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Abstract

This paper deds with the redizaion of a CA modd of the
physicd interadions occurring when high power laser
pulses are focused on plasma targets. The low-level and
microscopic physicd laws of interadions among the plasma
and the photons in the pulse ae described. In particular,
eledron-eledron interadion via the Coulomb force and
photon-eledron interadion due to ponderomotive forces are
considered. Moreover, the dependence on time and spaceof
the index of refradion is taken into acount, as a
conseguence of eledron motion in the plasma. lons are
considered ill particles and the main effed of their
presence is the range reduction of the Coulomb force
Simulations of these interadions are provided in different
conditions and the maaoscopic dynamics of the system, in
agreament with the experimental behaviour, are evidenced.

1 Introduction

The recent advent of femtosecond lasers [1] has opened
new perspedives in the reseach on laser produced plasmas.
In particular, important new results have been obtained in
the field of soft X-ray lasers [2]. Among other works, it is
worth noting the progresses in high order harmonics
generation and its applications [3]; sources of relativistic
particles [4]; laser accéeration of eledrons [5]; highly non
linea interadions and laser bean self-focusing [6,7]; and
the new “fast ignitor” approach to Inertial Confinement
Fusion (ICF) [8]. Sophisticated computer codes are dready
available to simulate plasmas produced by such short laser
pulses, including Particle-In-Cell (PIC) codes [9], Vlasov
codes[10,11] and Fokker-Planck codes[12].

In this paper, a Cdlular Automaton (CA) model of laser-
plasma interadion will be presented. In particular, the
interadion between a short laser pulse and a fully ionized
plasmawill be mnsidered.

The development of simulation tools based on Cellular
Automata gpeas very interesting for a number of reasons.
First of all, CA codes alow a dired representation of low-
level elementary physicd laws, the complex maaoscopic

dynamics of the global system emerging from “simple”
microscopic interadion rules among the cdls of the CA. In
some situations, this may allow a better understanding on
the ongoing physics (see[13-19]. Moreover, in general, in
the experimental protocols, the laser generates very short
pulses (t = 100 fs) which are focused on a small focal spot
(d = 10 um) in order to obtain the high intensity necessary
to create and study the plasma. The transversal dimension
of the region filled with the plasma is of the order of the
focal spot size; the longitudinal dimension is of the order of
the focal depth of the lens (L = 100 um). So, the physical
phenomena that are the subject of the simulation are
confined in avery small region of space and takes placein a
very short time. Thus, it is possible to conceive a CA code
that performs a 1:1 simulation of the laser-plasma
interaction dynamics. In other words, CA alow the
simulation of the “true” dynamical evolution of the system
with avery high temporal and spatial resolution.

Basically, CA may be used in two different ways. as
computational tools, for solving differential equations (used
together with parallel computers) [20] or as a dynamical
systems completely discrete (both in time and state
variables) used as a physical-based model [13,18,21,22]. In
this work the second approach is followed, using a cellular
automaton to describe the radiation-matter interaction
between alaser pulse crossing a hot plasma.

CA have dready been used for direct physical-based
modelling of systems. In particular, applications can be
found in biology for DNA sequences modeling [23] and
cytoskeleton formation modeling [24]; in vulcanology to
smulate lava streams [25]; for bioremediation of
contamined soils [26]; in fluidodynamics, for turbulence
simulation [14]; in chemistry, for the investigation of crystal
growth dynamics [27]; in optoelectronics, for simulation of
the behaviour of semiconductor integrated optical devices
[18,22].

The paper has the following structure: in Sect. 2 a
presentation is given of the CA as discrete (in time and state
variables) dynamical systems. In Sect. 3 the basic physical
laws of laser-plasma interaction are introduced. Sect. 4 is
devoted to the outline of the CA implementation of the
physics described in the previous section. Section 5
contains the simulation results presented following a step by
step procedure, i.e. by separately presenting the effects of
each single interaction and, finally, by merging all the rules
of evolution in asingle CA model.



