On Optimum Parameter Modulation–Estimation From a Large Deviations Perspective

Neri Merhav

Special thanks to Yariv Ephraim for many useful discussions.
Thanks also to Tsachy Weissman and Yonina Eldar for interesting conversations.
Background

Consider the model

\[y(t) = x(t, u) + n(t), \quad 0 \leq t < T, \]

where:

- \(x(t, u) = \) a waveform parametrized by \(u \);
- \(n(t) = \) AWGN with spectral density \(N_0/2 \).
Consider the model

\[y(t) = x(t, u) + n(t), \quad 0 \leq t < T, \]

where:

- \(x(t, u) \) = a waveform parametrized by \(u \);
- \(n(t) \) = AWGN with spectral density \(N_0/2 \).

Conveying info in a parameter \(u \) by modulating in \(x(t, u) \):

Shannon–Kotel’nikov mappings (Floor ‘08, Floor & Ramstad ‘09, Hekland ‘07, Ramstad ‘02 + references).
Consider the model

$$y(t) = x(t, u) + n(t), \quad 0 \leq t < T,$$

where:

- $x(t, u) = \text{a waveform parametrized by } u$;
- $n(t) = \text{AWGN with spectral density } N_0/2$.

Conveying info in a parameter u by modulating in $x(t, u)$:

Shannon–Kotel’nikov mappings (Floor ‘08, Floor & Ramstad ‘09, Hekland ‘07, Ramstad ‘02 + references).

Nonlinear modulation \implies threshold effect:

Below some critical SNR, anomalous errors dominate the MSE.
Not an artifact of a particular modulator–estimator pair.

In the wideband regime, the threshold effect is abrupt: $\Pr\{\text{anomaly}\}$ jumps from ~ 0 to ~ 1.
Background (Cont’d) - The Threshold Effect

- Not an artifact of a particular modulator–estimator pair.
- In the wideband regime, the threshold effect is **abrupt**: \(\Pr\{\text{anomaly}\} \) jumps from \(\sim 0 \) to \(\sim 1 \).

In the linear model

\[
y(t) = u \cdot s(t) + n(t), \quad 0 \leq t < T
\]

the ML estimator always achieves

\[
\text{MSE} = \text{CRLB} = \frac{N_0}{2\mathcal{E}},
\]

where \(\mathcal{E} = \text{energy of } \{s(t)\} \): \(\Leftrightarrow \) No threshold effect.
Background (Cont’d) - The Threshold Effect

Not an artifact of a particular modulator–estimator pair.

In the wideband regime, the threshold effect is abrupt: \(\Pr\{\text{anomaly}\} \) jumps from \(\sim 0 \) to \(\sim 1 \).

In the linear model

\[
y(t) = u \cdot s(t) + n(t), \quad 0 \leq t < T
\]

the ML estimator always achieves

\[
\text{MSE} = \text{CRLB} = \frac{N_0}{2\mathcal{E}},
\]

where \(\mathcal{E} = \text{energy of } \{s(t)\} \): \(\Leftrightarrow \) No threshold effect.

Only way to improve (at high SNR): non–linear modulation \(x(t, u) \).
Let

\[x(t, u) \approx x(t, u_0) + (u - u_0) \cdot \dot{x}(t, u_0). \]

like the linear case with \(\dot{x}(t, u_0) \) in the role of \(s(t) \).
Let
\[x(t, u) \approx x(t, u_0) + (u - u_0) \cdot \dot{x}(t, u_0). \]
like the linear case with \(\dot{x}(t, u_0) \) in the role of \(s(t) \). Thus, at high SNR,
\[\text{MSE} \approx \text{CRLB} \approx \frac{N_0}{2\dot{E}}, \]
where \(\dot{E} = \text{energy of } \dot{x}(t, u_0) \), which depends on more details.
Let
\[x(t, u) \approx x(t, u_0) + (u - u_0) \cdot \dot{x}(t, u_0). \]
like the linear case with \(\dot{x}(t, u_0) \) in the role of \(s(t) \). Thus, at high SNR,

\[\text{MSE} \approx \text{CRLB} \approx \frac{N_0}{2\hat{\mathcal{E}}}, \]

where \(\hat{\mathcal{E}} = \text{energy of } \dot{x}(t, u_0) \), which depends on more details.

For example, if \(x(t, u) = s(t - u) \), \(\hat{\mathcal{E}} = W^2 \mathcal{E} \), where

\[W = \sqrt{\frac{1}{\hat{\mathcal{E}}} \int_{-\infty}^{\infty} df \cdot (2\pi f)^2 S(f)} \quad \text{Gabor bandwidth} \]
Background (Cont’d) – Nonlinear Modulation

Let

\[x(t, u) \approx x(t, u_0) + (u - u_0) \cdot \dot{x}(t, u_0). \]

like the linear case with \(\dot{x}(t, u_0) \) in the role of \(s(t) \). Thus, at high SNR,

\[\text{MSE} \approx \text{CRLB} \approx \frac{N_0}{2\dot{\mathcal{E}}}, \]

where \(\dot{\mathcal{E}} = \text{energy of } \dot{x}(t, u_0) \), which depends on more details.

For example, if \(x(t, u) = s(t-u) \), \(\dot{\mathcal{E}} = W^2 \mathcal{E} \), where

\[W = \sqrt{\frac{1}{\dot{\mathcal{E}}} \int_{-\infty}^{\infty} df \cdot (2\pi f)^2 S(f)} \quad \text{Gabor bandwidth} \]

Why not increase \(W \) without a limit?
Let $\bar{x}(u) = (x_1(u), \ldots, x_K(u))$ = representation of $x(t, u)$ by K orthonormal basis functions. Consider the locus of $\{\bar{x}(u), a \leq u \leq b\}$ in \mathbb{R}^K.
Let \(\bar{x}(u) = (x_1(u), \ldots, x_K(u)) \) = representation of \(x(t, u) \) by \(K \) orthonormal basis functions. Consider the locus of \(\{\bar{x}(u), a \leq u \leq b\} \) in \(\mathbb{R}^K \).

Assuming that \(\mathcal{E} \) is independent of \(u \), the locus lies on the hypersurface of the \(K \)-dimensional sphere of radius \(\sqrt{\mathcal{E}} \).
Let $\bar{x}(u) = (x_1(u), \ldots, x_K(u))$ = representation of $x(t, u)$ by K orthonormal basis functions. Consider the locus of $\{\bar{x}(u), a \leq u \leq b\}$ in \mathbb{R}^K.

