when the hidden Markov process has finite number
of states. Two simulation methods, the discrete diffusion method and the
Markovian tree method, for computing the European call option price are
presented for comparison.
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1. Introduction

It is well-known that the volatility of financial time series changes over time
and the changes tend to be persistent. Furthermore, some stylized features of the
volatility have been established by many empirical studies. These features in-
clude volatility clustering, leverage effects, higher volatility following non-trading
periods, higher volatility after foreseeable releases of important information, and
co-movements in volatility, etc. Therefore, models of changing volatility have
been developed to capture these empirical phenomena. Three classes of models
that received considerable attention are ARCH type models, stochastic volatility
models, and regime switching models.

The ARCH type models was first proposed by (Engle, 1982) and later gener-
alized to GARCH by (Bollerslev, 1986; 1987). Option pricing in GARCH models
was first investigated by (Duan, 1995). Option pricing in stochastic volatility
model were considered by (Hull and White, 1987), (Stein and Stein, 1991), (Wig-
gins, 1987) and (Heston, 1993). Uncertain volatility was studied in (Avellaneda,
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Levy and Parás, 1995). The Markov switching model of (Hamilton, 1988; 1989) is
capable of accommodating time-varying volatility. (Hamilton and Susmel, 1994)
proposed the Markov switching ARCH model. In a partial equilibrium model,
(Turner, Startz and Nelson, 1989) formulated a switching model for excess re-
turns, in which returns switch exogenously between a Gaussian low variance
regime and a Gaussian high variance regime. (So, Lam and Li, 1998) generalized
the stochastic volatility model to incorporate Markov regime switching proper-
ties. (David, 1997) studied the regime switching properties of the drift in the
classical Cox-Ingersoll-Ross model. (Veronesi, 1999) consider Gaussian diffusion
model with drift depending on the hidden states. (Di Masi, Kabanov and Rung-
gladier, 1994) considered the problem of hedging a European call option for a
diffusion model, where drift and volatility are functions of a two-state Markov
process. (Guo, 2001) considered the same model and gave a closed-form for-
mula for the European call option, which contains a couple of mistakes. (Duan,
Popova and Ritchken, 2002) developed a family of option pricing models when
the underlying stock price dynamic is modeled by a regime switching process.
The family included Markov switching model of (Hamilton, 1989) and extended
GARCH option models as a special limiting case.

Recent research (cf. Bittlingmayer, 1998) has shown that investors’ uncer-
tainty over some important factors affecting the economy may greatly impact
the volatility of stock returns. More generally, there is evidence that investors
tend to be more uncertain about the future growth rate of the economy dur-
ing recessions, and thereby partially justifying a higher volatility of stock re-
turns. (Veronesi, 1999) demonstrated that stock prices overreact to bad news in
good time and underreact to good news in bad times. The empirical evidence
of (Maghrebi, Kim and Nishina, 2007) suggested that Markov regime switching
models are regime dependencies to adjust forecast errors. The nonlinearities in
volatility expectations can be captured by Markov regime switching models.

In this paper, to encompass the empirical phenomena of stock fluctuations
related to the business cycle, we introduce a model of an incomplete market
by adjoining the Black-Scholes exponential Brownian motion model with a hid-
den Markov process. Specifically, we assume that stock prices are generated by
realization of a Gaussian diffusion process, and that the drift and volatility pa-
rameters take different values depending on the state of a hidden Markov process.
That is, we assume that investors cannot observe the drift rates, nor the volatility
of the process, and they have to infer them from their observations. We call this
model a Black-Scholes model with Markov switching, or a hidden Markov model
(HMM) in brief. The contribution of this paper is to provide a close-form formula
for the arbitrage-free price of the European call option when the hidden Markov
process has finite number of states. Two simulation methods, the discrete diffu-
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sion method and the Markovian tree method, for computing the European call
option price are presented for comparison.

This article is organized as follows. In Section 2, we describe the Black-
Scholes model with Markov switching that capture the phenomenon of business
cycles in stock fluctuations. Then, we provide a closed-form formula for the
price of the European call option in Section 3. In particular, we give an explicit
analytic formula for the option price in a finite-state HMM. To illustrate the
performance of the formula, in Section 4, we present results obtained from the
discrete diffusion method and the Markovian tree method for comparison. Section
5 gives conclusions. The derivation of the option price formula is given in the
Appendix.

2. The Hidden Markov Model and Option Price

Consider the following model for the fluctuations of a single stock price Xt,
which incorporates the business cycle,

dXt = Xtµε(t)dt+Xtσε(t)dWt, (2.1)

where ε(t) is a stochastic process representing the state of the business cycle,
and Wt is the standard Wiener process, which is independent of ε(t). For each
state of ε(t), the drift parameter µε(t) and volatility parameter σε(t) take different
values when ε(t) is in different states.

We also assume that the total shares of the risky asset is fixed and normalized
to 1. The risk-free asset has an instantaneous rate of return equal to r. Note
that this assumption not only simplifies the analysis for option pricing, but also
matches the empirical finding that the volatility of the risk-free rate is much lower
than the volatility of market returns.

Assume that ε(t) is a Markov process with a finite number of states. In
practice, a three-state HMM is rich enough to capture the empirical phenomena
of most financial time series. Thus we will focus our discussion on the case
where the number of states equals three, although our method can be applied to
arbitrary number of states. A business cycle can be divided into three different
states, expansion, transition, and contraction. A growing economy is described as
being in expansion. In this state, let ε(t) = 2, µε(t) = µ2 and σε(t) = σ2. Similarly
we use ε(t) = 1, 0 to denote transition state, and contraction state, respectively,
with corresponding drifts uε(t) = µ1, µ0 and volatilities σε(t) = σ1, σ0. More
generally, we can use the state space Ω = {0, 1, · · · , N} for ε(t) to model more
complex business cycle structures. In this section, for simplicity, we consider a
three-state HMM for a single stock price Xt by using (2.1), where ε(t) is a Markov
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process representing the state of the business cycle. Let

ε(t) =


0, when the business cycle is in contraction,
1, when the business cycle is in transition,
2, when the business cycle is in expansion.

The three-state model will extend to finite n-state (n ≥ 3) model similarly. The
two-state model can not be extended easily to n-state model. Because the two-
state model has a particular property that switches to one another state. The
n-state model may switch multiple states. The method of two-state model can
not completely imitate to three-state or n-state model.

