A Fast Algorithm for Mining Frequent Closed Itemsets over Stream Sliding Window

Show-Jane Yen
Dept. of Computer Science & Information Engineering
Ming Chuan University
Taipei, Taiwan

Cheng-Wei Wu
Dept. of Computer Science & Information Engineering
National Cheng Kung University
Taipei, Taiwan

Yue-Shi Lee
Dept. of Computer Science & Information Engineering
Ming Chuan University
Taipei, Taiwan

Vincent S. Tseng
Dept. of Computer Science & Information Engineering
National Cheng Kung University
Taipei, Taiwan

Chaur-Heh Hsieh
Dept. of Computer & Communication Engineering
Ming Chuan University
Taipei, Taiwan

Abstract—Mining frequent patterns refers to the discovery of the sets of items that frequently appear in a transaction database. Many approaches have been proposed for mining frequent itemsets from a large database, but a large number of frequent itemsets may be discovered. In order to present users fewer but more important patterns, researchers are interested in discovering frequent closed itemsets which is a well-known complete and condensed representation of frequent itemsets. In this paper, we propose an efficient algorithm for discovering frequent closed itemsets over a data stream. The previous approaches need to do a large number of searching operations and computations to maintain the closed itemsets when a transaction is added or deleted. Our approach only performs few intersection operations on the transaction and the closed itemsets related to the transaction without doing any searching operation on the previous closed itemsets. The experimental results show that our approach significantly outperforms the previous approaches.

Keywords—frequent closed itemsets; data stream; sliding window; data mining;

I. INTRODUCTION

Mining frequent itemsets [1, 4, 8] from a transaction database is a fundamental task to several data mining applications. The problem of discovering frequent itemsets in database is stated as follows: Given a finite set of items \(I = \{a_1, a_2, \ldots, a_n\} \), a transaction \(t \) is a set of items which were purchased by a customer at the same time. A transaction database \(D \) contains a set of transactions and each transaction is given a unique identifier (TID). An itemset \(X = \{i_1, i_2, \ldots, i_k\} \) \((i_j \in I, 1 \leq j \leq k)\) is a set of \(k \) distinct items, where \(k \) is the length of \(X \). The support count of \(X \) is denoted as \(SC(X) \) and defined as the number of transactions which contain \(X \). The support of \(X \) is defined as the ratio of \(SC(X) \) to the total number of transactions in \(D \). An itemset is said to be frequent if its support is no less than a user specified threshold \(\text{min}_\text{sup} \) which is called minimum support. The problem of mining frequent itemsets from a database \(D \) is to discover all the itemsets whose supports are no less than \(\text{min}_\text{sup} \). For example, suppose the \(\text{min}_\text{sup} \) is set to be 40\% for the transaction database in Table I, that is, the minimum support count is \(40\% \times 5 = 2 \).

Therefore, the frequent itemsets and their support counts are \{A\}:4, \{B\}:3, \{C\}:4, \{D\}:2, \{AB\}:3, \{AC\}:3, \{BC\}:2, \{CD\}:2 and \{ABC\}:2.

Several algorithms [1, 4, 9] have been proposed for mining frequent itemsets from transaction databases. But they mainly focused on static database and did not consider applications that involve data streams. A transaction data stream is an ordered sequence of transactions that comes in a timely order. Mining frequent itemsets over data streams is an important technique which is essential to a wide range of applications such as network traffic analysis, web click stream mining, online transaction analysis and many other important tasks. However, mining frequent patterns from data streams poses many challenges because data comes continuously, unbounded and usually with high speed. Furthermore, data distribution in a stream usually changes with time such that the status of itemsets may be changed (from frequent to infrequent or from infrequent to frequent). Hence, how to efficiently capture all the frequent itemsets over a data stream without information loss is a big challenge.

There are lots of works [2] in developing efficient algorithms for mining frequent itemsets from a data stream. But they often discover a large number of frequent itemsets and present too many redundant patterns to users. It is widely recognized that the larger the set of frequent itemsets is, the more the processing cost is required. In other words, the performance of the algorithms may be degraded when a database contains lots of frequent itemsets or a low threshold is used. In order to present users fewer but more important patterns, one of the solutions is to mine only the frequent closed itemsets [6, 8, 10]. Closed itemsets are the itemsets that have no proper supersets with the same support. Non-closed itemsets are regarded as redundant [6, 8, 10]. A closed itemset
is said to be frequent if its support is no less than \(\text{min_sup} \). For example, the frequent closed itemsets in Table I are \{A\}:4, \{C\}:4, \{AB\}:3, \{AC\}:3, \{CD\}:2 and \{ABC\}:2. In this example, itemset \{B\} is non-closed since its support is the same as \{AB\}. This implicitly indicates that \{B\} will not appear in a transaction without \{A\} and hence the whole information about \{B\} is included in \{AB\}.