2 Cdlular Automata as discrete dynamical
systems

Cedlular Automata are discrete time dynamical system made
by many identical and simple interconnected subsystems,
caled cells. Each cdll interacts with a finite number of other
cells, i.e. those belonging to a user-defined neighbourhood.
The interaction among each cell and its neighbourhood is
governed by suitable set of rules of evolution. A number of
state variables can be defined as function of space (through
the cell position in the CA) and time. So, a CA model is
fully defined by the following items:

o the cellular space, which is a discrete lattice of
spatialy distributed cdls;

o the state variables defined for ead cdl;

e the neighbourhood of a cdll, i.e. the ensemble of all
the cdls that must be examined to determine the state
of the onsidered cdl;

e the evolution rules, also cdled dynamic equations of
the system. They are locd in space ad time, i.e. their
value depends only on the value of the state of a
neighbourhood d cdls for afixed number of previous
time steps (usually one).

The properties of uniformity, locdity and discreteness that
define CA make them suitable to reproduce the behaviour
of complex dynamic systems, charaderized by discrete
elements with locd (usually nonlinea) interadions. So, CA
may be onsidered as an  dternative to
differential/difference equations in building and computing
mathematicd models of nature, as they are cgable to
describe systems with a grea number of degrees of
freedom.

3 Basic Physicsof Laser-Plasma
Interactions

In this edion we give abrief overview of the properties of
aplasma and o the interadions which take placeinside it.
The god is bath to give some basics notions for non-
spedali sts regarding the physics we want to simulate, and to
give abasis for the implementation of the interadion rules
(i.e. the CA evolution laws) described in next sedion.

Plasma is a material in which the mgjority of the aoms and
moleaules are disociated in positive ions and eledrons. In
fad, even if on eath there ae afew examples of plasmas
(apart from plasmas generated in laboratory, we may recdl
bdlts and aurora boredis), in the universe more than 99% of
matter isin the state of plasma, i.e. ionised.

In our case we refer to plasmas which are generated hy the
interacion of a short-pulse high-intensity laser with a gas.
Even with such very fast lasers, a very high ionisation
degree is achieved during the very first phases of the
interadion, after which the laser interads with the plasma.
Hence, in our physicd models and in the CA code which
implements them, we will negled the physics conneded to
ionisation of atoms and moleaules in the gas which is only
important at the beginning, and we will concentrate on later
phases. However, it is worth rnoting that, including
ionisation appeas arather easy task.

As drealy recdled in the introduction, the laser produces
very short pulses (1 = 100 fs) and is focused on a small
focd spot (d = 10um). The transverse dimension of such a

plasma region is of the order of the focd spot size, and the
longitudinal one is of the order of the lens focd depth (L =
100 pm). Moreover such small plasma volume (V = 8x10°
cm® or 8000pm®) contains a huge number of moleculesg
2x10" corresponding to a density =3x10* moleaules/cnr).
Evidently such numbers only allow a representation of the
physicd system through statistica quantities. Hence the
typicd parameters usualy used to represent the physicd
state of aplasma ae:

o the dedron density (n;) and the ionic density (n;) both
usually expressed in cm™. Eledric charge mnservation
implies that n, = Z*n; where Z* is the average
ionisation degree

o the dedron temperature (T¢) and the ion temperature
(T:) usually expressd in energy units (i.e. V). The
large mass difference between eledrons and ions
implies different inertiaa This means that, while
eledrons are eaily and quickly heaed by the incident
laser beam, ions read on a very different time scde.
So, we may have T; = 0 eV (or the initia, low, gas
temperature) while T, readies ®veral tents €V. On the
other end at very late times therma equilibrium
impliesT,=T,.

The propagation of a laser bean in the plasma is
substantialy different from that in vaauum or in an
underdense gas. Indeed the dispersion relation is:
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where ¢ is the velocity of light, v and A are the laser
frequency and wavelength and v, is the plasma frequency
(whereas in vacuum we get the usua relation between
wavelength and frequency vi=c). The plasma frequency
characterises the electron motion: a plasma at equilibrium is
neutral, whenever a charge separation is generated, a strong
electric field arises which moves the charged particles in
order to restore the initial equilibrium conditions. This
produces "plasma oscillations' characterized by a proper
plasma frequency.

The presence of these plasma oscillations reflects in a
dependence of the index of refraction of the plasman on the
electron density

1
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that produces, as we will seein the following, a feedback
effed is the wre of the aspeds we want to simulate. Here
n(x,y,z) and ng(x,y,z) are respedively the refradive index of
the material and the dedron density at the point (x,y,z), and
n. is the aiticd density, which represents the density value
above which an eledromagnetic wave cainot propagate in
the plasma.