In the preceding model, we assume that each state has different volatility. It
is conceivable that, sometimes, investors conduct their buying and selling in such
a way that the change of volatilities is not detectable; that is, σ are identical
(e.g., (David, 1997) and (Veronesi, 1999)). When σ remains unchanged, it is
difficult to detect the state change of ε(t). It is plausible that a change of state
in a business cycle, will manifest itself in both stochastic volatility and drift. If
we assume that the volatility in different states are distinct, then without loss of
generality we can assume that ε(t) is actually observable since the local quadratic
variation of Xt in any small interval to the left of t will yield σε(t) exactly; see
e.g., ((McKean, 1969); (Hamilton, 1988; 1989); (Hamilton and Susmel, 1994);
(Guo, 2001); (Duan et al., 2002)). That is, the filtration FX generated by the
process {Xt} contains the filtration Fε generated by {ε(t)}.

With regard to the transition rate among different states, let λi be the rate
of leaving state i, and let τi be the time of leaving state i. We assume that

P (τi > t) = e−λit, i = 0, 1, 2.

The exponential holding time is a crucial assumption that leads to the closed
form formula of option prices. The closed form formula not only facilitates the
computation of option prices but also allows a valuable understanding of how
different components of the model affect option prices. It is well known that the
exponential holding time gives rise to the memoryless property. In additional to
the mathematical tractability of the exponential holding time, the memoryless
property is reasonable from a practical standpoint. Unless we have a definite
theory on the distribution of τi, we may assume uniform ignorance, that is, no
matter how long in the current state, we are equally uncertain about the time for
the next change of state.

Despite the success of the classical Black-Scholes model, some empirical phe-
nomena have received much attention recently. Important assumptions in the
Black-Scholes model are that the underlying asset distribution is lognormal and
that the volatility is a fixed constant. However, empirical evidence suggests that
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the asset distribution exhibits leptokurtic and unsymmetrical features and the
volatility has a clustering phenomenon. By adjoining the Black-Scholes expo-
nential Brownian motion with a hidden Markov process (the drift and volatility
parameters take different values depending on the state of this hidden Markov
process), model (2.1) displays the asymmetric leptokurtic features, negative skew-
ness, and negative correlation with future volatility (cf. David, 1997). (Veronesi,
1999) showed that Markov switching model is better than the Black-Scholes model
in explaining the features of stock returns, including volatility clustering, leverage
effects, excess volatility and time-varying expected returns.

Model (2.1) is incomplete (cf. (Harrison and Pliska, 1981); (Harrison and
Kreps, 1979)) because the stock price is not only driven by the Wiener process
W alone but also by the hidden Markov process ε(t). One way to deal with
this situation was given by (Föllmer and Sondermann, 1986), and (Schweizer,
1991), who used the idea of hedging under a mean-variance criterion. Here, we
use the following approach to complete the market. At each time t, there is a
market for a security that pays one unit of account (say, a dollar) at the next time
τ(t) = inf{u > t|ε(u) 6= ε(t)} when the Markov chain ε(t) changes state. One
can think of this as an insurance contract that compensates its holder for any
losses due to the next state change. If one wants to hedge a given deterministic
loss C, one can hold C units of the current change-of-state (COS) contracts.

The absence of arbitrage is effectively the same as the existence of a risk-
neutral probability Q, equivalent to P , under which the price of any derivative
is the expected discounted value of its future cash flow. With COS contracts,
the transition rate of the Markov chain under the risk neutral measure Q, which
is different from the real transition rate, can be identified. We now proceed to
derive the relationship between the real transition rate λ and the risk-neutral
transition rate λQ under measure Q. Denote by τ(t) = inf{u > t|ε(u) 6= ε(t)}
the first change time after t the Markov chain ε(u) changes state. Using the
exponential holding time assumption, we have

E[e−(r+kε(t))(τ(t)−t)|ε(t) = i] =
λi

r + ki + λi
=

λQi

r + λQi
= EQ[e−r(τ(t)−t)|ε(t) = i],

where kε(t) can be thought of as a risk-premium coefficient. Thus

λQi =
rλi
r + ki

.

Hereafter, we will only use the transition rate λQ under Q. When there is no
danger of confusion, we will drop the Q and use λ as the transition rate under Q
for simplicity.
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Applying the same analysis to the underlying risky-asset implies that its price
process X must have the form

dXt

Xt
= rdt+ σε(t)dW

Q
t , (2.2)

where WQ
t is the standard Brownian motion under the risk-neutral probability

Q.
We first present the following theorem for a two-state HMM because of its

simplicity. Let Ti be occupation time of state 0, when the chain starts from state
i. That is the total amount of time between 0 and T during which ε(t) = 0,
starting from state i for i = 0, 1. Let fi(t, T ) be the probability distribution
function of Ti. The proof of Theorem 1 is given in the Appendix.

Theorem 1. Under HMM (2.1) and (2.2), COS, and the riskless interest rate
r, the arbitrage free price of a European call option with expiration date T and
strike price K is given by

Vi(T,K, r) = EQ[e−rT (XT −K)+|ε(0) = i]

= e−rT
∫ ∞
0

∫ T

0

y

y +K
φ(ln(y +K),m(t), v(t))fi(t, T )dtdy, (2.3)

where φ(x,m(t), v(t)) is the normal density function with mean m(t) and variance
v(t),

m(t) = ln(X0) + (rT − 1

2
v(t)),

v(t) = (σ20 − σ21)t+ σ21T,

f0(t, T ) = e−λ0T δ0(T − t) + e−λ1(T−t)−λ0t[λ0I0(2(λ0λ1t(T − t))1/2)

+ (
λ0λ1t

T − t
)1/2I1(2(λ0λ1t(T − t))1/2)], (2.4)

f1(t, T ) = e−λ1T δ0(t) + e−λ1(T−t)−λ0t[λ1I0(2(λ0λ1t(T − t))1/2)

+ (
λ0λ1(T − t)

t
)1/2I1(2(λ0λ1t(T − t))1/2)], (2.5)

where I0 and I1 are the modified Bessel functions, defined as (a = 0, 1)

Ia(z) = (
z

2
)a
∞∑
k=0

(z/2)2k

k!Γ(k + a+ 1)
,

and δ0 represents unit point mass at 0.

Remarks:
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a. When µ0 = µ1, σ0 = σ1, m(t) and v(t) are independent of t, and (2.3)
reduces to the classical Black-Scholes formula for European call options.

b. When we are not certain about the true state, we can use the stationary
distribution π = (π0, π1) to compute the option price according to V =
π0V0 + π1V1.

c. Note that we can write (2.3) as a single layer integral with respect to the
occupation time probability measure fi(t, T )dt and the integrand equals to
the celebrated Black-Scholes formula for European call option with volatil-
ity v(t). This representation says that our pricing formula is a mixture
of Black-Scholes formula with occupation time distribution as the mixing
distribution. This remark also applies to (2.6) when the number of states
is larger than 2.