It is well known that frequent closed itemset provides users not only condensed but also complete information about frequent itemsets. In general, the number of frequent closed itemsets is much less than the number of frequent itemsets, that is, the set of frequent closed itemsets is a small subset of the set of frequent itemsets. Besides, a complete set of frequent closed itemsets can be used to uniquely derive all frequent itemsets and supports without losing any information [8].

Recently, some methods for mining frequent closed itemsets over a data stream were presented. Chi et al. proposed the Moment algorithm [3] to incrementally update the frequent closed itemsets over a data stream. They use a tree like structure, called CET Tree (Closed Enumerate Tree), to maintain a dynamically selected set of itemsets. Each node in the CET Tree represents an itemset with different node type. Whenever a transaction arrives or leaves, the nodes in the CET Tree are inserted, deleted or updated according to their node types. However, exploration of frequent closed itemsets and node type checking are time-consuming, especially when the minimum support is low. Furthermore, in order to maintain frequent closed itemsets, Moment needs to maintain a large number of nodes representing non-closed itemsets. A huge number of such non-closed nodes may require a lot of memory space when the transactions in a stream contain many frequent closed itemsets.

NewMoment [7] was recently proposed by Li et al. It uses a tree structure, called NewCET Tree, to maintain the information of frequent closed itemsets. Each node in NewCET Tree consists of a frequent closed itemset and its support count. The search space and the memory consumption of NewMoment are much smaller than that of Moment, since there is no non-closed node in NewCET Tree. Besides, it adopts a bit-sequence technique to improve time efficiency for exploration of frequent closed itemsets. Both Moment and NewMoment relies on a depth-first, Apriori-like technique to construct their structures. When minimum support is low, the two algorithms may become inefficient, since they must enumerate a large number of candidate itemsets, which is very time-consuming.

Although Moment and NewMoment show good performance in [3, 7], they generally use a fixed support threshold to discover closed itemsets in data stream. In other words, the minimum support threshold needs to be pre-defined before mining and it cannot be changed during the mining process. However, in a data stream, data distribution of frequent closed itemsets usually changes with time such that users often need to alter support thresholds to obtain desired mining results.

To interactively present frequent closed itemsets to users online based on any minimum support threshold, Jing et al. proposed an algorithm CFI-Stream [5] to maintain the complete set of closed itemsets over data stream. The experiments in [5] show that CFI-Stream achieves a better performance than Moment in terms of time and space, particularly at lower minimum support. CFI-Stream uses a lexicographical ordered tree, called DIU Tree (Direct Update Tree), to maintain all the closed itemsets and their supports such that any frequent closed itemset can be efficiently obtained based on any minimum support threshold. Comparing with Moment-based algorithm [3, 7], CFI-Stream is much more efficient and flexible when the minimum support is changed. However, the computational cost of CFI-Stream is very expensive since CFI-Stream uses a candidate generate-and-test mechanism to update closed itemsets. The mechanism is described as follows. When a transaction which contains \(k \) distinct items is added to (or deleted from) the database, CFI-Stream needs to generate \(2^k - 1 \) subsets (i.e., candidate closed itemsets) for the transaction. To test whether a candidate is closed or not, in the worst case, CFI-Stream needs to search all its supersets by traversing parts of DIU Tree. In other words, CFI-Stream requires to search from the DIU Tree \((2^k - 1) \) times for a transaction with \(k \) distinct items, which seriously degrades the performance of CFI-Stream.