As drealy said, the laser pulse is charaderised by a short
duration (t=100fs), atight focus (d = 10um), a wavelength
A and an intensity I. In the following, we will assume that
the distribution of laser intensity is charaderised by a
cylindricd symmetry and by a gaussan shape bath in space

e
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where ry and 1 are the values corresponding to /2 in space
and time (i.e. half the FWHM values). Typically in the kind
of experiments we want to simulate, we have |, at least of
the order of 10" W/cm? and A = 1 um (near infrared
radiation). The photon energy is given by Planck relation as
E=hv =hc/A andis= 1 eV. The total energy in the laser
pulseis obtained by space and time integration of Eq. (3):

R¢

This corresponds to a number of photon in the pulse =
6x10%. Asin the cae of matter particles, we see that an
individual representation of single photons is not posshle
andgwe turn to using a photon density n,, (measured in
cm’™).

—2.77
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Also in the experimental set-up, a lensis used to focus the
laser pulse to the small focd spot with diameter d = 10 pm
so that the very high intensity quoted before can redly be
obtained. Usually the F number of the lensis of the order of
1/3 which means that the lens diameter is 1/3 of its focd
length. This tight focus refleds in a short focd depth (L =
100 um as previously quoted).

After describing the type of particles that play a role in
laser-plasma interadions (eledrons, ion, photons), we give
a brief description of the basic interadions which take place
between them. We make the further simplifying
approximation of considering the positive ions as a fixed
badground as a a@nsequence of their large inertia. Such
asumption all ows the system description to be reduced to
eledrons and photons. While it is generaly valid in the
initial stages of the interadion, this assumption may fall at
later times not only in connedion with the ionic time-scae,
but also as a mnsequence of the huge dedric fields which
can be produced by the dharge separation conneded to
eledron displacement.

3.1 Electron-electron interactions

Eledrons interad between them via the Coulomb eledric
field. Unlike in vaauum, in a plasma ascreeaning effed due
to the presence of the many charged particles must be taken
into acount. This refleds in the existence of an effedive
shielding distance (the Debye length).

3.2 Photon-electron interactions

Photons may ad over the dedrons by means of the
ponderomotive forces. These ae the results of radiation
pressure and tend to move the dedrons away from the
regions where the intensity of eledromagnetic field is
higher. The force atingon asingle dedronis

Fy=——L_ VI ()

where | is the laser pulse intensity that can be dternatively
expressed throughthe locd instantaneous photon density.

3.3 Electron-photon interactions

Eledrons ad over the photons via the changesin the plasma
locd refradive index, as expressed by Eq. (2). The dhanges
in n(x,y,z) induce both changes in the photon diredion (in
agreement with Snell's law) and in photon velocity. In our

case the plasma has a density which is a factor of 100
smaller than n. (= 10 cm™® for a laser wavelength A = 1
pm) so that the second effed is almost negligible.

3.4 Photon-photon interactions

Obvioudly photons do not interad with ead other.
However, we must consider that being fundamental
particles they are subjed to Heisemberg's principle. In our
case this has important consequences: passng through the
lens which focuses them, their position becme determined
within a dimension D (the diameter of the lens). This
implies an urcertainty of the order of h/D (h being Planck's
constant) in the momentum of the photon along the same
diredion, which refleds in the spatial spread of photonsin
the focd plane. This is the only way of introducing the
departure from geometricd optics (which would imply a
perfed focusing in a geometricd point and an infinite laser
intensity in the focd point) in a purely particle context, as
those treaed by CA codes.

Apart from these interadions it must be @nsidered that
both eledrons and ions are subjed to a random motion (due
to thermal agitation at the temperature T) and to a
hydrodynamicd presare. This last can be treded
analogoudly to the radiation presare. Both these dfeds
have been negleded in the present work because they are
predicted to have asmaller influence with resped to the
main interadions we have mnsidered here.

Due to the photon-eledron interadions and ponderomotive
forces, when an eledromagnetic field propagates in plasma,
eledrons are forced to move from the euili brium position
to the aeas where the intensity of the field is snaller. The
induced variation of the dedron density credes a gradient
of the refradive index that modifies the photon motion in
the plasma (eledron-photon interadion), diverting their
original diredion of motion. This creaes an interadion loop
charaderised by a feedbadk mechanism, as evidenced in
Sed. 5.5 (see 4so Fig. 8). Due to this effed, the laser may
undergo focdisation in the plasma provided the laser power
is bigger than a given criticd power (self focusing effed)
[6,7].