To gain better understanding of the behavior of the option price under HMM,
we compare the option price of a two-state HMM with those computed from
two Black-Scholes models. These two Black-Scholes models corresponds to the
situation where the HMM stays in states 0 or 1 through out whole time period.

In Figure 1, we use high transition rates λ0 = λ1 = 10 to accelerate mixing.
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Figure 1: Option prices for the Black-Scholes model and a two-state HMM.
Parameter values: X0 = 100, K = 110, λ0 = λ1 = 10, r = 0.1, σ0 = 0.2, σ1 =
0.3. The dashed lines represent the option prices given by the classical Black-
Scholes model for each of the two states, and the solid lines represent the prices
given by (2.3)
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It is easy to see that the option price under HMM for short contract duration is
close to the corresponding prices given by the Black-Scholes models. Note that
the option prices computed from (2.3) are all between those given by the two
classical Black-Scholes models, which come together as T increases. This shows
that for longer contract duration the initial state becomes less important as the
Markov chain settles down in the stationary distribution.

3. The Case of Finite Number of States

Next we describe a general approach to option price computation for a finite-
state HMM with state space {0, 1, · · · , N}. Let t = (t0, t1, · · · , tN ). To obtain the
option prices for a finite-state HMM, we need to evaluate the following integral
as in (2.3) for a two-state.

Vi(T,K, r) = e−rT
∫ ∞
0

∫
{t|t0+···+tn=T}

y

y +K
φ(ln(y +K),m(t), v(t)fi(t, T )dtdy,

(3.1)
where

m(t) = ln(X0) + (rT − 1

2
v(t)),

v(t) =
N∑
i=0

σ2i ti,

and fi(t, T ) is the join density of the occupation times, up to time T , of the
Markov chain ε(t) starting in state i.

In order to evaluate (3.1), we need to find fi(t, T ), i = 0, 1, · · · , N . In the
following, we will demonstrate a method to determine fi with a three-state ex-
ample. In principle the method can be applied to arbitrary number of states.
Note that empirical studies indicate that the number of states rarely go beyond
three.

Let fi(t0, t1, T ) be the joint density of occupation times of states 0 and 1 up
to time T for the Markov chain ε(t) starting in state i. Note that there is no
need to include t2 as t2 = T − t0 − t1. To find fi (u, t, T ), we can follow the
procedure given in the Appendix for a two-state HMM. That is inverting the
Laplace transform of fi, which satisfies a system of linear equations.

Let {ε(t), t ≥ 0} be the underlying continuous time Markov process. Denote
the transition probability from state i at time 0 to state j at time t by

pt(i, j) = P (ε(t) = j|ε(0) = i).
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Then

λij = lim
h→0

ph(i, j)

h
,

defines the jump rates from i to j (i 6= j) and λi =
∑

j 6=i λij is the rate of
transitions out of state i. Consider the following transition rate matrix for the
three-state Markov chain  −λ0 λ0 0

λ10 −λ1 λ12
0 λ2 −λ2

 ,
where λ10 + λ12 = λ1. The preceding transition rate matrix implies that the
Markov chain must go through the transitional state ε(t) = 1 when moving be-
tween state 0 and state 2. Our method can handle chains with general transition
rate matrices and we use this plausible case to facilitate our presentation. This
is a difference between two-state model and three-state model.

Applying the same argument as (A.2) in the Appendix 1, we find that the
Laplace transformation ψi of fi i = 0, 1, 2 satisfies the following system of linear
equations

ψ̂0 (r, s, t) =
1

r + t+ λ0

[
1 + λ0ψ̂1 (r, s, t)

]
,

ψ̂1 (r, s, t) =
1

s+ t+ λ1

[
1 + λ10ψ̂0 (r, s, t) + λ12ψ̂2 (r, s, t)

]
, (3.2)

ψ̂2 (r, s, t) =
1

t+ λ2

[
1 + λ2ψ̂1 (r, s, t)

]
.

Solving the preceding equations, we obtain

ψ̂0 (r, s, t) = [t+
rφ(s, t) + λ0 (λ2 + t) s

φ(s, t) + λ0 (λ2 + t+ λ1 − λ10)
]−1,

ψ̂1 (r, s, t) =

[
t+

s (t+ λ2) (r + t+ λ0) + rλ10 (t+ λ2)

(t+ λ1 + λ2) (r + t+ λ0)− λ10 (r − λ2 + λ0)

]−1
,

ψ̂2 (r, s, t) =

[
t+

λ2s (r + t+ λ0) + rλ10λ2
(r + t+ λ0) (λ2 + λ1 + s+ t) + λ10 (λ2 − λ0)

]−1
,

where φ(s, t) =
(
st+ λ2t+ λ1t+ t2 + sλ2 + λ2λ10

)
.

We need to perform inverse Laplace transform on ψ̂i (r, s, t) for each of the
three variables in sequence. The result is given in the Appendix 2.

When the number of states goes beyond three, the inverse Laplace trans-
formation may be difficult to carry out analytically. In this case, we can solve
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numerically. The problem of two-state model is solved analytically, the three-
state or more can be solved the problem numerically. The strategy is to invert
the Laplace transform analytically for some variables and then perform numerical
inversion of Laplace transform for the rest. One way to do numerical inversion of
Laplace transformation is through the Fourier series expansion algorithm given
by (Choudhury, Lucantoni and Whitt, 1994).

4. Numerical Performance

4.1 Design of the Simulation

Here we compared European call option prices obtained using discrete diffu-
sion method and the Markovian tree method and the closed form formula (3.1).
Two-state and three-state hidden Markov models were considered in the simula-
tion study, respectively. We used the exact analytic formula as the benchmark
for both the two-state and three-state HMM. The results shown in Tables 1 to
10 depend on four factors:

a. Low and high volatilities;

b. Transition rates for the three-state HMM;

c. Strike prices: in the money, at the money and out of the money;

d. Expiration dates: T = 0.1, 0.2, 0.5, 1, 2, 3 years.

Since model (2.1) is a continuous time model, we discretize this continuous
time model following (Cox, Ross and Rubinstein, 1979). A corresponding scheme
for a two-state HMM can be found in (David, 1997). It is worth pointing out that
this method can also be applied to the general case, where the hidden Markov pro-
cess ε(t) has more than three states. That is, the state space is Ω = {0, 1, · · · , N},
where more complex information patterns can be described.