Assuming that \mathcal{E} is independent of u, the locus lies on the hypersurface of the K–dimensional sphere of radius $\sqrt{\mathcal{E}}$.

The length of the curve

$$L = \int_a^b \sum_i \dot{x}_i^2(u) \, du = (b - a) \sqrt{\mathcal{E}}.$$
Let $\bar{x}(u) = (x_1(u), \ldots, x_K(u))$ = representation of $x(t, u)$ by K orthonormal basis functions. Consider the locus of $\{\bar{x}(u), \ a \leq u \leq b\}$ in \mathbb{R}^K.

Assuming that \mathcal{E} is independent of u, the locus lies on the hypersurface of the K–dimensional sphere of radius $\sqrt{\mathcal{E}}$.

The length of the curve

$$L = \int_a^b du \sqrt{\sum_i \dot{x}_i^2(u)} = (b - a) \sqrt{\dot{\mathcal{E}}}.$$

High–SNR MSE ↓ with $\dot{\mathcal{E}}$, we want $\dot{\mathcal{E}}$ ↑, thus L ↑.
Anomalous Errors (Cont’d)

L – limited by the need of safe distances between folds – hot dog packing.
Anomalous Errors (Cont’d)

L – limited by the need of safe distances between folds – hot dog packing. Maximum achievable $L \sim e^{CT}$, $C = S/N_0$ (PPM). For PPM, $K \sim 2WT$,

$$\text{MSE} \approx \frac{N_0}{2W^2\mathcal{E}} + (b - a)^2 \cdot 2WT \cdot e^{-\mathcal{E}/(2N_0)}$$

small error \hspace{1cm} anomalous error

For fixed W, anomalous error term ↑ gracefully as S/N_0 ↓.
Anomalous Errors (Cont’d)

L – limited by the need of **safe distances** between folds – hot dog packing. Maximum achievable $L \sim e^{CT}$, $C = S/N_0$ (PPM). For PPM, $K \sim 2WT$,

$$\text{MSE} \approx \frac{N_0}{2W^2\mathcal{E}} + (b-a)^2 \cdot 2WT \cdot e^{-\mathcal{E}/(2N_0)}$$

| small error | anomalous error |

For fixed W, anomalous error term ↑ **gracefully** as S/N_0 ↓. For a better balance between terms – let $W \sim e^{RT}$.

$$\text{MSE} \approx \frac{N_0}{2\mathcal{E}} e^{-2RT} + (b-a)^2 \cdot e^{-TE(R)} \quad R < C$$

where $E(R) = \text{reliability function of AWGN channel}$:

$$E(R) = \begin{cases} \frac{C}{2} - R & 0 \leq R \leq \frac{C}{4} \\ (\sqrt{C} - \sqrt{R})^2 & \frac{C}{4} \leq R \leq C \end{cases}$$
Anomalous Errors (Cont’d)

L – limited by the need of safe distances between folds – hot dog packing.
Maximum achievable $L \sim e^{CT}$, $C = S/N_0$ (PPM). For PPM, $K \sim 2WT$,

$$\text{MSE} \approx \frac{N_0}{2W^2\mathcal{E}} + (b - a)^2 \cdot 2WT \cdot e^{-\mathcal{E}/(2N_0)}$$

small error \hspace{2cm} anomalous error

For fixed W, anomalous error term ↑ gracefully as S/N_0 ↓.
For a better balance between terms – let $W \sim e^{RT}$.

$$\text{MSE} \approx \frac{N_0}{2\mathcal{E}} e^{-2RT} + (b - a)^2 \cdot e^{-TE(R)} \quad R < C$$

where $E(R) = \text{reliability function of AWGN channel}$:

$$E(R) = \begin{cases}
\frac{C}{2} - R & 0 \leq R \leq \frac{C}{4} \\
(\sqrt{C} - \sqrt{R})^2 & \frac{C}{4} \leq R \leq C
\end{cases}$$

Optimum compromise: $R = C/6 \quad \implies \quad \text{MSE} \sim e^{-CT/3}$.
Lower Bounds on the MSE

- Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
Lower Bounds on the MSE

- Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
- Some fail to capture the threshold effect (exception: WW).
Lower Bounds on the MSE

- Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
- Some fail to capture the threshold effect (exception: WW).
- Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).
Lower Bounds on the MSE

- Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
- Some fail to capture the threshold effect (exception: WW).
- Most are useful for a *given* modulator (exception: ZZ-CZZ, DPT bounds).
- Quest for *universal* bounds, independent of both modulator and estimator.
Lower Bounds on the MSE

- Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
- Some fail to capture the threshold effect (exception: WW).
- Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).
- Quest for universal bounds, independent of both modulator and estimator.
- The modulator – limited by a power constraint only (power $\leq S$).
Lower Bounds on the MSE

- Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
- Some fail to capture the threshold effect (exception: WW).
- Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).
- Quest for universal bounds, independent of both modulator and estimator.
- The modulator – limited by a power constraint only (power $\leq S$).
- Bounds that depend only on $\mathcal{E}/N_0 = CT$, $C = S/N_0$.
Lower Bounds on the MSE

- Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
- Some fail to capture the threshold effect (exception: WW).
- Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).
- Quest for universal bounds, independent of both modulator and estimator.
- The modulator – limited by a power constraint only (power $\leq S$).
- Bounds that depend only on $\mathcal{E}/N_0 = CT$, $C = S/N_0$.
- We saw that $\text{MSE} \sim e^{-CT/3}$ is achievable for $T \to \infty$.
Lower Bounds on the MSE

- Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
- Some fail to capture the threshold effect (exception: WW).
- Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).
- Quest for universal bounds, independent of both modulator and estimator.
- The modulator – limited by a power constraint only (power $\leq S'$).
- Bounds that depend only on $\mathcal{E}/N_0 = CT$, $C = S/N_0$.
- We saw that $\text{MSE} \sim e^{-CT/3}$ is achievable for $T \to \infty$.
- Is there a compatible lower bound?
Some Universal MSE Lower Bounds

Let u be a realization of $U \sim \text{Unif}[-1/2, +1/2)$.
Some Universal MSE Lower Bounds