II. PRELIMINARIES

In this section, we introduce some preliminaries for mining frequent closed itemsets over a data stream. A data stream \(DS = \langle t_1, t_2, \ldots, t_r \rangle \) is a continuous sequence of transactions in a timely order. A transaction-sensitive sliding window [2] is denoted as \(W \), which captures the latest \(w \) transactions from a data stream. When a new transaction arrives to \(W \), it would be added into \(W \) if the current number of transactions in \(W \) is less than \(w \). Otherwise, if the current number of transactions in \(W \) is equal to \(w \), then the oldest transaction would be expired from \(W \) and the new transaction would be added to \(W \). The support count \(\text{SC}(X) \) of an itemset \(X \) in \(W \) is defined as the total number of transactions which contain \(X \) in \(W \). The support \(\text{sup}(X) \) of \(X \) in \(W \) is defined as the ratio of \(\text{SC}(X) \) to the total number of transactions in \(W \). An itemset \(X \) in \(W \) is said to be frequent if \(\text{SC}(X) \) is no less than \(\text{min_sup} \times |W| \). The function \(f \) takes a set of transactions \(T \) in \(W \) as an input and returns an itemset which is the result of the intersection of all the transactions in \(T \). The function \(g \) takes an itemset \(Y \) as an input and returns a set of transactions in \(W \), which contain \(Y \). The function \(\text{Sup}(X) \) takes an itemset \(X \) as an input and returns an itemset which is the intersection of all the transactions in \(W \) belong to \(g(X) \), that is, \(f(g(X)) \). For any itemset \(X \), \(\text{C}(X) \) is called the closure of \(X \) in \(W \). The support of \(X \) in \(W \) is the same as the support of \(\text{C}(X) \) since \(X \) and \(\text{C}(X) \) in \(W \) appear in the same transactions.

![Figure 1. Transaction-sensitive sliding window](image-url)
Theorem 1. An itemset \(X \) is called a closed itemset in \(W \) if and only if \(C_W(X) = X \).

\[C_W(X) = X \] means that there is no proper superset of \(X \) with the same support as \(X \). Therefore, \(X \) is a closed itemset. If \(C_W(X) \neq X \), then the support of \(X \) is same as the support of its superset \(C_W(X) \), that is, \(X \) is not a closed itemset. For example, Figure 1 shows a transaction-sensitive sliding window when the window size is set to 5. The first window \(W_1 \) consists of the transactions from \(t_1 \) to \(t_5 \). If a new transaction \(t_6 \) arrives to the window, the oldest transaction \(t_1 \) is expired from the window. The second window \(W_2 \) consists of the transactions from \(t_2 \) to \(t_6 \). In the first window \(W_1 \), \(g(\{B\}) = \{t_2, t_3, t_4\} \) is a set of all the transactions which contain \(\{B\} \). \(C_W(\{B\}) = f(\{B\}) = f(\{t_2, t_3, t_4\}) = t_2 \cap t_3 \cap t_4 = \{AB\} \cap \{ABC\} \cap \{ABC\} = \{AB\} \) is the closure of \(\{B\} \).

Definition 2. An itemset \(X \) is a frequent closed itemset in \(W \) if and only if \(X = C_W(X) \) and \(SC_W(X) \) is no less than \(\min sup \).

Problem Statement. Given a transaction-sensitive sliding window size \(w \), the problem is to efficiently find the complete set of frequent closed itemsets from the most recent \(w \) transactions over a data stream based on any user-specified \(\min sup \).

In the following, we list some important properties about closed itemsets, which are intuitive and widely used in the previous literature [6, 8, 10].

Property 1. If \(C_W(X) = Y \), then \(SC_W(X) = SC_W(Y) \).

Rationale: If \(C_W(X) = Y \), then \(g(Y) = g(Y) \). Therefore, \(SC_W(X) = SC_W(Y) \).

Property 2. If \(C_W(X) = Y \), then \(C_W(Y) = Y \).

Rationale: Since \(C_W(X) = Y \), \(g(X) = g(Y) \). \(C_W(Y) = f(g(Y)) = f(g(X)) = C_W(X) = Y \).

Property 3. \(X \) is closed if and only if \(SC_W(X) > SC_W(Z) \), for all itemset \(Z \), \(Z \subseteq X \).

Rationale: If \(X \) is closed in \(W \), then \(C_W(X) = X \), that is, \(C_W(X) \neq Z \) for all \(Z \subseteq X \). Therefore, some transactions which contain \(X \) do not contain \(Z \), that is, \(SC_W(X) > SC_W(Z) \).

Property 4. If \(X \subseteq Y \), then \(g(Y) \subseteq g(X) \) and \(C_W(X) \subseteq C_W(Y) \).

Property 5. \(f(g(X)) \cap f(g(Y)) = f(g(X) \cup g(Y)) \).

Theorem 1. For any two closed itemset \(X \) and \(Y \), if \((X \cap Y) = S \) and \(S \neq \emptyset \), then \(S \) is a closed itemset.