Let η be the standard normal random variable N(0, 1). We rewrite (2.2) in
the discrete time form

Xn+h = Xne
(r−σ2

εn/2)h+σεn
√
hη, (4.1)

where εn is the corresponding discrete time Markov chain with probability of
changing state (δij+(−1)δije−λih)(λij/λi) with λii = λi, δii = 0, δij = 1, i 6= j. We
repeat the steps M times, where M is sufficiently large to guarantee convergence
of the simulation.

To illustrate the idea of the Markovian tree method, we divide the time in-
terval [0, t] into n sub-intervals such that t = nh. Let X = (Xk, k ≥ 0), and let
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Xk be a price at time kh. Define

Xεk
k = (Xk, εk) = (X(kh), ε(kh)).

Let ηi,jn be independent and identically distributed (i.i.d.) random variables,
taking the values uj with probability pj(δi,j+(−1)δi,je−λih)(λij/λi) and 1/uj with
probability (1− pj)(δi,j + (−1)δi,je−λih)(λij/λi), i, j = 0, 1, · · · , N , respectively),
where

ui = eσi
√
h, pi =

µih+ σi
√
h− 0.5σ2i h

2σi
√
h

.

The pi can be found by comparing the Fourier transformation E(eicYt) of the
continuous process Yt = logXt and that of the discrete process Y εk

k = Y
εk−1

k−1 ±
σj
√
h, j = 0, 1, · · · , N , so that the later converges to the same system of ordinary

differential equations by the former.
We have the following recurrence relation:

Xn = ηε(n),ε(n−1)n Xn−1. (4.2)

By the memoryless property of τi, (Xεn
n , n ≥ 0) is a Markov chain. The Markov

chain Xεn
n with initial state X0 = x is a random walk on the set

Ex = {xur|r = σ0n0 + σ1n1 + · · ·+ σNnN , n0, n1, · · · , nN ∈ Z, u = e
√
h}.

Here we took n, the number of sub-intervals, as 30 since our simulation showed
that this number is large enough to provide accurate results. The Monte Carlo
replication size for both discrete diffusion method and the Markovian tree method
is B = 5, 000, 000. Computations were performed using Visual Basic programs
on a personal computer system with a Pentium 4 CPU, 1.6G and 256MB of
RAM, at the Institute of Statistical Science, Academia Sinica, Taipei, Taiwan,
R.O.C.. The pseudo-random numbers were generated by using IMSL routines.
The reported running time is the CPU time in seconds.

4.2 Simulation Results

We use the following notations in Tables 1 to 10. B-S i refers to the classical
Black-Scholes formula for states i = 0, 1, 2; Vi the exact price based on (3.1); dis
i and tree i discrete diffusion and the Markovian tree method, respectively.

We will first consider the case of a two-state HMM with same transition
rates. Tables 1 and 2 report the numerical and simulation results according
to low and high volatilities, respectively. In general, the results produced by
the discrete diffusion method and the Markovian tree method are very close for
various expiration dates and both are better for shorter period. It is particularly
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interesting to observe that discrete diffusion gives better results than the Markov
tree method. In terms of computing time, the closed form formula requires about
1/100 of what it takes for the Markovian tree, which in turns takes about 1/2 of
what requires of discrete diffusion.

Table 1: Option prices for a two-state HMM (low volatility) X0 = 100, K =
100, λ0 = λ1 = 1, r = 0.1, σ0 = 0.2, σ1 = 0.3, n = 30

T (year) B-S 0 B-S 1 V0 V1 dis 0 dis 1 tree 0 tree 1

0.1 3.038 4.282 3.101 4.228 3.096 4.228 3.078 4.176
0.2 4.609 6.344 4.772 6.201 4.765 6.200 4.764 6.144
0.5 8.277 10.906 8.793 10.454 8.780 10.454 8.770 10.466
1.0 13.269 16.734 14.317 15.813 14.291 15.832 14.266 15.730
2.0 21.719 25.975 23.418 24.461 23.382 24.474 23.336 24.472
3.0 29.074 33.604 31.053 31.806 31.042 31.806 30.856 31.633

run time(sec) < 10−5 < 10−5 1.51 1.45 240.55 251.32 140.24 144.23

This table reports the European call options for a two-state HMM with low and high
volatilities. B-S i refers to the classical Black-Scholes formula for states i = 0, 1; Vi
the exact price based on (3.1); dis i and tree i discrete diffusion and the Markovian
tree method, respectively.

Table 2: Option prices for a two-state HMM (high volatility) X0 = 100, K =
100, λ0 = λ1 = 1, r = 0.1, σ0 = 0.1, σ1 = 1.0, n = 30

T (year) B-S 0 B-S 1 V0 V1 dis 0 dis 1 tree 0 tree 1

0.1 1.814 13.004 2.516 12.624 2.467 12.647 2.475 12.553
0.2 2.930 18.525 4.694 17.533 4.651 17.595 4.649 17.443
0.5 5.850 29.461 11.445 26.343 11.381 26.444 11.456 26.263
1.0 10.308 41.395 21.939 35.143 21.805 35.272 21.839 35.191
2.0 18.580 56.793 37.913 46.841 37.786 47.155 37.849 46.850
3.0 26.169 66.973 49.205 55.510 49.187 55.724 49.038 55.413

run time(sec) < 10−5 < 10−5 1.44 1.52 249.46 252.55 100.23 101.17

This table reports the European call options for a two-state HMM with high volatil-
ities. B-S i refers to the classical Black-Scholes formula for states i = 0, 1; Vi the
exact price based on (3.1); dis i and tree i discrete diffusion and the Markovian tree
method, respectively.

Let Q1 be the matrix of transition rate

Q1 =

 −1 1 0
1/2 −1 1/2
0 1 −1

 ,
and let Q2 be the matrix of transition rate
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Q2 =

 −1 1 0
5/2 −5 5/2
0 10 −10

 .
The results for a three-state HMM model are reported in Tables 3 to 6. Note

that Q1 represents a Markov chain with similar transition rates out of each state,
while Q2 represents a chain with very different transition rates.

Tables 3 and 4 display the option prices for a three-state HMM with the
transition rate Q1 and with low and high volatility, respectively. Tables 5 and 6
contain option prices for a HMM with the transition rate matrix Q2 and low and
high volatility, respectively.