Let u be a realization of $U \sim \text{Unif}[-1/2, +1/2)$. Then,

$$CT \geq R(D)$$
Some Universal MSE Lower Bounds

Let \(u \) be a realization of \(U \sim \text{Unif}[\frac{-1}{2}, \frac{1}{2}) \). Then,

\[
CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi eD)
\]
Some Universal MSE Lower Bounds

Let u be a realization of $U \sim \text{Unif}[-1/2, +1/2]$. Then,

$$CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi e D) = -\frac{1}{2} \ln(2\pi e D)$$
Some Universal MSE Lower Bounds

Let u be a realization of $U \sim \text{Unif}[-1/2, +1/2)$. Then,

$$CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi e D) = -\frac{1}{2} \ln(2\pi e D)$$

implies

$$D = \mathbb{E}(\hat{U} - U)^2 \geq \frac{1}{2\pi e} \cdot e^{-2CT}.$$
Some Universal MSE Lower Bounds

Let \(u \) be a realization of \(U \sim \text{Unif}[-1/2, +1/2] \). Then,

\[
CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi e D) = -\frac{1}{2} \ln(2\pi e D)
\]

implies \(D = \mathbb{E}(\hat{U} - U)^2 \geq \frac{1}{2\pi e} \cdot e^{-2CT} \).

Zakai and Ziv (1975) – generalized DPI’s: \(\mathbb{E}(\hat{U} - U)^2 \geq e^{-CT} \).
Some Universal MSE Lower Bounds

Let u be a realization of $U \sim \text{Unif}[-1/2, +1/2)$. Then,

$$CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi e D) = -\frac{1}{2} \ln(2\pi e D)$$

implies

$$D = \mathbb{E}((\hat{U} - U)^2) \geq \frac{1}{2\pi e} \cdot e^{-2CT}.$$

Zakai and Ziv (1975) – generalized DPI’s: $\mathbb{E}((\hat{U} - U)^2) \geq e^{-CT}$.

Merhav (2011) – other generalized DPI’s: $\mathbb{E}((\hat{U} - U)^2) \geq e^{-2CT/3}$
Some Universal MSE Lower Bounds

Let \(u \) be a realization of \(U \sim \text{Unif}[-1/2, +1/2] \). Then,

\[
CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi eD) = -\frac{1}{2} \ln(2\pi eD)
\]

implies

\[
D = \mathbb{E}(\hat{U} - U)^2 \geq \frac{1}{2\pi e} \cdot e^{-2CT}.
\]

Zakai and Ziv (1975) – generalized DPI’s: \(\mathbb{E}(\hat{U} - U)^2 \geq e^{-CT} \).

Merhav (2011) – other generalized DPI’s: \(\mathbb{E}(\hat{U} - U)^2 \geq e^{-2CT/3} \).

+ bounds related to signal detection considerations: \(\mathbb{E}(\hat{U} - U)^2 \geq e^{-CT/2} \).
Some Universal MSE Lower Bounds

Let \(u \) be a realization of \(U \sim \text{Unif}[-1/2, +1/2] \). Then,

\[
CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi eD) = -\frac{1}{2} \ln(2\pi eD)
\]

implies

\[
D = \mathbb{E}(\hat{U} - U)^2 \geq \frac{1}{2\pi e} \cdot e^{-2CT}.
\]

Zakai and Ziv (1975) – generalized DPI’s: \(\mathbb{E}(\hat{U} - U)^2 \geq e^{-CT} \).

Merhav (2011) – other generalized DPI’s: \(\mathbb{E}(\hat{U} - U)^2 \geq e^{-2CT/3} \)

+ bounds related to signal detection considerations: \(\mathbb{E}(\hat{U} - U)^2 \geq e^{-CT/2} \).

Compare to the upper bound of \(e^{-CT/3} \).
Some Universal MSE Lower Bounds

Let u be a realization of $U \sim \text{Unif}[-1/2, +1/2)$. Then,

$$CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi eD) = -\frac{1}{2} \ln(2\pi eD)$$

implies

$$D = \mathbb{E}(\hat{U} - U)^2 \geq \frac{1}{2\pi e} \cdot e^{-2CT}.$$

Zakai and Ziv (1975) – generalized DPI’s: $\mathbb{E}(\hat{U} - U)^2 \gtrsim e^{-CT}.$

Merhav (2011) – other generalized DPI’s: $\mathbb{E}(\hat{U} - U)^2 \gtrsim e^{-2CT/3}$

+ bounds related to signal detection considerations: $\mathbb{E}(\hat{U} - U)^2 \gtrsim e^{-CT/2}.$

Compare to the upper bound of $e^{-CT/3}.$

Attempts to close the gap have failed thus far...
Some Universal MSE Lower Bounds

Let \(u \) be a realization of \(U \sim \text{Unif}[-1/2, +1/2] \). Then,

\[
CT \geq R(D) \geq h(U) - \frac{1}{2} \ln(2\pi eD) = -\frac{1}{2} \ln(2\pi eD)
\]

implies \(D = \mathbb{E}(\hat{U} - U)^2 \geq \frac{1}{2\pi e} \cdot e^{-2CT} \).

Zakai and Ziv (1975) – generalized DPI’s: \(\mathbb{E}(\hat{U} - U)^2 \gtrsim e^{-CT} \).

Merhav (2011) – other generalized DPI’s: \(\mathbb{E}(\hat{U} - U)^2 \gtrsim e^{-2CT/3} \)

+ bounds related to signal detection considerations: \(\mathbb{E}(\hat{U} - U)^2 \gtrsim e^{-CT/2} \).

Compare to the upper bound of \(e^{-CT/3} \).

Attempts to close the gap have failed thus far...
Conjecture: “Blame” the lower bound.
Instead of $E(\hat{U} - U)^2$, consider minimizing

$$E_1\{ |\hat{U} - U| \geq \Delta \} = Pr\{ |\hat{U} - U| > \Delta \}.$$
The Large Deviations Perspective

Instead of $E(\hat{U} - U)^2$, consider minimizing

$$E_1\{|\hat{U} - U| \geq \Delta\} = \Pr\{|\hat{U} - U| > \Delta\}.$$

Moreover, we allow $\Delta = e^{-RT}$.
Instead of $E (\hat{U} - U)^2$, consider minimizing

$$E 1\{|\hat{U} - U| \geq \Delta\} = \Pr\{|\hat{U} - U| > \Delta\}.$$

Moreover, we allow $\Delta = e^{-RT}$.