Rationale: To prove \(S \) is closed, we need to show that \(C_W(S) = S \), that is, \(g(S) \subseteq S \) and \(S \subseteq C_W(S) \). If \(X \cap Y = S \), then \(g(X) \subseteq g(S) \) and \(g(Y) \subseteq g(S) \) (Property 4). Therefore, \(g(X) \cup g(Y) \subseteq g(S) \). According to Property 4 and Property 5, \(C_W(S) = f(g(S)) \subseteq f(g(X)) \cap f(g(Y)) = f(g(X) \cap g(Y)) = (C_W(X) \cap C_W(Y)) = (X \cap Y) = S \). That is, \(C_W(S) \subseteq S \). According to Property 2, we have \(S \subseteq C_W(S) \).

III. CLOSTREAM ALGORITHM

In this section, we first introduce our structures and then describe the CLOStream algorithm in detail. The algorithm consists of two sub-procedures: CLOStream+ and CLOStream−. CLOStream+ is used to update closed itemsets when a transaction arrives to the window, while deletion operation is used to update closed itemsets when a transaction leaves from the window. We use two data structures, called Closed Table and Cid List, to maintain the information of closed itemsets over a data stream. The details of the structures are described as follows.

Closed Table consists of three fields: Cid, CItemset and SC. Each closed itemset (CItemset) \(X \) is assigned a unique closed itemset identifier (Cid) which is a non-zero positive integer, and its support count (SC) is also recorded in a Closed Table. Each record in a Closed Table is denoted as \((c, X, SC(X))\), where \(c\), \(X\) and \(SC(X)\) are the values of Cid, CItemset and SC. Given a Cid \(c \) of an itemset, the itemset and its support count can be directly retrieved from the Closed Table. Initially, the first record in a Closed Table is set to \((0, null, 0)\).

Cid List consists of two fields: Item and Cidset field. The Cidset for an item \(i \) is denoted as \(\text{cidset}(i) \) which is a set of Cids of closed itemsets containing item \(i \). Table II and Table III show the Closed Table and Cid List after the five transactions in Figure 1 arrive to the first window. In Table III, \(\text{cidset}(B) = \{2, 3\} \), since item B is contained in the two closed itemsets \{AB\} and \{ABC\}, and their Cids are 2 and 3, respectively.

TABLE II. ORIGINAL CLOSED TABLE

<table>
<thead>
<tr>
<th>Cid</th>
<th>CItemset</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(CD)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>{AB}</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>{ABC}</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>{A}</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>{ACD}</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>{AC}</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE III. ORIGINAL CIDLIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Cidset</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>{2, 3, 5, 6, 7}</td>
</tr>
<tr>
<td>B</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>C</td>
<td>{1, 3, 4, 5, 7}</td>
</tr>
<tr>
<td>D</td>
<td>{1, 5}</td>
</tr>
</tbody>
</table>

A. CLOStream+

In this subsection, we describe the procedure CLOStream+. Let \(t_k \) be a new transaction, \(D_k \) be the set of the transactions in the current window, and \(D_0 = D_k \cup \{t_1\} \) be the set of the transactions in the next window after adding \(t_k \). \(SC_{D_k}(A) \) and \(SC_{D_0}(A) \) are the support counts of the itemset \(A \) in \(D_k \) and \(D_0 \), respectively. \(C_{D_k}(X) \) and \(C_{D_0}(X) \) are the closures of \(X \) in \(D_k \) and \(D_0 \), respectively. The sets of all the closed itemsets in \(D_k \) and \(D_0 \) are denoted as \(C_{D_k} \) and \(C_{D_0} \), respectively.

When a transaction \(t_k \) arrives, \(t_k = \{t_{i_1}, t_{i_2}, \ldots, t_{i_k}\} \), \(i_j \in I, 1 \leq j \leq k \) arrives to \(D_0 \), we observe that the support count of \(t_k \) is increased by one.
but the support count of t_a’s supersets would not be increased. According to Property 3, t_a must be a closed itemset in D_h. Besides, only the supports of the subsets of t_a would be increased and thus only the subsets of t_a would be changed from non-closed to closed.

According to Theorem 1, the closed subsets of t_a in D_h can be obtained by performing intersection operations on t_a and all the closed itemsets in D_h. However, this process is very time-consuming, since the number of closed itemsets in D_h may be very large and there may be many closed itemsets without common items with t_a. In order to avoid processing a large number of invalid intersections, CloStream’ uses a Cid List and a SET function to find those closed itemsets which at least have a common item with t_a, that is, the intersections of the closed itemsets and t_a are not empty.