Table 3: Option prices for a three-state HMM with the transition rate Q1 (low
volatility) X0 = 100, K = 100, λ0 = λ1 = λ2 = 1, r = 0.1, σ0 = 0.1, σ1 =
0.2, σ2 = 0.3, n = 30

T (year) dis 0 dis 1 dis 2 tree 0 tree 1 tree 2 V0 V1 V2

0.1 1.876 3.034 4.231 1.884 3.016 4.182 1.898 3.346 4.309
0.2 3.096 4.607 6.207 3.078 4.619 6.141 3.206 4.886 6.094
0.5 6.390 8.271 10.443 6.352 8.226 10.450 6.572 8.721 10.350
1.0 11.408 13.266 15.698 11.344 13.139 15.507 11.461 13.761 15.444
2.0 20.302 21.712 23.971 20.285 21.293 23.964 20.201 21.736 23.776
3.0 28.052 29.047 30.961 27.858 28.866 30.729 27.333 28.426 30.386

run time(sec) 269.25 272.84 276.63 171.25 175.22 178.32 2.49 2.71 2.49

This table reports the European call options for a three-state HMM with low volatility
and Q1. Vi the exact price based on (3.1); dis i and tree i discrete diffusion and the
Markovian tree method, respectively.

Table 4: Option prices for a three-state HMM with the transition rate Q1 (high
volatility) X0 = 100, K = 100, λ0 = λ1 = λ2 = 1, r = 0.1, σ0 = 0.8, σ1 =
0.9, σ2 = 1.0, n = 30

T (year) dis 0 dis 1 dis 2 tree 0 tree 1 tree 2 V0 V1 V2

0.1 10.578 11.763 12.933 10.498 11.726 12.859 10.584 11.799 12.821
0.2 15.217 16.806 18.373 15.074 16.718 18.260 15.170 16.758 18.262
0.5 24.782 26.884 28.974 24.494 26.675 28.609 24.518 26.602 28.606
1.0 35.787 37.990 40.258 35.732 37.776 39.989 35.764 37.755 39.974
2.0 50.881 52.853 54.706 50.564 51.955 54.095 50.860 51.945 54.002
3.0 61.332 62.665 64.456 60.727 61.948 63.907 60.782 61.982 63.994

run time(sec) 267.11 282.29 288.13 164.54 170.91 178.30 2.47 2.70 2.48

This table reports the European call options for a three-state HMM with high volatil-
ity and Q1. Vi the exact price based on (3.1); dis i and tree i discrete diffusion and
the Markovian tree method, respectively.
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Table 5: Option prices for a three-state HMM with the transition rate Q2 (low
volatility) X0 = 100, K = 100, λ0 = 1, λ1 = 5, λ2 = 10, r = 0.1, σ0 =
0.1, σ1 = 0.2, σ2 = 0.3, n = 30

T (year) dis 0 dis 1 dis 2 tree 0 tree 1 tree 2 V0 V1 V2

0.1 1.877 3.037 3.863 1.882 3.014 3.841 1.891 3.089 3.827
0.2 3.093 4.610 5.383 3.078 4.546 5.400 3.073 4.581 5.471
0.5 6.388 8.276 8.675 6.318 7.958 8.769 6.332 7.957 8.760
1.0 11.420 13.260 13.343 11.159 12.484 13.153 11.173 12.499 13.182
2.0 20.321 21.711 21.632 19.755 20.570 21.032 19.742 20.590 21.071
3.0 28.050 29.038 28.970 27.192 27.765 28.115 27.145 27.788 28.159

run time(sec) 263.01 264.90 263.45 172.78 171.44 174.20 2.51 2.70 2.51

This table reports the European call options for a three-state HMM with low volatility
and Q2. Vi the exact price based on (3.1); dis i and tree i discrete diffusion and the
Markovian tree method, respectively.

Table 6: Option prices for a three-state HMM with the transition rate Q2

(high volatility) X0 = 100, K = 100, λ0 = 1, λ1 = 5, λ2 = 10, r = 0.1, σ0 =
0.8, σ1 = 0.9, σ2 = 1.0, n = 30

T (year) dis 0 dis 1 dis 2 tree 0 tree 1 tree 2 V0 V1 V2

0.1 10.581 11.760 12.549 10.486 11.678 12.494 10.490 11.667 12.467
0.2 15.225 16.794 17.495 15.064 16.617 17.506 15.099 16.623 17.523
0.5 24.800 26.882 27.119 24.403 26.279 27.069 24.414 26.227 27.027
1.0 35.850 38.047 37.870 35.419 36.866 37.508 35.407 36.843 37.543
2.0 50.900 52.778 52.502 49.881 50.811 51.343 49.893 50.811 51.311
3.0 61.550 62.751 62.509 59.739 60.420 60.596 59.705 60.469 60.469

run time(sec) 261.34 265.69 267.45 171.34 182.22 183.20 2.52 2.73 2.59

This table reports the European call options for a three-state HMM with high volatil-
ity and Q2. Vi the exact price based on (3.1); dis i and tree i discrete diffusion and
the Markovian tree method, respectively.

Examination of Tables 3 to 6, we obtain the following conclusions. In general,
the discrete diffusion method is better than the Markovian tree method when the
transition rates are similar (Q1). When the transition rates are very different
(Q2), the Markov tree method generally gives better results. Secondly, when the
volatility are low, the option prices for different initial states are closer to each
other and are lower than the corresponding option prices under high volatility.
Thirdly, in Tables 5 and 6 the option prices are close to each other because states
1 and 2 have high transition rates (λ1 = 5, λ2 = 10), and because most of the
time the chain stays in state 0. Furthermore, the prices starting in states 1 and 2
are closer than those starting in state 0. In other words, option prices with many
initial states will merge into a few, if the chain spends most of the time in a few
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states. In this case, one does not need many states to model stock returns from
option price computation point of view.

To show the effect of strike prices, in Tables 7 and 8, we provide European
call option prices for various K/X0 values in a hidden Markov model with three

Table 7: Difference in option prices for a three-state HMM with rate matrix Q2

(low volatility) X0 = 100, λ0 = 1, λ1 = 5, λ2 = 10, r = 0.1, σ0 = 0.1, σ1 =
0.2, σ2 = 0.3, n = 30

T = 0.1 T = 0.2

K/X0 1.1 1.0 0.9 1.1 1.0 0.9

V0 0.0146 1.8805 10.899 0.1753 3.1001 11.810
tree 0 0.0128 1.8829 10.906 0.1641 3.0783 11.845

difference -0.1233 0.0013 0.0007 -0.0639 -0.0070 0.0030
Std 0.0001 0.0010 0.0016 0.0004 0.0016 0.0022

V1 0.2928 3.0304 10.993 1.0226 4.5389 12.112
tree 1 0.2884 3.0140 10.925 1.0173 4.5460 12.178

difference -0.0150 -0.0054 -0.0062 -0.0052 0.0016 0.0054
Std 0.0006 0.0018 0.0028 0.0013 0.0027 0.0036