Assume $u = \text{realization of } U \sim \text{Unif}[-1/2, +1/2]$, allow any modulator $x(t, \cdot)$ with

$$E \left\{ \frac{1}{T} \int_0^T x^2(t, U) \, dt \right\} \leq S$$

and any estimator $\hat{U} = f\{y(t), 0 \leq t < T\}$.
The Large Deviations Perspective

Instead of $E(\hat{U} - U)^2$, consider minimizing

$$E1\{|\hat{U} - U| \geq \Delta\} = \Pr\{|\hat{U} - U| > \Delta\}.$$

Moreover, we allow $\Delta = e^{-RT}$.

Assume $u =$ realization of $U \sim \text{Unif}[-1/2, +1/2)$, allow any modulator $x(t, \cdot)$ with

$$E \left\{ \frac{1}{T} \int_0^T x^2(t, U) dt \right\} \leq S$$

and any estimator $\hat{U} = f\{y(t), 0 \leq t < T\}$.

We are interested in

$$E^*(R) = \limsup_{T \to \infty} \left[-\frac{1}{T} \log \inf \Pr \left\{ |\hat{U} - U| > e^{-RT} \right\} \right].$$
Motivation

Separates between anomalous and non-anomalous error events:
Motivation

Separates between anomalous and non–anomalous error events:

\[|\hat{U} - U| \leq e^{-RT} \quad \text{weak–noise (non–anomalous).} \quad \text{Error } \sim e^{-RT}. \]
Separates between anomalous and non–anomalous error events:

- $|\hat{U} - U| \leq e^{-RT}$ – weak–noise (non–anomalous). Error $\sim e^{-RT}$.
- $|\hat{U} - U| > e^{-RT}$ – gross error (anomalous). Error $\sim e^{-TE^*(R)}$.

Motivation
Motivation

Separates between anomalous and non–anomalous error events:

- \(|\hat{U} - U| \leq e^{-RT} \) – weak–noise (non–anomalous). Error \(\sim e^{-RT} \).
- \(|\hat{U} - U| > e^{-RT} \) – gross error (anomalous). Error \(\sim e^{-TE^*(R)} \).

Typically, anomalous \(\hat{U} \) falls at random away from \(U \) ⇒ weigh all anomalous errors evenly.
Motivation

Separates between anomalous and non–anomalous error events:

- $|\hat{U} - U| \leq e^{-RT}$ – weak–noise (non–anomalous). Error $\sim e^{-RT}$.
- $|\hat{U} - U| > e^{-RT}$ – gross error (anomalous). Error $\sim e^{-TE^*(R)}$.
- Typically, anomalous \hat{U} falls at random away from $U \Rightarrow$ weigh all anomalous errors evenly.

MSE does not distinguish between weak–noise errors and anomalous errors.
Basic Result

Theorem: For all $R > 0$, the $\lim \sup$ of $E^*(R)$ is actually \lim and

$$E^*(R) = E(R) = \begin{cases}
\frac{C}{2} - R & 0 \leq R \leq \frac{C}{4} \\
(\sqrt{C} - \sqrt{R})^2 & \frac{C}{4} \leq R \leq C \\
0 & R \geq C
\end{cases}$$
Basic Result

Theorem: For all $R > 0$, the \limsup of $E^*(R)$ is actually \lim and

$$E^*(R) = E(R) = \begin{cases} \frac{C}{2} - R & 0 \leq R \leq \frac{C}{4} \\ (\sqrt{C} - \sqrt{R})^2 & \frac{C}{4} \leq R \leq C \\ 0 & R \geq C \end{cases}$$

Achievability
Basic Result

Theorem: For all $R > 0$, the lim sup of $E^*(R)$ is actually lim and

$$E^*(R) = E(R) = \begin{cases} \frac{C}{2} - R & 0 \leq R \leq \frac{C}{4} \\ (\sqrt{C} - \sqrt{R})^2 & \frac{C}{4} \leq R \leq C \\ 0 & R \geq C \end{cases}$$

Achievability

Modulator: Form a grid of $M = e^{RT}/2$ points in $[-1/2, +1/2)$:

$$\{-1/2 + 1 \cdot e^{-RT}, -1/2 + 3 \cdot e^{-RT}, -1/2 + 5 \cdot e^{-RT}, \ldots, 1/2 - e^{-RT}\}.$$

Map grid points to orthogonal signals $s_i(t)$ with power S: $x(t, u) = s_i(t)$, where $i =$ index of grid point NN to $u.$
Basic Result

Theorem: For all $R > 0$, the $\lim \sup$ of $E^*(R)$ is actually \lim and

$$E^*(R) = E(R) = \begin{cases} \frac{C}{2} - R & 0 \leq R \leq \frac{C}{4} \\ (\sqrt{C} - \sqrt{R})^2 & \frac{C}{4} \leq R \leq C \\ 0 & R \geq C \end{cases}$$

Achievability

Modulator: Form a grid of $M = e^{RT}/2$ points in $[-1/2, +1/2)$:

$$\{-1/2 + 1 \cdot e^{-RT}, -1/2 + 3 \cdot e^{-RT}, -1/2 + 5 \cdot e^{-RT}, \ldots, 1/2 - e^{-RT}\}.$$

Map grid points to orthogonal signals $s_i(t)$ with power S: $x(t, u) = s_i(t)$, where $i =$ index of grid point NN to u.

Estimator: Decode \hat{i} and $\hat{u} = -1/2 + (2\hat{i} - 1)e^{-RT}$.
Basic Result

Theorem: For all $R > 0$, the $\lim \sup$ of $E^*(R)$ is actually \lim and

$$E^*(R) = E(R) = \begin{cases} \frac{C}{2} - R & 0 \leq R \leq \frac{C}{4} \\ (\sqrt{C} - \sqrt{R})^2 & \frac{C}{4} \leq R \leq C \\ 0 & R \geq C \end{cases}$$

Achievability
Modulator: Form a grid of $M = e^{RT}/2$ points in $[-1/2, +1/2]$:

$$\{-1/2 + 1 \cdot e^{-RT}, -1/2 + 3 \cdot e^{-RT}, -1/2 + 5 \cdot e^{-RT}, \ldots, 1/2 - e^{-RT}\}.$$

Map grid points to orthogonal signals $s_i(t)$ with power S: $x(t, u) = s_i(t)$, where $i = \text{index of grid point NN to } u$.