The SET function is defined as follows: $\text{SET}(\{t_a\}) = \text{cidset}(t_i) \cup \ldots \cup \text{cidset}(t_k)$, where $\text{cidset}(t_i)$ ($i \leq j \leq k$) is the cidset for item t_i in Cid List. Each Cid in $\text{SET}(\{t_a\})$ represents a closed itemset which has at least a common item with t_a. Therefore, a lot of intersection operations can be reduced, since CloStream’ only performs intersection operations on t_a and those closed itemsets whose Cids are in $\text{SET}(\{t_a\})$.

By performing intersection operations on t_a and every closed itemsets whose Cids are in $\text{SET}(\{t_a\})$, we can obtain the closed subsets of t_a in D_h. In order to update the supports of the closed subsets of t_a in D_h, we can find their closures in D_U for each of them. The support counts of them in D_h are equal to the support counts of their closures in D_U increasing by one. CloStream’ uses a temp table, which is denoted as Temp_a, to store the closed subsets of t_a and their closures in D_U when a transaction t_a is added. Temp_a is a hash structure and consists of two fields: CItemset and Closure Id. Each record in Temp_a is denoted as (S, t_i), where S is a closed itemset which needs to be updated and t_i is the identifier of the closure of S. In the following, we describe the algorithm for CloStream’ in details.

As t_a is added to the current window, t_a is closed in D_h and then we put t_a into Temp_a. Initially, the Closure Id of t_a is set to 0. To obtain the closed itemsets which need to be updated, CloStream’ performs intersection operations on t_a and each closed itemset whose Cid i is in $\text{SET}(\{t_a\})$. Let an itemset whose Cid is i be denoted as $CT[i]$. For an itemset $S = \bigcup_{i \in \text{SET}(\{t_a\})} CT[i]$, S is closed in D_U according to Theorem 1. If S is not in Temp_a, then S is put into Temp_a, and its current Closure Id is i, since $CT[i]$ is a superset of S and may be the closure of S. Otherwise, the current Closure Id of S, say, t_i, is replaced with i if $\text{SC}_{\text{Temp}}(CT[i])$ is greater than $\text{SC}_{\text{Temp}}(CT[t_i])$. This is because $CT[t_i]$ is not the closure of S and $CT[i]$ may be the closure of S.

After performing intersection operations on t_a and each closed itemset whose Cid is in $\text{SET}(\{t_a\})$, all closed itemsets which need to be updated and the Cids of their closures before t_a are stored in Temp_a. CloStream’ uses the information in Temp_a to update the Closed Table and Cid List. For each record (u, c) in Temp_a, if u equals to $CT[c]$, then $\text{SC}_{\text{Temp}}(CT[c])$ is increased by 1 since u is originally closed in D_h. Otherwise, u is a new closed itemset and assigned a unique Cid n.

<table>
<thead>
<tr>
<th>Cid</th>
<th>CItemset</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>{CD}</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>{AB}</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>{ABC}</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>{C}</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>{ACD}</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>{A}</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>{AC}</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>{BC}</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>{B}</td>
<td>4</td>
</tr>
</tbody>
</table>

CloStream’ uses a new record with Cid = n, CItemset = S, and $\text{SC}_{\text{Temp}} = (\text{SC}_{\text{Temp}}(CT[c]) + 1)$ to the Closed Table. Besides, identifier n is also added into the cidsets for the items that contained in u in Cid List.

After dealing with all records in Temp_a, the information of all the closed itemsets in D_h are maintained in the Closed Table and Cid List, and the allocated memory space for Temp_a can be released. All frequent closed itemsets can be obtained by scanning Closed Table once.

A Running Example for CloStream’