V2 0.7309 3.8535 11.227 1.6897 5.3945 12.471
tree 2 0.7362 3.8411 11.191 1.7075 5.4005 12.473

difference 0.0073 -0.0032 -0.0032 0.0105 0.0011 0.0002
Std 0.0011 0.0025 0.0035 0.0020 0.0034 0.0045

T = 0.5 T = 1.0

K/X0 1.1 1.0 0.9 1.1 1.0 0.9

V0 1.6835 6.3548 14.577 5.4750 11.206 18.991
tree 0 1.6462 6.3186 14.636 5.4421 11.159 18.904

difference -0.0222 -0.0057 0.0040 -0.0060 -0.0042 -0.0046
Std 0.0018 0.0031 0.0037 0.0040 0.0051 0.0058

V1 3.3243 7.8874 15.171 7.0659 12.406 19.565
tree 1 3.3714 7.9582 15.187 7.1656 12.484 19.508

difference 0.0142 0.0090 0.0011 0.0141 0.0063 -0.0029
Std 0.0031 0.0044 0.0054 0.0053 0.0065 0.0074

V2 4.1288 8.6440 15.560 7.7930 12.983 19.882
tree 2 4.2281 8.7693 15.632 8.0111 13.153 19.873

difference 0.0241 0.0145 0.0046 0.0280 0.0131 -0.0004
Std 0.0038 0.0051 0.0061 0.0059 0.0071 0.0081

This table reports the European call options for a three-state HMM with low volatil-
ity and three different strike-to-stock price ratios K/X0. They were 1.1, 1.0 and
0.9, which correspond to out of the money, at the money, and in the money cases,
respectively.
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Table 8: Difference in option prices for a three-state HMM with rate matrix Q2

(high volatility) X0 = 100, λ0 = 1, λ1 = 5, λ2 = 10, r = 0.1, σ0 = 0.8, σ1 =
0.9, σ2 = 1.0, n = 30

T = 0.1 T = 0.2

K/X0 1.1 1.0 0.9 1.1 1.0 0.9

V0 6.7102 10.582 15.984 11.327 15.228 20.197
tree 0 6.6165 10.486 15.689 11.408 15.064 20.111

difference -0.0140 -0.0090 -0.0184 0.0071 -0.0108 -0.0043
Std 0.0064 0.0079 0.0094 0.0106 0.0121 0.0134

V1 7.8632 11.736 16.984 12.825 16.682 21.506
tree 1 7.7310 11.678 16.790 12.898 16.617 21.599

difference -0.0168 -0.0050 -0.0114 0.0057 -0.0039 0.0043
Std 0.0075 0.0089 0.0103 0.0122 0.0136 0.0148

V2 8.6818 12.5500 17.610 13.687 17.517 22.263
tree 2 8.6757 12.494 17.653 13.824 17.506 22.366

difference -0.0007 -0.0045 -0.0026 0.0100 -0.0006 0.0046
Std 0.0083 0.0097 0.0110 0.0131 0.0145 0.0157

T = 0.5 T = 1.0

K/X0 1.1 1.0 0.9 1.1 1.0 0.9

V0 21.056 24.740 29.067 32.246 35.529 39.231
tree 0 21.188 24.403 28.953 32.467 35.419 39.541

difference 0.0063 -0.0136 -0.0039 0.0069 -0.0031 0.0079
Std 0.0209 0.0222 0.0235 0.0366 0.0377 0.0388

V1 22.723 26.328 30.530 33.632 36.841 40.449
tree 1 22.944 26.279 30.714 33.856 36.866 40.607

difference 0.0097 -0.0019 0.0060 0.0067 0.0007 0.0039
Std 0.0233 0.0246 0.0258 0.0397 0.0408 0.0418

V2 23.478 27.048 31.194 34.213 37.391 40.959
tree 2 23.687 27.069 31.353 34.632 37.508 41.218

difference 0.0089 0.0008 0.0051 0.0123 0.0031 0.0063
Std 0.0244 0.0257 0.0269 0.0411 0.0421 0.0432

This table reports the European call options for a three-state HMM with high volatil-
ity and three different strike-to-stock price ratios K/X0. They were 1.1, 1.0 and 0.9,
which correspond to out of the money, at the money, and in the money cases, respec-
tively.

states. For initial stock price X0, we considered three different strike-to-stock
price ratios K/X0. They were 1.1, 1.0 and 0.9, which correspond to out of the
money, at the money, and in the money cases, respectively. Note that in Tables
7 and 8, the first row in each panel lists the prices based on analytical formula
with different initial states, whereas the second and fourth rows list Markov tree
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prices and their standard deviations, respectively. The reason why we pick the
Markov tree instead of the discrete diffusion is because in Tables 3-6 we have
observed that the former performs better under Q2. The numbers in the third
row are the error estimates between the exact price and the results of Markov
tree given by “relative difference”

rel. diff. =
tree i− Vi

Vi
.

In Table 7, where the volatility are low, the Markov tree method is best
for in-the-money case, second best for at-the-money case, and worst for out-of-
the-money case. In Table 8, high volatility case, the tree method is best for
at-the-money case, in-the-money case comes in second, and out-of-the-money is
worst.

4.3 Sensitivity Analysis

The option price depends on several parameters, σ, λ etc. in a complicated
way as shown by (2.3) and (3.1). It would be helpful to know the impact of
each parameter on the option price. Here we carry out a study of their influence.
Tables 9 and 10 show the sensitivity of the parameters to option prices for a
two-state and a three-state HMM, respectively. The values listed in the table
are the values of the stock price with small perturbation, a 10% increase, for the
indicated parameter while all other parameters remain fixed.

The preceding results show that the volatility σ has the more significant effect
than λ. We also note that the increase of σ’s in different states has almost the
same effect on the option price.

Table 9: Sensitivity analysis for a two-state HMM Base parameters values:
X0 = 100, K = 100, T = 1, λ0 = 1, λ1 = 10, r = 0.06, σ0 = 0.05, σ1 = 0.1

Valuation
Perturbed

V0 V1
Difference Difference

parameter of V0 of V1

Base valuation 5.5034 5.7989
σ0 0.055 5.6118 5.8927 0.1084 0.0938
σ1 0.11 5.5394 5.8726 0.0360 0.0737
λ0 1.1 5.5280 5.8203 0.0246 0.0214
λ1 11 5.4834 5.7553 -0.0200 -0.0430

This table reports the sensitivity of the parameters to option prices for a two-state
HMM.