Estimator: Decode \hat{i} and $\hat{u} = -1/2 + (2\hat{i} - 1)e^{-RT}$.

Obviously,

$$\Pr\{|\hat{U} - U| > e^{-RT}\} \leq \Pr\{\hat{i} \neq i\} \sim e^{-TE(R)}.$$
Converse Part

For a given u, consider the grid

$$\{u, u + 2e^{-RT}, u + 4e^{-RT}, \ldots, u + 2(M - 1)e^{-RT}\}, \quad M = \frac{e^{(R-\epsilon)T}}{2} + 1$$
Converse Part

For a given u, consider the grid

$$\{u, u + 2e^{-RT}, u + 4e^{-RT}, \ldots, u + 2(M - 1)e^{-RT}\}, \quad M = \frac{e^{(R-\epsilon)T}}{2} + 1$$

and define the hypothesis testing problem:

$$\mathcal{H}_i : y(t) = x \left(t, u + 2ie^{-RT} \right) + n(t) \quad i = 0, 1, \ldots, M - 1.$$
For a given u, consider the grid

$$\{u, u + 2e^{-RT}, u + 4e^{-RT}, \ldots, u + 2(M - 1)e^{-RT}\}, \quad M = \frac{e^{(R-\epsilon)T}}{2} + 1$$

and define the hypothesis testing problem:

$$\mathcal{H}_i : y(t) = x \left(t, u + 2ie^{-RT}\right) + n(t) \quad i = 0, 1, \ldots, M - 1.$$

Consider a detector that chooses the grid point NN to \hat{U}.
Converse Part

For a given u, consider the grid

$$\{u, u + 2e^{-RT}, u + 4e^{-RT}, \ldots, u + 2(M - 1)e^{-RT}\}, \quad M = \frac{e^{(R-\epsilon)T}}{2} + 1$$

and define the hypothesis testing problem:

$$\mathcal{H}_i : y(t) = x(t, u + 2ie^{-RT}) + n(t) \quad i = 0, 1, \ldots, M - 1.$$

Consider a detector that chooses the grid point \hat{U} to \hat{U}. Obviously,

$$P_e \geq e^{-T[E(R-\epsilon)+o(T)].}$$
For a given u, consider the grid

$$\{u, u + 2e^{-RT}, u + 4e^{-RT}, \ldots, u + 2(M-1)e^{-RT}\}, \quad M = \frac{e^{(R-e)T}}{2} + 1$$

and define the hypothesis testing problem:

$$H_i : y(t) = x\left(t, u + 2ie^{-RT}\right) + n(t) \quad i = 0, 1, \ldots, M-1.$$

Consider a detector that chooses the grid point NN to \hat{U}. Obviously,

$$\frac{1}{M} \sum_{i=0}^{M-1} \Pr\{|\hat{U} - U| > e^{-RT} | U = u + 2ie^{-RT}\} \geq P_e \geq e^{-T[E(R-e) + o(T)]}.$$
For a given u, consider the grid

$$
\{u, u + 2e^{-RT}, u + 4e^{-RT}, \ldots, u + 2(M - 1)e^{-RT}\}, \quad M = \frac{e^{(R-\epsilon)T}}{2} + 1
$$

and define the hypothesis testing problem:

$$
\mathcal{H}_i : y(t) = x(t, u + 2ie^{-RT}) + n(t) \quad i = 0, 1, \ldots, M - 1.
$$

Consider a detector that chooses the grid point N to \hat{U}. Obviously,

$$
\frac{1}{M} \sum_{i=0}^{M-1} \Pr\{|\hat{U} - U| > e^{-RT} | U = u + 2ie^{-RT}\} \geq P_e \geq e^{-T[E(R-\epsilon)+o(T)]}.
$$

The result is obtained by integrating both sides over u.
The Case \(R = 0 \)

The operational reliability – discontinuous at \(R = 0 \). For fixed \(M \), \(P_e \) is dictated by \(d_{\text{min}} = \frac{2M\varepsilon}{M-1} \). In particular,

\[
P_e \propto Q\left(\sqrt{\frac{\varepsilon}{N_0} \cdot \frac{M}{M - 1}}\right) \sim \exp\left(-\frac{CT}{2} \cdot \frac{M}{M - 1}\right).\]
The Case $R = 0$

The operational reliability – discontinuous at $R = 0$. For fixed M, P_e is dictated by $d_{\text{min}} = \frac{2M\varepsilon}{M-1}$. In particular,

$$P_e \propto Q\left(\sqrt{\frac{\varepsilon}{N_0} \cdot \frac{M}{M-1}}\right) \sim \exp\left(-\frac{CT}{2} \cdot \frac{M}{M-1}\right).$$

In estimation, $Pr\{|\hat{U} - U| > \Delta\}$ for fixed Δ, is according to P_e but with $M \propto 1/\Delta$.
The Case $R = 0$

The operational reliability – discontinuous at $R = 0$. For fixed M, P_e is dictated by $d_{\min} = \frac{2M\varepsilon}{M-1}$. In particular,

$$P_e \propto Q \left(\sqrt{\frac{\varepsilon}{N_0}} \cdot \frac{M}{M - 1} \right) \sim \exp \left(-\frac{CT}{2} \cdot \frac{M}{M - 1} \right).$$

In estimation, $\Pr\{|\hat{U} - U| > \Delta\}$ for fixed Δ, is according to P_e but with $M \propto 1/\Delta$.