After adding t_1, t_2, t_3, t_4 and t_5 into the first window in Figure 1, the Closed Table and Cid List are shown in Table II and III, respectively. As $t_6 = \{BC\}$ arrives, $\{(BC), 0\}$ is put into Temp_a. Then CloStream’ performs intersection operations on each closed itemset whose Cid is in $\text{SET}(\{BC\}) = \{1, 2, 3, 4, 5, 7\}$. The intersection of t_6 and $CT[1] = \{CD\}$ is $\{C\}$. Because $\{C\}$ does not exist in Temp_a, the record $\{(C), 1\}$ is put into Temp_a. Next, the intersection of t_6 and $CT[2] = \{AB\}$ is $\{B\}$. Because $\{B\}$ does not exist in Temp_a, the record $\{(B), 2\}$ is also put into Temp_a. Next, the intersection of t_6 and $CT[3] = \{ABC\}$ is $\{BC\}$. Since $\{BC\}$ exists in Temp_a along with its current Closure Id 0, we compare $\text{SC}_{\text{Temp}}(CT[3])$ with $\text{SC}_{\text{Temp}}(CT[0])$. Because $\text{SC}_{\text{Temp}}(CT[3])$ is greater than $\text{SC}_{\text{Temp}}(CT[0])$, the Closure Id of $\{BC\}$ is replaced with 3. CloStream’ uses the same way to deal with the other Cids which belong to $\text{SET}(\{BC\})$. Finally, the content of Temp_a is shown in Table VI, which includes all closed itemsets in t_6 after adding t_6 and the identifiers of their closures before adding t_6.
Besides, Cid 9 is added into the cidset(B). Finally, the updated Closed Table and Cid List are shown in Table IV and Table V, respectively.

C. CloStream

In this subsection, we describe the procedure CloStream. Let \(t_0 \) be the oldest transaction in the current window \(W \), \(D_0 \) be the original set of transactions, and \(D_0' = D_0 - \{ t_0 \} \) be the set of the transactions after deleting \(t_0 \) from \(D_0 \). SCDB(\(X \)) and SCDD(\(X \)) are the support counts for the itemset \(X \) in \(D_0 \) and \(D_0' \), respectively. The closures of \(X \) in \(D_0 \) and \(D_0' \) are denoted as \(C_{DB}(X) \) and \(C_{DD}(X) \), respectively. The sets of closed itemsets in \(D_0 \) and \(D_0' \) are denoted as \(C_{DB} \) and \(C_{DD} \) respectively.

Whenever a transaction \(t_0 = \{ t_{i1}, t_{i2}, ..., t_{ik} \} (i \in I, I \subseteq J) \) is deleted from the database \(D_0 \), only the support counts of the subsets of \(t_0 \) will be decreased by one, that is, only the subsets of \(t_0 \) may be changed from closed to non-closed. Therefore, CloStream first find out the closed subsets of \(t_0 \) in \(D_0 \) and then determine which closed subsets of \(t_0 \) will turn out to be non-closed. The closed subsets of \(t_0 \) in \(D_0 \) can be obtained by performing intersection operations on \(t_0 \) and all the closed itemsets in \(C_{DB} \) according to Theorem 1.

However, it is very time-consuming to perform a large number of intersections, since there is a large number of closed itemsets in \(D_0 \). In order to avoid performing a lot of invalid intersections, CloStream also uses Cid List and computes the SET function to obtain the closed itemsets which have at least a common item with \(t_0 \).

CloStream uses a temp table, called \(Temp_0 \), to store the information about closed subsets of \(t_0 \) in \(D_0 \) which consists of a triple: Ditemset, Closure_Id, and HS. Suppose that each record in \(Temp_0 \) is denoted as \((S, c, h) \), in which \(S \) is a closed subset of \(t_0 \), \(c \) is an identifier of the closure of \(S \) in \(D_0 \), and \(h \) is the identifier of a closed superset of \(S \), which is not contained in \(t_0 \) and whose support is the largest among the supports of all the supersets of \(S \). HS is used to check if \(S \) is closed in \(D_0 \). If SCDD(\(S \)) = SCDB(\(CT[h] \)), then \(S \) is non-closed in \(D_0 \), since there is a superset \(CT[h] \) with the same support as \(S \). For a closed superset \(Z \) of \(S \) (\(Z \subseteq t_0 \)), \(SCDD(Z) \) must not be equal to \(SCDB(S) \), since the support counts of \(S \) and \(Z \) are decreased by one simultaneously after deleting \(t_0 \). In the following, we describe the algorithm for CloStream in details.