4.4 Volatility Smiles and Surfaces

If the Black-Scholes model is correct, then the implied volatility should be
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Table 10: Sensitivity analysis for a three-state HMM X0 = 100, K = 100, T =
1, λ0 = 1, λ1 = 5, λ2 = 10, r = 0.06, σ0 = 0.05, σ1 = 0.1, σ2 = 0.2

Valuation
Perturbed

V0 V1 V2
Difference Difference Difference

parameter of V0 of V1 of V2

Base valuation 6.1919 7.4978 8.2333
σ0 0.055 6.2795 7.5443 8.2692 0.0876 0.0465 0.0359
σ1 0.11 6.2576 7.6388 8.3539 0.0657 0.1410 0.1206
σ2 0.22 6.2394 7.6086 8.4427 0.0475 0.1108 0.2094
λ0 1.1 6.2665 7.5342 8.2614 0.0746 0.0364 0.0281
λ1 5.5 6.1818 7.4616 8.2038 -0.0101 -0.0362 -0.0295
λ2 11 6.1722 7.4443 8.1248 -0.0197 -0.0535 -0.1085

This table reports the sensitivity of the parameters to option prices for a three-state
HMM.

constant. However, it is widely recognized that the volatility has a “smile” fea-
ture. That is, most derivative markets exhibit persistent patterns of volatility
variation by strike. In some markets, those patterns form a smile. (Hull, 2003)
pointed out that most empirical results of the implied volatility smile become
skew after market crash in 1987. In others, such as equity index options markets,
it is more of a skewed curve. This has motivated the term “volatility skew”. In
practice, either the term volatility smile or volatility skew may be used to refer to
the general phenomena of volatilities varying by strike. Model (2.1) can generate
the phenomena of the volatility skew, as shown in Figure 2.
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Figure 2: Implied volatilities against expiry and strike price. The parameter
values: X0 = 107, λ0 = λ1 = 1, r = 0.0261

We show implied volatility against both maturity and strike in a three-dimens-
ional plot. That is, we can consider σ(X, t) as a function of X and t. Figure 2
is based on price data of European call option on IBM stock with five different
maturity days. The call options were traded on 3/15/2002 with strikes of 100,
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105, 110, 115, 120, 125, 130, 135 and 140. We use as the riskless rate r = 0.0261
the yield of 1-year US TREASURY Bills to maturity on 3/15/2003 and the IBM
stock price is 107 on 3/15/2002.

This implied surface represents the constant value of volatility that gives each
traded option a theoretical value equal to the market value. The time dependence
in implied volatility can be viewed as the evidence for the time dependence of
volatility of the underlying asset. For σ(X, t) deduced from the volatility surface
at a specific time t∗, we might call it the local volatility surface. This local
volatility surface can be thought of as the market’s view of the future value of
volatility when the asset price is X at time t.

We should emphasize that the results presented in Figure 2 do not represent
an empirical test of the model (2.1); it only illustrates that the model can produce
a close fit to the empirical phenomenon.

5. Conclusions

The Markov switching model is better in capturing the empirical phenomena
of stock prices fluctuation. In this paper, a closed form option pricing formula for
the Black-Scholes model with the Markov switching has been developed. Numer-
ical evaluation of the formula was performed for both two-state and three-state
hidden Markov models. The close form formula was used as a benchmark to
investigate the performance of simulation methods such as the discrete diffusion
and the Markovian tree methods. The pricing error is given in terms of relative
difference the exact price produced by the analytical formula.

The closed form formula is computationally efficient and we can use it to find
out which simulation method is better in a particular setting when the closed
form solution is not available as in the case of American option. The calibration
problem using the option price developed in this paper is an important issue for
further research.

Appendix 1

Proof of Theorem 1. Since the arbitrage price of the European option is the
discounted expected value of Xt under the equivalent martingale measure Q, we
have

Vi(T,K, r) = EQ[e−rT (XT −K)+|ε(0) = i].

We will use E to denote EQ for simplicity in the following argument. Recalling
that under the risk neutral probability measure Q,

Xt = X0 exp(

∫ t

0
(r − 1

2
σ2ε(s))ds+

∫ t

0
σε(s)dW

Q
s ). (A.1)
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We need to find the distribution of Xt. Let Yt = lnXt, then

Yt = Y0 +

∫ t

0
(r − 1

2
σ2ε(s))ds+

∫ t

0
σε(s)dW

Q
s .

Let Ti be the total amount of time between 0 and T such that ε(t) = 0,
starting from state i. Consider the probability density function fi(t, T ) of Ti. Let
Fε(0) be the σ-field generated by ε(0). Then

Vi(T,K, r) = E[e−rT (XT −K)+|ε(0) = i]

= e−rTE[E[(XT −K)+|Ti]|ε(0) = i]

= e−rTEi[E[(XT −K)+|Ti]|Fε(0) = i]

= e−rT
∫ ∞
0

∫ T

0

y

y +K
φ(ln(y +K),m(t), v(t))fi(t, T )dtdy,

where

φ(x,m(t), v(t)) =
1√

2πv(t)
exp[−(x−m(t))2

2v(t)
]

is the normal density function with mean m(t) and variance v(t). By (A.1), it is
easy to see that

m(t) = ln(X(0)) + (rT − 1

2
v(t)),

v(t) = (σ20 − σ21)t+ σ21T.

Note that fi(t, T )dt = P (
∫ T
0 χ0(ε(s))ds ∈ dt|ε(0) = i), where χ0 is the indi-

cator function of state 0. Let

ψi(r, T ) = E[e−r
∫ T
0 χ0(ε(s))ds|ε(0) = i]

:= Lr(fi(·, T )).

By considering the two events {τi > t} and {τi ≤ t}, i = 0, 1, we have

ψ0(r, T ) = e−rT e−λ0T +

∫ T

0
e−λ0uλ0ψ1(r, T − u)e−rudu,

ψ1(r, T ) = e−λ1T +

∫ T

0
e−λ1uλ1ψ0(r, T − u)du.

Taking Laplace transforms with respect to T , and writing

Ls(ψi(r, ·)) = Ls[Lr(fi(·, T ))(r, ·)]
:= ψ̂i(r, s),
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which can be solved for ψ̂i(r, s) and yield

ψ̂0(r, s) =
s+ λ0 + λ1

s2 + sλ1 + sλ0 + rs+ rλ1
,

ψ̂1(r, s) =
r + s+ λ0 + λ1

s2 + sλ1 + sλ0 + rs+ rλ1
.

(A.2)

Employing the inverse Laplace transform with respect to r, we have

L−1r (ψ̂0(r, s))(w, ·) =
s+ λ0 + λ1
s+ λ1

exp

(
−s(s+ λ0 + λ1)

s+ λ1
w

)
.