Small gap between upper bound and the lower bound for every fixed Δ, but this gap $\to 0$ as $\Delta \to 0$. In particular,

$$\lim_{\Delta \to 0} \lim_{T \to \infty} \left[-\frac{\ln \Pr\{|\hat{U} - U| > \Delta\}}{T} \right] = \frac{C}{2} = E(0).$$
The Case $R = 0$ (Cont’d)

Relation to the MSE:

$$\mathbb{E}(\hat{U} - U)^2 = 2 \int_{0}^{1} d\Delta \cdot \Delta \cdot \Pr\{|\hat{U} - U| \geq \Delta\}.$$
The Case $R = 0$ (Cont’d)

Relation to the MSE:

$$E(\hat{U} - U)^2 = 2 \int_0^1 d\Delta \cdot \Delta \cdot Pr\{|\hat{U} - U| \geq \Delta\}.$$

MSE can be lower bounded via a lower bound on $Pr\{|\hat{U} - U| \geq \Delta\}$ (CZZ ‘75).
The Case $R = 0$ (Cont’d)

Relation to the MSE:

$$\mathbb{E}(\hat{U} - U)^2 = 2 \int_0^1 d\Delta \cdot \Delta \cdot \Pr\{|\hat{U} - U| \geq \Delta\}.$$

MSE can be lower bounded via a lower bound on $\Pr\{|\hat{U} - U| \geq \Delta\}$ (CZZ ‘75).

Weakness: integration range of Δ – restricted to $[0, 1/(M - 1)]$.

– p. 67/110
The Case $R = 0$ (Cont’d)

Relation to the MSE:

$$E(\hat{U} - U)^2 = 2 \int_0^1 d\Delta \cdot \Delta \cdot Pr\{|\hat{U} - U| \geq \Delta\}.$$

MSE can be lower bounded via a lower bound on $Pr\{|\hat{U} - U| \geq \Delta\}$ (CZZ ‘75).

Weakness: integration range of Δ – restricted to $[0, 1/(M - 1)]$.

Large deviations performance metric avoids integration altogether.
The Case $R = 0$ (Cont’d)

Relation to the MSE:

$$\mathbb{E}(\hat{U} - U)^2 = 2 \int_0^1 d\Delta \cdot \Delta \cdot \text{Pr}\{|\hat{U} - U| \geq \Delta\}.$$

MSE can be lower bounded via a lower bound on $\text{Pr}\{|\hat{U} - U| \geq \Delta\}$ (CZZ ‘75).

Weakness: integration range of Δ – restricted to $[0, 1/(M - 1)]$.

Large deviations performance metric avoids integration altogether.

Open question: devise a system independent of Δ, yet minimizes $\text{Pr}\{|\hat{U} - U| \geq \Delta\}$ for every Δ.
Discussion
Strong Converse ⇔ Sharp Threshold Effect

- Both achievability and converse rely on signal detection considerations.

- Strong converse: \(\lim_{T \to \infty} P_e \) jumps from 0 to 1 as \(R \) crosses \(C \).

- Equivalently, \(E^*(R) = 0 \) for \(R > C \) in the strong sense.

- “Inheriting” strong converse — jump in \(\Pr\{|\hat{U} - U| > e^{-RT}\} \).

- For an optimum system, \(|\hat{U} - U| \) “concentrates” around \(e^{-CT} \).
Alternative Achievability Schemes

Achievability – quantization of U + orthogonal signaling.
Alternative Achievability Schemes

Achievability – quantization of U + orthogonal signaling.

Alternative modulators (+ ML estimation):

FPM: $x(t, u) = \sqrt{2S} \cos[(\omega_0 + u \cdot \Delta \omega)t + \phi]$ \hspace{1cm} \omega_0, \Delta \omega \propto e^{RT}.$
Alternative Achievability Schemes

Achievability – quantization of $U +$ orthogonal signaling.

Alternative modulators (+ ML estimation):

FPM: $x(t, u) = \sqrt{2S} \cos[(\omega_0 + u \cdot \Delta \omega)t + \phi]$ $\omega_0, \Delta \omega \propto e^{RT}$.

PPM: $x(t, u) = s[t - (u + 1/2)(T - \tau)]$ bandwidth $\propto e^{RT}$.
Alternative Achievability Schemes

Achievability – quantization of U + orthogonal signaling.

Alternative modulators (+ ML estimation):

FPM: $x(t, u) = \sqrt{2S} \cos[(\omega_0 + u \cdot \Delta \omega)t + \phi]$ \quad $\omega_0, \Delta \omega \propto e^{RT}$.

PPM: $x(t, u) = s[t - (u + 1/2)(T - \tau)]$ \quad bandwidth $\propto e^{RT}$.

In both, the event $\{|\hat{U} - U| > e^{-RT}\} = \text{anomaly}$.
Alternative Achievability Schemes

Achievability – quantization of U + orthogonal signaling.

Alternative modulators (+ ML estimation):

FPM:
$$x(t, u) = \sqrt{2S} \cos[(\omega_0 + u \cdot \Delta \omega)t + \phi] \quad \omega_0, \Delta \omega \propto e^{RT}.$$

PPM:
$$x(t, u) = s[t - (u + 1/2)(T - \tau)] \quad \text{bandwidth} \propto e^{RT}.$$

In both, the event $\{|\hat{U} - U| > e^{-RT}\}$ = anomaly.

Common feature: correlation between $x(t, u)$ and $x(t, u')$ depends only on $|u - u'|$ with support $\sim e^{-RT}$.

Alternative Achievability Schemes

Achievability – quantization of U + orthogonal signaling.

Alternative modulators (+ ML estimation):

FPM:

$$x(t, u) = \sqrt{2S} \cos[(\omega_0 + u \cdot \Delta \omega)t + \phi] \quad \omega_0, \Delta \omega \propto e^{RT}.$$

PPM:

$$x(t, u) = s[t - (u + 1/2)(T - \tau)] \quad \text{bandwidth} \propto e^{RT}.$$

In both, the event $\{|\hat{U} - U| > e^{-RT}\} =$ anomaly.

Common feature: correlation between $x(t, u)$ and $x(t, u')$ depends only on $|u - u'|$ with support $\sim e^{-RT}$.