4  Celular Automaton
Laser-Plasma I nter actions

In this £dion the main fedures of the proposed model will
be described. In the following, the pradicd implementation
of ead interadion introduced in Sed. 3 will be outlined.
All the CA rules will be introduced on the same topdogicd
structure, i.e. the cdlular space In particular, a two-
dimensional trianguar lattice with hexagonal symmetry has
been chosen. The cdlular space represents a transversal
sedion of the region fill ed with the plasma where the laser-
plasma interadion will take place (see Fig. 1). Due to the
propagation of radiation in the plasma, the dimension of a
cdl | and the discrete time step At must satisfy the following
condition:

Implementation of

Lot (6)
C

where c is the speed of light in vacuum. The relationship (6)
between the automaton spatial step I, i.e. the distance
between two nearest cells of the lattice, and the discrete



time step At will be fulfilled in al the rules of evolution that
will be used in this paper.
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Figure 1. Cellular space with triangular geometry and
hexagonal symmetry. The CA cells are placed on the
vertex of the triangles. It is evidenced the classical
hexagonal neighbourhood and the spatial sizel.

Typically, we will choose atime step At = 1 fsthat implies|
= 0.3 um. These values allow a sufficient resolution both in
time (t/At = 100) and in space (d/l = 33).

The state variables of the model depend on both time and
space, i.e. the cell position. In particular, the number of
electrons at time k in the cél (i,j) will be denoted by
Nao(i,j) and the number of photons for each direction of
motion s will be indicated by NSu(i,j). Then, the
interactions described in Sect. 3 can be described by three
different evolution rules.

Finally, we notice that the chosen topology for the cellular
space is two-dimensional (although a three-dimensional
model could be possibly considered in future), while the
physical problem is a true three-dimensiona one, even if
with a cylindrical symmetry. However, a specific volume
could be assigned to each single cell, i.e. that of the torus
with the hexagonal cell as a basis, so that the photon and
electron density can become a photon and electron number,
in order to evaluate the forces.

4.1 Photon propagation

The laser pulse can be seen as a bunch of photons coming in
the region filled with the plasma from one side (say the left)
and outgoing from the opposite one (say the right). Hence,
in order to describe correctly the propagation of photons,
the neighbourhood of a cell (i,j) for this evolution rule will
be taken non-symmetric. This is not strictly necessary, but
leads to a computational simplification. In our CA code, we
consider a redlistic case of laser beam propagation. In
particular, we forget the plane wave approximation (as done
for instance in [18,21]) and we consider the case of a beam
focused through alens, converging down to afocal position
and diverging again. Although apparently simple, this
problem is difficult to be implemented with a CA. Indeed, it
is necessary to settle the possible infinite directions of
propagation for the photons on the cellular space, where
only six directions are available, i.e. NO, NE, E, SE, SO, O
(seeFig. 2).
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Figure 2: Example of the decomposition of the motion df a
photon.

So, the neighbourhood of the cell (i,j) is defined by all the
cellsthat lie along the possible directions of motion that end
inthecell (i), i.e.

7, j)= {(i* ,i"),sothat thecell (i, j) can be reached starting
from (i*,j*)andmovingin theNE, SE, Edirctions} @

Since it is not possble to manage an infinite number of
diredion, a quantization of the posdble diredions is
performed, i.e. only a finite number s = 1,....M is
considered. In particular, the CA spatial steps and the focd
length of the focusing lens fixes the number of possble
initial diredions of motion. Then, eat of the posshle
diredions is decomposed along the available diredions of
the cdlular space As an example, consider a photon
moving of adistanceL aongadiredion with angle between
the E and SE diredions (see Fig. 2). The following
decompasiti on expresson for the motion will be obtained:

L-sm(’;—e(i,j)]

{5)
SN —-m
3 (8)
L-sin(6(i, i)
{57)
Sn —-m
3

Then, the number of discrete space steps ng in the E
direction and nse in the SE direction is computed by:

(8] e {20

where[-] is the operator which takes the nearest integer of
its argument.

ai, j) =

b(i, J) =

The CA rule of evolution describing the motion of photons
isthe following:

Nphgi)u) (.5)=
M

=20 2 N (55 RES (.9 ©
r=1 (i*,j*)e?(i.})



with
1 if thedestinatim of aphoton wih directionr
R(rs) (i* ) = in thecell (i*, j*) at timek is thecell(i, j) at
(k) timek + 1and its final directionof motioniss

0 in all theothercases

The previous Eg. (9) gives the number of photons in the cél
(i,j) at time k+1 with diredion of motion s as the sum of all
the photons in the cdl of the neighbourhood with a given
diredion r which, moving in the cdlular space has the cdl
(i,j) as fina destination and s as final diredion of
movement.

4.2 Electron-photon interaction and changes in the
refractive index

The laser beam photons are travelling in a medium with
variable refradive index. So, a ead time step, it is
necessry to evaluate the airrent photon diredion and to
acordingly change the photon state variable. Is worth
stressng that, in the present model, thisis the only situation
in which a photon diredion could be changed.

The refradion index modificaion is the consequence of the
variable darge spatial distribution, due to eledron
movements. So, locd gradients in the refradive index are
obtained that modify the photon diredion versor. The
gradient of the refradion index vnc(i,j) in ead cdl is
computed by evaluating the locd refradion index
difference, i.e. the difference between the refradion index
in the mnsidered cdl and the one in the cdls of the
neighbourhood Once the locd vaues for the refradion
index have been computed the diredion of the photons in
ead cdl are modified acmrding to the locd value of the
refradion index by computing the “force” ating on the
photon and modifying its diredion of propagatlon This is
done by modifying at ead time step the matrix RO (i),
where” (i",j)) " indicaes the cdls belonging to the
neighbourhood d the considered cdl (i j).

4.3 Electron-électron and the photon-electron
interaction (Coulomb and ponder omotive for ces)

In this cases there is no problem of direcion of motion. In
fad, the Coulomb and the ponderomotive forces, which
determine the dedron-eledron-photon interadion, can ad
in al diredions. So, the neighbourhood 7/ is the set of the
six nearest neighbour cdls plusthe mnsidered cdl.

The main problem in modelling interadions involving
eledrons is that once the forces ading on a single dedron
are known, they determine a1 acceeration through
Newton's law, i.e. a=F/m,, which produces changes in the
velocity of the particles. In our model eledrons are
considered as “static”, in the sense that they haven't any
velocity state variable (they could be acnsidered as having
the same thermal velocity). Hence, the problem is how to
describe the dfed of forces in CA context with static
eledrons. In order to dothis, we mnsider that the motion of
one dedron will be uniformly acceerated during the time
step At and hencethe dedron displacement will be
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Since in the model computation we dways obtain Ax<<l,
i.e. a displacanent lessthan the CA spatia step, we have
displaced over | a number of eledrons given by AxNggy/l,
where Ng(q is the number of eledrons initialy present in
the cdl. The evolution rule, describing the dynamics of the
eledron number in ead cdl is given by:

Nelgig) () = Neigey (2 ) +

(i*.J*) .
- z B Kl(k) (i, J)[szh(k)O - ZNph(k)(u N )J +
(i* el j)
(i*,1)ei(i, )

In the right side of the previous Eg. (10) three terms are
evident:

{ 2(k) . J)(Nel(k)(l D-N; )} (10)

* N (i), the number of electrons in the cell (i)
at timek.

M M
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(i*, 1)) s=1 o1

represents the number of incoming (outgoing)
electrons due to the effects of the ponderomotive
force. Thistermis the sum of the contributions given
by each cel of the neighbourhood. For each
contribution, the number of moved electrons is
proportional to the gradient of the optica field
intensity, here represented by the difference between
the total photon number in the considered cell and
the total photon number in the currently considered
cell of the neighbourhood

© Y RGP D) |
()N (i.0)
represents the number of incoming (outgoing)
electrons due to the effects of the Coulomb force.
Also in this case, this is the sum of the contributions
given by each cel of the neighbourhood. The
number of moved electrons is proportional to the net
in the cells of the neighbourhood, i.e. the difference
between the number of electron and the number of
ionsin each cell.