Suppose the inverse Laplace transform of f(s) is F (t), then we have the following

L−1[f(s+ a)] = e−atF (t), (A.3)

L−1[e−asf(s)] = F (t− a)χ(t− a), (A.4)

where χ is the step function

χ(t) =

{
0, if t < 0,
1, if t ≥ 0.

Taking the inverse Laplace transform with respect to s and applying (A.3) we
have

L−1s [L−1r (ψ̂0(r, s))(w, ·)](·, v)

= L−1s

[
s+ λ0 + λ1
s+ λ1

exp

(
−s(s+ λ0 + λ1)

s+ λ1
w

)]
(·, v)

= e−λ1vL−1s

[
s+ λ0
s

exp

(
−(s− λ1)(s+ λ0)

s
w

)]
(·, v)

= e−λ1ve(λ1−λ0)wL−1s

[(
1 +

λ0
s

)
exp

(
−sw +

λ0λ1w

s

)]
(·, v),

Applying (A.4) to the right hand side of the last equation, we have

L−1s [L−1r (ψ̂0(r, s))(w, ·)](·, v)

= e−λ1ve(λ1−λ0)wχ(v − w)L−1s

[
e
λ0λ1w
s +

λ0
s
e
λ0λ1w
s

]
(·, v − w).

Using the following facts concerning the Laplace transform of Bessel functions

L−1(
1

s
e
b
s ) = I0(2

√
bt),

L−1(e
b
s − 1) =

√
b

t
I1(2
√
bt),
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on the preceding equation, we obtain

f0(w, v) = e−λ0vδ0(v − w) + e−λ1(v−w)−λ0wχ(v − w)[λ0I0(2(λ0λ1w(v − w))1/2)

+(
λ0λ1w

v − w
)1/2I1(2(λ0λ1w(v − w))1/2)], (A.5)

where δ0 represents unit point mass at 0. It is easy to verify that

L−1(1) = δ0,

that is, the inverse Laplace transform of 1 is unit point mass at 0.
Similarly, take the inverse Laplace transformation of ψ̂1 with respect to r to

obtain

L−1r (ψ̂1(r, s))(w, ·) =
λ1(s+ λ0 + λ1)

(s+ λ1)2
exp

(
−sws+ λ0 + λ1

s+ λ1

)
+
δ0(w)

s+ λ1
.

By (A.3), the inverse Laplace transform of preceding equation with respect to s
entails

L−1s [L−1r (ψ̂1(r, s))(w, ·)](·, v)

= e−λ1vL−1s

[
λ1(s+ λ0)

s2
exp

(
−(s− λ1)(s+ λ0)

s
w

)
+
δ0(w)

s

]
.

Rearranging the right hand side of the preceding equation yields

e−λ1vδ0(w) + e−λ1vL−1s

[(
λ1
s

+
λ0λ1
s2

)
exp

(
−sw + (λ1 − λ0)w +

λ0λ1
s

)]
= e−λ1vδ0(w) + e−λ1ve(λ1−λ0)wL−1s

[
e−sw

(
λ1
s

+
λ0λ1
s2

)
exp

(
λ0λ1
s

)]
.

By (A.4) and the fact that

L−1(
1

s2
e
b
s ) =

√
t

b
I1(2
√
bt),

we arrive at

f1(w, v) = e−λ1vδ0(w) + e−λ1(v−w)−λ0wχ(v − w)[λ1I0(2(λ0λ1w(v − w))1/2)

+(
λ1λ0(v − w)

w
)1/2I1(2(λ0λ1w(v − w))1/2)]. (A.6)

Substituting (T, t) for (v, w) in (A.5) and (A.6), the proof of Theorem 1 is
completed.

Appendix 2
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f2 (w, u, v)

= δ0(w)δ0(u) exp(−λ2v) + λ2δ0(w) exp (uλ2 − uλ1) exp (−λ2v)χ (v − u)

× I0
(

2
√
uλ2 (λ1 − λ10)

√
v − u

)
+ λ2 (λ1 − λ10) δ0(w) exp (uλ2 − uλ1) exp (−λ2v)χ (v − u)

√
v − u

uλ2 (λ1 − λ10)

× I1
(

2
√
uλ2 (λ1 − λ10)

√
v − u

)
+ I0(2

√
λ0λ10w

√
u) (λ2λ10 exp(−wλ0 − uλ1 − (v − w − u)λ2))χ (v − w − u)

× I0
(

2
√
uλ2 (λ1 − λ10)

√
v − w − u

)
+

√
u

λ0λ10w
I1(2

√
λ0λ10w

√
u) (λ0λ10λ2 exp(−wλ0 − uλ1 − (v − w − u)λ2))

× χ (v − w − u) I0

(
2
√
uλ2 (λ1 − λ10)

√
v − w − u

)
+ λ0λ

2
1λ2

λ10
λ1

(
1− λ10

λ1

)
exp(−wλ0 − uλ1 − (v − w − u)λ2)χ (v − w − u)

×
√

v − w − u
uλ2 (λ1 − λ10)

I1

(
2
√
uλ2 (λ1 − λ10)

√
v − w − u

)
.

f1 (w, u, v)

= δ0(w) exp(−uλ1 + uλ2) exp(−λ2v)χ(v − u)

×

[√
(λ2 (λ1 − λ10)u)I1(2

√
λ2 (λ1 − λ10)u

√
v − u)√

v − u
+ δ0(v − u)

]
+ δ0(w) exp(−uλ1 + uλ2) (λ1 − λ10) exp(−λ2v)χ(v − u)

× I0(2
√
λ2 (λ1 − λ10)u

√
v − u) + λ10 exp(wλ2 + uλ2 − wλ0 − uλ1)

× I0(2
√
wλ10λ0u) exp (−λ2v)χ (v − w − u)

× (

√
λ2 (λ1 − λ10)uI1(2

√
λ2 (λ1 − λ10)u

√
v − w − u)√

v − w − u
+ δ0(v − w − u))

+ λ1λ10(1−
λ10
λ1

)λ0

√
u

wλ10λ0
I1(2

√
wλ10λ0u) exp(wλ2 + uλ2 − wλ0 − uλ1)

× exp(−λ2v)χ(v − w − u)I0(2
√
λ2 (λ1 − λ10)u

√
v − w − u)

+ λ10λ0

√
u

wλ10λ0
I1(2

√
wλ10λ0u) exp(wλ2 + uλ2 − wλ0 − uλ1) exp(−λ2v)

× χ(v − w − u)(

√
λ2 (λ1 − λ10)uI1(2

√
λ2 (λ1 − λ10)u

√
v − w − u)√

v − w − u
+ δ0(v − w − u)).
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