In AM:

$$\Pr\{|\hat{U} - U| > e^{-RT}\} = 2Q(e^{-RT} \sqrt{2CT}) \to 1 \quad \forall \ R > 0$$
Relation to Moments of the Estimation Error

By Chebyshev’s inequality

\[e^{-T[E(R) + o(T)]]} \leq \Pr\{|\hat{U} - U| > e^{-RT}\} \leq \frac{\mathbb{E}(\hat{U} - U)^2}{e^{-2RT}} \]
Relation to Moments of the Estimation Error

By Chebyshev’s inequality

\[e^{-T[E(R)+o(T)]} \leq \Pr\{|\hat{U} - U| > e^{-RT}\} \leq \frac{E(\hat{U} - U)^2}{e^{-2RT}} \]

implying that

\[E(\hat{U} - U)^2 \geq e^{-T[E(R)+2R+o(T)]}, \]

which is maximized for \(R = 0 \), yielding \(\sim e^{-CT/2} \) as above.
Relation to Moments of the Estimation Error

By Chebyshev’s inequality

\[e^{-T[E(R)+o(T)]} \leq \Pr\{|\hat{U} - U| > e^{-RT}\} \leq \frac{E(\hat{U} - U)^2}{e^{-2RT}} \]

implying that

\[E(\hat{U} - U)^2 \geq e^{-T[E(R)+2R+o(T)]}, \]

which is maximized for \(R = 0 \), yielding \(\sim e^{-CT/2} \) as above.

For a general moment \(E|\hat{U} - U|^\alpha \) (\(\alpha > 0 \), arbitrary):

\[E|\hat{U} - U|^\alpha \geq \begin{cases} e^{-CT/2} & \alpha \geq 1 \\ e^{-\alpha CT/(1+\alpha)} & 0 < \alpha < 1 \end{cases} \]
Relation to Joint Source–Channel Coding

Csiszár (1982): JSC problem under

$$\min \Pr \left\{ \sum_{i=1}^{N} d(U_i, \hat{U}_i) > ND \right\}.$$
Relation to Joint Source–Channel Coding

Csiszár (1982): JSC problem under

\[
\min \Pr \left\{ \sum_{i=1}^{N} d(U_i, \hat{U}_i) > ND \right\}.
\]

The exponential rate cannot exceed

\[
e(D) = \min_{R} [F(D, R) + E(R)]
\]

where

\[
F(D, R) = \min_{Q': R(D, Q') \geq R} D(Q' \| Q)
\]

is the source coding exponent of the source \(Q \) (Marton, 1974).
Relation to Joint Source–Channel Coding (Cont’d)

For separate source– and channel coding:

\[e_{\text{sep}}(D) = \sup_R \min\{F(D, R), E(R)\} \leq e(D) \]
For separate source– and channel coding:

\[e_{sep}(D) = \sup_{R} \min\{F(D, R), E(R)\} \leq e(D) \]

\[\Rightarrow \text{no separation theorem for error exponents.} \]
For separate source– and channel coding:

\[e_{sep}(D) = \sup_R \min \{ F(D, R), E(R) \} \leq e(D) \]

\[\Rightarrow \text{no separation theorem for error exponents.} \]

But our achievability is based on separation:

- Quantize \(U \) – source coding
- Then map to \(s_i(t) \) – channel coding.
Relation to Joint Source–Channel Coding (Cont’d)

For separate source– and channel coding:

\[e_{sep}(D) = \sup_{R} \min \{ F(D, R), E(R) \} \leq e(D) \]

⇒ no separation theorem for error exponents.

But our achievability is based on separation:

- Quantize \(U \) – source coding
- Then map to \(s_i(t) \) – channel coding.

Q: How does this settle?
Answer: Let Q^* maximize $R(D, Q)$ (often, uniform).

$$F(D, R) = \min_{Q: R(D,Q) \geq R} D(Q \parallel Q^*) = \begin{cases}
0 & R \leq R(D, Q^*) \\
\infty & R > R(D, Q^*)
\end{cases}$$
Relation to Joint Source–Channel Coding (Cont’d)

Answer: Let Q^* maximize $R(D, Q)$ (often, uniform).

$$F(D, R) = \min_{Q: R(D, Q) \geq R} D(Q\|Q^*) = \begin{cases} 0 & R \leq R(D, Q^*) \\ \infty & R > R(D, Q^*) \end{cases}$$

Here, source–channel separation applies:

$$e_{sep}(D) = e(D) = E[R(D, Q^*)].$$
Relation to Joint Source–Channel Coding (Cont’d)

Answer: Let \(Q^* \) maximize \(R(D, Q) \) (often, uniform).

\[
F(D, R) = \min_{Q: R(D, Q) \geq R} D(Q \| Q^*) = \begin{cases}
0 & R \leq R(D, Q^*) \\
\infty & R > R(D, Q^*)
\end{cases}
\]

Here, source–channel separation applies:

\[
e_{sep}(D) = e(D) = E[R(D, Q^*)].
\]

Intuition:

- “Cover” source space by \(e^{NR(D, Q^*)} \) \(D \)–spheres.
- Source encoder does not cause \(\sum_i d(U_i, \hat{U}_i) > ND \).
- Excess distortion – only due to channel – w. p. \(e^{-NE[R(D, Q^*)]} \).
- This is our case too.
Extensions
The Multidimensional Parameter Vector Case

Consider a d–dimensional vector $\mathbf{U} = (U_1, \ldots, U_d) \sim \text{Unif}[-1/2, +1/2]^d$.
Consider a d–dimensional vector $\mathbf{U} = (U_1, \ldots, U_d) \sim \text{Unif}[-1/2, +1/2]^d$.

Minimize

$$\Pr \left[\bigcup_{i=1}^{d} \left\{ |\hat{U}_i - U_i| > e^{-R_i T} \right\} \right].$$

Let $E^*(R_1, \ldots, R_d) = \text{best achievable exponent}$.
The Multidimensional Parameter Vector Case

Consider a \(d\)-dimensional vector \(U = (U_1, \ldots, U_d) \sim \text{Unif}[-1/2, +1/2]^d\).

Minimize

\[
\Pr \left[\bigcup_{i=1}^{d} \left\{ |\hat{U}_i - U_i| > e^{-R_i T} \right\} \right].
\]

Let \(E^*(R_1, \ldots, R_d) = \) best achievable exponent.

Thm above extends to

\[
E^*(R_1, \ldots, R_d) = E(R_1 + R_2 + \ldots + R_d).
\]
The Multidimensional Parameter Vector Case

Consider a d–dimensional vector $U = (U_1, \ldots, U_d) \sim \text{Unif}[-1/2, +1/2]^d$.

Minimize

$$\text{Pr} \left[\bigcup_{i=1}^{d} \left\{ |\hat{U}_i - U_i| > e^{-R_i T} \right\} \right].$$

Let $E^*(R_1, \ldots, R_d) =$ best achievable exponent.