As \(t_0 \) is deleted from the database, CloStream puts \(t_0 \) into \(Temp_0 \) since \(t_0 \) is a closed itemset in \(D_0 \). The Closure_Id, HS of \(t_0 \) are set to zeros. To obtain the closed subsets of \(t_0 \) in \(D_0 \), CloStream performs intersection operations on \(t_0 \) and each closed itemset \(CT[i] \) whose cid \(i \) is in SET(\(t_0 \)). Suppose that \(S = t_0 \cap CT[i] \), then \(S \) is a closed subset in \(D_0 \) according to Theorem 1. If \(S \) is not in \(Temp_0 \) then \((S, 0, 0) \) is put into \(Temp_0 \), since \(CT[i] \) may be the closure of \(S \). Otherwise, if \(S \) exists in \(Temp_0 \) with Closure_Id = \(c \) and HS = \(h \), there are two cases need to be considered. Case 1: if SCDB(\(CT[i] \)) is greater than SCDD(\(CT[c] \)), then \(CT[i] \) may be the closure of \(S \) but \(CT[c] \) is not (Property 3). In this case, \((S, c, h) \) is replaced with \((S, i, c) \). Case 2: if SCDB(\(CT[i] \)) is not greater than SCDD(\(CT[c] \)) but greater than SCDD(\(CT[h] \)), then \((S, c, h) \) is replaced with \((S, c, i) \).

Otherwise, the record \((S, c, i) \) remains unchanged.

After performing intersection operations on \(t_0 \) and each closed itemset whose Cid is in \(SET(t_0) \), each closed subset \(S \) of \(t_0 \) which need to be updated and its closure \(c \) in \(D_0 \) are stored in \(Temp_0 \). According to Definition 1, \(CT[c] \) = \(S \). CloStream uses the identifier \(c \) to find \(S \) in Closed Table and decreases the support count of \(S \) by 1. After finding all the closed itemsets which need to be updated and updating their support counts, CloStream then determines which closed itemsets become non-closed.

For each record \((S, c, h) \) in \(Temp_0 \), if SCDD(\(CT[c] \)) = SCDB(\(CT[h] \)), then \(S \) becomes non-closed in \(D_0 \) since there is a superset \(CT[h] \) with the same support as \(S \). CloStream removes the information of \(CT[c] \) from the Closed Table and Cid List. Notice that if SCDD(\(CT[c] \)) = 0, the information of \(CT[c] \) is also be removed. After processing all the records in \(Temp_0 \), the information of the closed itemsets after deleting \(t_0 \) is maintained in the updated Closed Table and Cid List, and the allocated memory space for \(Temp_0 \) can be released. By scanning Closed Table once, frequent closed itemsets and their supports in \(D_0 \) can be obtained.

D. A Running Example for CloStream

Suppose \(D_0 \) is the set of the transactions after adding \(t_0 \) into Table I. The Closed Table and Cid List are shown in Table IV and Table V, respectively. When \(t_1 \) is deleted from \(D_0 \), \(t_1 \) is put into Ditemset of \(Temp_0 \) since \(t_1 \) is a closed itemset in \(D_0 \). The values of Closure_Id and HS are set to zeros. In order to efficiently obtain all the closed subsets of \(t_1 \), CloStream performs intersection operations on \(t_1 = \{ CD \} \) and each closed itemset whose cid is in \(SET(\{ CD \}) = \{ 1, 3, 4, 5, 7, 9 \} \).

The intersection of \(t_1 \) and \(CT[1] = \{ CD \} \) is \{CD\}. We find that \{CD\} exists in \(Temp_0 \) with Closure_Id = 0 and HS = 0. The record \((\{CD\}, 0, 0) \) is replaced with \((\{CD\}, 1, 0) \) since SCDB(\(CT[1] \)) is greater than SCDD(\(CT[0] \)). Next, the intersection of \(t_1 \) and \(CT[3] = \{ ABC \} \) is \{C\}. Since \{C\} does not exist in \(Temp_0 \), the record \((\{C\}, 3, 0) \) is put into \(Temp_0 \).
The intersection of t_1 and $CT[4] = \{C\}$ is $\{C\}$. We find that $\{C\}$ exists in $Temp_D$ with Closure_Id = 3 and HS = 0. Because $SC_{DDB}(CT[4])$ is greater than $SC_{DDB}(CT[3])$, the Closure_Id of $\{C\}$ is replaced with 4. Besides, the HS of $\{C\}$ is replaced with 3, since $C_{DDB}(CT[3])$ is greater than $SC_{DDB}(CT[0])$. Therefore, the current Closure_Id and HS of $\{C\}$ are 4 and 3, respectively.

The next Cid in SET($\{CD\}$) is 5. The intersection of t_1 and $CT[5] = \{ACD\}$ is $\{CD\}$, and $\{CD\}$ exists in $Temp_D$ with Closure_Id = 1 and HS = 0. Because $SC_{DDB}(CT[5])$ is not greater than $SC_{DDB}(CT[1])$ but greater than $SC_{DDB}(CT[0])$, only the value of HS is updated as 5.