In Eq glO) there are two constants to be tuned, namely
Kig' " and Koy, Note that the value of these
constants can be i)oth time-varying and space dependent.
So, the number of electrons in the cell (i,j) at time k+1 is
given by the number of electrons in the same cell at the
previous time step modified by a quantity depending of the
intensity of the Coulomb force and the ponderomotive
force. The intensity of both the actions can be user-defined
and eventually tuned on experimental data.

5 Simulation Results

In this section, simulation results obtained using the model
described in the previous section will be presented using a
step-by-step approach. In fact, results on the effects of each
single evolution rule of the CA will be outlined separately,
in order to check at each step the physical coherency of the
obtained results.



5.1 Propagation of light through a focusing lens

First of al the propagation of photons in absence of matter
has been studied, in order to verify if the proposed law (see
Eqg. (9)) alows to obtain focalization in geometric optics
when the laser pulse passes through a thin lens. As already
said the pulse is gaussian in space and time and has the
following parameters: energy E = 10 mJ; pulse duration t =
100 fs; input spot sizerg = 15 um.

If no diffractive effect is considered (geometrical optics
framework), focalization of the pulse in a single point on
the focal axis must be obtained. Then, after focusing, the
pulse must widen again and, in absence of any perturbation,
the starting situation should be reproduced on the opposite
side of the CA. This is what has been obtained, but results
of such simulations are not presented for the sake of brevity.

As a second step, similar simulations have been performed
in the diffractive optics framework. In this case, it is
expected the progressive decrease of the transversal
dimensions of the laser pulse until it arrives at the focal
plane, where its transverse dimension is minimum and equal
to the foca spot size. In Fig. 3, the pulse is focused by a
thin lens with parameter f/D = 7. It is worth noting that Fig.
3, and many others in the following, have been drawn using
a technique typical of CA. The figure represents the CA
(stretched to a matrix representation) and the value of the
considered state variable is plotted in grey scale, the darker
corresponding to a higher value of the state variable.
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Figure3: The laser pulse at different time, during its

propagation in a vacuum region after focalisation by a
thin lens. The figure is in grey scae, the darker
corresponding to a higher number of photons. The CA
spatial step is| = 1 um; the each simulation time step is
At =3fs.

The results in Fig. 3 alow the laser beam size to be
measured as a function of time (space). The resulting trend
is shown in Fig. 4, where the focal size is about 5 um. The
obtained trend can be compared with the analytical
calculation for agaussian laser beam, whichis
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where z=0 corresponds to the focal point; wy is the focal
spot diameter and F=D/f is the f-number of the thin lens of
diameter D. As aready recalled, wy can be obtained by
application of the Heisenberg principle, by noting that wq =
fO (with 6 the angle under which the focal spot is seen by
the lens) and 6 = Ap/p ~ (W/D)/(hv/c) = A/D (with h the
Planck constant).
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Figure 4: Width of the laser pulse (expressed in um, wrt to
the central axis of the CA) as a function of time (solid
line). Theoretical prediction from diffractive optics
(dotted line).

Numerical results compare very well with analytical
predictions concerning both the focal spot size and the focal
depth, i.e. the distance over which the variation in intensity
is less than 10 % of the maximum value achieved at the
focus.

5.2 Effect of ponderomotive force in absence of
Coulomb interaction among electrons

In this section, the effects of ponderomotive force are
introduced. In particular, it is supposed that it is the only
force acting on the electrons, i.e. no coulombian interaction
is active. This is equivalent to consider as a rule of
evolution only the first two terms on the right hand of Eq.
(10). So, electrons are forced to move away from their
equilibrium position towards regions where the intensity of
the optical field is smaller. This will happen with no
reaction force provided by Coulomb electronic interaction.

In the following Fig. 5, tempora evolution of the system
state variables (photon number and electron number) are
plotted. After the passage of the laser pulse, an electron-free
channel is obtained.

In Fig. 6 the obtained transversal modulation of electrons
after the propagation of the beam in the region.
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Figure 5: Photon number and electron number in grey scale
(the darker, the higher the number) at different stages of
time evolution of the simulation. The laser pulse
propagates with a direction parallel to the system axis
causing the movement of electrons in the areas where
the intensity of the field is smaller. Since only
ponderomotive force is considered and the refractive
index of the medium is considered constant, no reaction
due to charge displacement is visible.