Thm above extends to

$$E^*(R_1, \ldots, R_d) = E(R_1 + R_2 + \ldots + R_d).$$

Think of a grid with $e^{R_i T}$ points in the i–th coordinate \Rightarrow total $= e^{(R_1 + \ldots + R_d) T}$.
The Vector Case (Cont’d)

Consider the case \(R_1 = R_2 = \ldots = R_d \equiv R: \)

\[
E^*(R, R, \ldots, R) = E(R \cdot d).
\]
The Vector Case (Cont’d)

Consider the case $R_1 = R_2 = \ldots = R_d \equiv R$:

$$E^*(R, R, \ldots, R) = E(R \cdot d).$$

For $R > 0$, due to the strong converse, there exists a dimensionality threshold effect:

$$\lim_{T \to \infty} \Pr \left[\bigcup_{i=1}^{d} \left\{ |\hat{U}_i - U_i| > e^{-RT} \right\} \right] = \begin{cases} 0 & d < d_c \triangleq \lfloor C/R \rfloor \\ 1 & d \geq d_c \end{cases}$$
Consider the case $R_1 = R_2 = \ldots = R_d \equiv R$:

$$E^*(R, R, \ldots, R) = E(R \cdot d).$$

For $R > 0$, due to the strong converse, there exists a dimensionality threshold effect:

$$\lim_{T \to \infty} \Pr \left[\bigcup_{i=1}^{d} \{ |\hat{U}_i - U_i| > e^{-RT} \} \right] = \begin{cases}
0 & d < d_c \triangleq \lfloor C/R \rfloor \\
1 & d \geq d_c
\end{cases}$$

For $R = 0$, $E(0) = C/2$ independently of d.
The Vector Case (Cont’d)

Consider the case $R_1 = R_2 = \ldots = R_d \equiv R$:

$$E^*(R, R, \ldots, R) = E(R \cdot d).$$

For $R > 0$, due to the strong converse, \exists dimensionality threshold effect:

$$\lim_{T \to \infty} \Pr \left[\bigcup_{i=1}^{d} \{ |\hat{U}_i - U_i| > e^{-RT}\} \right] = \begin{cases} 0 & d < d_c \overset{\Delta}{=} \left\lceil \frac{C}{R} \right\rceil \\ 1 & d \geq d_c \end{cases}$$

For $R = 0$, $E(0) = C/2$ independently of d.

Different from the common “curse of dimensionality”, which is usually graceful in d.

– p. 98/110
Other Channels

- Gaussianity – not used very strongly.
Other Channels

- Gaussianity – not used very strongly.
- Main feature = known reliability func. (∞ bandwidth).
Other Channels

- Gaussianity – not used very strongly.
- Main feature = known reliability func. (∞ bandwidth).
- Reliability func. – known also for the Poisson channel (Wyner 1988) and others of ∞ bandwidth (Gallager 1987).
Other Channels

- Gaussianity – not used very strongly.
- Main feature = known reliability func. (∞ bandwidth).
- Reliability func. – known also for the Poisson channel (Wyner 1988) and others of ∞ bandwidth (Gallager 1987).
- For DMC’s – known for $R \geq R_{crit}$.
Other Channels

- Gaussianity – not used very strongly.
- Main feature = known reliability func. (∞ bandwidth).
- Reliability func. – known also for the Poisson channel (Wyner 1988) and others of ∞ bandwidth (Gallager 1987).
- For DMC’s – known for $R \geq R_{\text{crit}}$.
- For $R < R_{\text{crit}}$, not known, but separation still works.
Other Channels

- Gaussianity – not used very strongly.
- Main feature = known reliability func. (∞ bandwidth).
- Reliability func. – known also for the Poisson channel (Wyner 1988) and others of ∞ bandwidth (Gallager 1987).
- For DMC’s – known for \(R \geq R_{\text{crit}} \).
- For \(R < R_{\text{crit}} \), not known, but separation still works.
- Applicable to bandlimited Gaussian channel with \(N = 2WT \) channel uses.
Other Channels

- Gaussianity – not used very strongly.
- Main feature = known reliability func. (∞ bandwidth).
- Reliability func. – known also for the Poisson channel (Wyner 1988) and others of ∞ bandwidth (Gallager 1987).
- For DMC’s – known for $R \geq R_{\text{crit}}$.
- For $R < R_{\text{crit}}$, not known, but separation still works.
- Applicable to bandlimited Gaussian channel with $N = 2WT$ channel uses.
- Unknown channels: universal decoding metrics – applicable for universal estimation.
Rayleigh Fading

Let

\[y(t) = a \cdot x(t, u) + n(t), \quad 0 \leq t < T \]

where \(a \) = realization of \(A \), with density

\[f_A(a) = \frac{a}{\sigma^2} e^{-a^2/2\sigma^2} \quad a \geq 0. \]
Rayleigh Fading

Let

\[y(t) = a \cdot x(t, u) + n(t), \quad 0 \leq t < T \]

where \(a = \text{realization of } A \), with density

\[f_A(a) = \frac{a}{\sigma^2} e^{-a^2/2\sigma^2} \quad a \geq 0. \]

For \(R > 0 \), the probability of excess error – dominated by channel outage

\[\Pr\{ A^2 C \leq R \} = 1 - e^{-R/2\bar{C}} \quad \bar{C} = \sigma^2 C. \]
Rayleigh Fading

Let

\[y(t) = a \cdot x(t,u) + n(t), \quad 0 \leq t < T \]

where \(a = \) realization of \(A \), with density

\[f_A(a) = \frac{a}{\sigma^2} e^{-a^2/2\sigma^2} \quad a \geq 0. \]

For \(R > 0 \), the probability of excess error – dominated by channel outage

\[\Pr\{A^2C \leq R\} = 1 - e^{-R/2\tilde{C}} \quad \tilde{C} = \sigma^2 C. \]

For \(R = 0 \) – decays like \(1/T \).
Summary and Conclusion

- Large deviations performance metric – natural for wideband communication.
- Precise characterization of the best achievable exponent.
- Intimately related to signal detection – reliability function.
- Simple considerations; simple to extend in many directions.
- Relation to JSCC: separate source– and channel coding is optimal.
- Open problem: close the gap between upper and lower bounds on the MMSE.
Thank You!