The following physical parameters have been used in the
simulation; | = 0.25 um; At = 0.834 fs; refractive index n =
1; 1 =5 pum; Ng((i,})=8 x 10 for all i,},, The pulse has been
chosen with a peak amplitude of 9 x 10** photons.
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Figure 6: Electron number on a transversal section of the
region filled with plasma after the passage of a laser
pulse, considering only effects of ponderomotive force.

5.3 Beam propagation in a medium with constant
refraction index

The passage of a laser pulse in a plasma causes the
formation of a central channel with lower electron density,
due to ponderomotive force, which moves electrons towards
regions with smaller optical intensity. So, the electron
density is no more uniform in the region filled with the
plasma. Consequently, aso the refractive index is not
uniform in that region. In particular, if the Coulomb
interaction is switched off, so asto say that in Eq. (10) the
third term on the right hand side is zero, no other change in
the electron density and in the refractive index will occur
(since we have neglected hydrostatic pressure and thermal
motion). Now, consider this “frozen time” situation and
send into this region a second laser pulse. As a first
approximation, it can be supposed that the refractive index
of the region has a parabolic profile and so, the second laser
pulse will travel through a region with constant refractive
index due to a constant electron distribution.

of simulations are qualitatively and quantitatively similar
those obtained using ray-optics theory. In Fig. 7,
propagation of rays through the region is shown for
different incident angles. The parameters used in the
simulations are: maximum refraction index ny=1.55; bulk
refraction index ny,=1.4; parabolic profile from maximum to
bulk isassumed; | =1 um; At =10 fs.

Finally, it is worth noting that the propagation of photonsin
this plasma channel is exactly analogousto that in an optical
fibre (in both cases the refractive index is higher on the
central longitudinal axis).

5.4 Effects of Coulomb force reaction to the depletion
dueto ponderomotive force

When the radiation has completely crossed the region filled
with plasma, an inhomogeneous distribution of charge is
obtained (atransversal section can be seenin Fig. 6). So, an
electric field will recall the electrons (positive ions are
considered dtill) towards their equilibrium positions.
Relaxation of electrons from the perturbed situation
generated in the previous Sect 5.2 is obtained by effect of
the electrical field generated by the charge spatia
distribution. Plots of simulations are omitted for the sake of
brevity. The physical parameters used are the same of the
simulation of the previous Sect. 5.2. The fina effect is
simply a relaxation of the electron number in each cell to
the initial value of Ngg(i,j)=8 x 10", Only the simulation
time step is different: here At = 1 ps. So, the process is
about a thousand times slower than the depletion
phenomenon caused by the laser pulse.

5.5 Coupled effects of ponderomotive force and
refraction index changes: the self focusing

Finally, the rules of evolution of al the interactions are
simultaneously considered. The coupled effects of
ponderomotive force on electron distribution, the
consequent modification of the refractive index and its
effects on the optical propagation are described in Fig. 8,
where a clear feedback is evident in the process dynamics.
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Figure 7: Propagation of light raysin the region filled with
the plasma considered as a medium with parabolic
refractive index for the effect of ponderomotive force.

In smulations, photons are introduced in the CA from the
left side as rays of light with different incident angles. Rays
have been simulated by using photon number profiles very
narrow in space and with indefinite duration in time. Results

Figure 8: Schematic of laser-plasmainteractions.

When an electromagnetic wave propagates in a hot plasma,
electrons are forced to move towards regions where the
intensity of the optica field is smaller, because of
ponderomotive force. The obtained charge density gradient
causes a coulombian recall field that moves electrons in the
opposite direction (positive ions may be considered fixed).
The local and instantaneous variation of the electric field
causes a gradient of the refractive index, which influences
the photon motion in plasma. The final effect of this process



is different depending on the power of the incoming laser
pulse. In particular, if the power is sufficiently high (i.e.
higher than the so called “critical power”) the modification
of the refraction index is so that the laser pulse is focalized
in the material .

By considering all the interactions, simulations are provided
showing the arising of self-focusing effects. In particular,
Fig. 9.a shows the propagation of a laser pulse with power
below the critical one. Fig. 9.b shows the self-focusing
effect. The plots are obtained as three level plot of the
electron number at increasing time. The chosen level are
30%, 60%, 90% of the peak number of photons.
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Figure9: Three level plots of the pulse during its

propagation in the plasma taken every 20At (=56fs). The
ratio between the power of the laser pulse and the
critical power is 0.33 in the first case (a) and 3 in the
second (b).

The physical parameters of the incoming pulse are: E = 10
mJ; © = 100 fs; rp = 5 um; the critical power is P,=33 GW.
The initial electron density in the plasma is Neg(i,j)=10"
foralli,j.

6 Discussion and Conclusions

Asiit is evident from the approach used in the presentation,
the present work should be considered only as a preliminary
one. However, this paper already shows the potentiality, as
well as some limitations, of the CA approach to the
simulation of laser-plasmainteractions.

A first advantage of CA modelsis the insight they may give
in the complex physical phenomena that are going on during
the interactions. In the framework of CA models, the
macroscopic physical effects simply arise from the
“replication” of simple local and microscopic physical laws.
In order to be more specific, first, we have been able to
obtain good results, both qualitatively and quantitatively,
concerning the propagation and focusing of the laser beam
in free space and in a fixed density profile. This last point
may be of interest aso for the simulation of laser beam
propagation in optical fibres. Secondly, we have been able
to successfully describe the creation of a plasma channel
due to ponderomotive forces. Results on self-focusing
(again due to ponderomotive forces) of the laser beamin the
plasma are instead for the moment only qualitative.

There are some limits connected either to our specific CA
model or to CA in generd. In the presented model we
consider the electrons as “static”, i.e. they may move from
one cell to another but they are not characterised by a
velocity. Hence, we cannot describe even simple
phenomena such as plasma oscillations which are based on
the transformation of (electric) potential energy in kinetic

energy and vice versa. As a consequence, we are not able to
describe aso more complex phenomena, such as. the
acceleration of electrons in the laser beam wake-field; the
creation of electron currents and of the magnetic fields they
produce (which may induce a pinching effect in the
plasma); the variation of electron mass with velocity in the
relativistic interaction regime. Since this last phenomenon is
the origin of relativistic self-focusing, it follows that it
cannot be fully modelled with our CA model.

Future work will be focused on introducing the electron
velocity in this CA code. In principle, this is easy: it is
sufficient to introduce many electron families, each
characterised by its own velocity, in a similar way to what
we have done with photon directions. However, in practice,
this greatly increases the model complexity. In fact, the
range of the electron velocity in the physical system is very
large. The electron speed ranges from electron thermal
velocity to light speed, for the electrons accelerated by the
laser beams. Also, the thermal “dow” dectrons and the
“fast” ones have very different time constants and each of

them must be dealt with sufficient resolution. On the other
side, there are phenomena that are intrinsically difficult to
be simulated with CA models, which are intrinsically
“particle-based” mdes. Indeed, in this context, the laser

beam is described as a bunch of photons and it is difficult to
consider the “wave-based” properties of an electromagnetic

field. As a consequence, the generation of the
electromagnetic fields (and even of magnetostatic fields
connected to electron currents) is difficult to be described,
as well as al long-range forces arising in the plasma as a
conseguence of the plasma dynamics itself. We recall again
that in plasmas this is not the case of electrostatic
(Coulomb) forces that are effectively screened over a
distance of the order of the plasma Debye length. Hence,
Coulomb forces in plasma are strictly short-range (local)
and this makes their modelisation easy to obtain in a CA
context.

The previous considerations fix an optimal range of laser
and plasma parameters for which CA simulation of laser-
plasma interactions can be performed and give physicaly
sensible results. This is the regime of short pulse lasers at
intermediate intensity (high, but non-relativistic) and
moderate plasma density. This range is dominated by the
effects of ponderomotive forces, while phenomena like
electron acceleration and relativistic effects can reasonably
be neglected.

Finally, another drawback of this modelling approach is the
computation time, since the presented CA model have been
simulated on single processor sequential computers. In fact,
CA lend themselves naturally for paralel computer
implementation, realizing a direct correspondence between
the model structure (i.e. the cellular space topology) and the
computation tool (i.e. the displacement of the processors in
the machine). As an extreme consequence, it could be
thought a direct one-to-one correspondence between the
automaton cells and the computer processors. In future
work, the problem of paralelizable algorithms will be also
considered.
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