After performing intersection operations on t_1 and all the closed itemsets whose Cids are in SET($\{CD\}$), the content of $Temp_D$ is shown in Table IX. CloStream then decreases support counts of $\{CD\}$ and $\{C\}$ by one from Closed Table.

Table IX. $Temp_D$

<table>
<thead>
<tr>
<th>DItemset</th>
<th>Closure_Id</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>${CD}$</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>${C}$</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our CloStream algorithm and compare it with the three famous algorithms CFI-Stream, Moment and NewMoment. The experiments are performed on a 1.83 GHz Intel Core 2 Duo Processor with 2 Gigabyte memory, and running on Windows Vista. CloStream and CFI-Stream were coded in Java language. Moment [3] and NewMoment [7] are provided by their authors and coded in C++ language. To evaluate the performance of these algorithms, we generate a synthetic dataset T10I4D10100 from IBM data generator [1]. The parameters are described as follows: D is the total number of transactions; T is average transaction size; I is the average size of maximal potential frequent itemsets; N (=2000) is the number of distinct items. Besides, a real-world dataset BMS-Web-View-1 was downloaded from FIMI Repository [11], where I = 497, T = 2.5 and D = 59,602. The maximum length of transactions in BMS-Web-View-1 is 267.

Fig. 2(a) shows the loading time of the first window for the four algorithms on the dataset T10I4D10100 under different minimum supports as the size of sliding window is set to 10K. From Fig. 2(a), we can see that the execution times for Moment and NewMoment increase as the minimum support decreases, since the lower the minimum support is, the larger the search space is for Moment and NewMoment. On the other hand, the execution times for CFI-Stream and CloStream are not affected by different minimum supports, since CFI-Stream and CloStream maintain all the closed itemsets in their structures. When min_sup is less than 0.06%, CloStream outperforms Moment and NewMoment, and the performance gap significantly increases as the minimum support decreases.

Fig. 2(b) shows the average execution times for the four algorithms after sliding 100 consecutive windows on the dataset T10I4D10100 under different minimum supports. From Fig. 2(b), we can see that CloStream runs faster than CFI-Stream about 100 times, since CFI-Stream needs to generate all the subsets (i.e., candidate closed itemsets) for each transaction and search all the supersets for each candidate from DIU Tree to check if the candidate is closed. In other words, a transaction of length 8 will lead CFI-Stream to generate $(2^8 - 1)$ candidates and search from DIU-Tree $(2^8 - 1)$ times. Therefore, CFI-Stream is unfavorable to deal with long transactions.

Fig. 3(a) shows the loading time of the first window for the algorithms Moment, NewMoment and CloStream on the real dataset BMS-Web-View-1 under different minimum supports as the size of sliding window is set to 10K. Since the maximum length of the transactions in this dataset is 267, CFI-Stream needs to enumerate $(2^{267} - 1)$ candidates and search from DIU Tree over 100 billion times. The performance for CFI-Stream is much worse than the three algorithms. Therefore, we only...
compare the performance of our CloStream with Moment and NewMoment on this dataset. From Fig. 3(a), we can see that CloStream runs faster than Moment and NewMoment over 100 times when \(\text{min sup} \) is less than 0.03\% and 0.06\%, respectively. Particularly, when \(\text{min sup} \) is less than 0.03\%, Moment runs out of memory, since it not only captures lots of non-closed nodes in CET-Tree but also maintains all frequent closed itemsets in CET-Tree and hash table. Although NewMoment is able to run when \(\text{min sup} \) is less than 0.05\%, it requires more than 2.5 hours.

Fig. 3(b) shows the average execution times for the three algorithms over 100 consecutive windows on dataset BMS-Web-View-1 under different minimum supports. From Fig. 3(b), we can see that CloStream significantly outperforms NewMoment and runs faster than Moment when \(\text{min sup} \) is less than 0.04\%. Although NewMoment uses less memory space than Moment, it requires a long execution time. Particularly, when \(\text{min sup} = 0.05\% \), the total execution time of NewMoment for sliding 100 consecutive windows is over \(100 \times 1,000 = 100,000 \) seconds, while CloStream only takes about \(0.1 \times 100 = 10 \) seconds under the same threshold.

![Figure 3. Execution times on the real-world dataset BMS-Web-View-1 for the three algorithms](image)

Fig. 4 shows the execution times of the four algorithms for loading the first window under different sliding window sizes on dataset T5I4. In this experiment, the size of sliding window is increased from 100K to 500K and the minimum supports for Moment and NewMoment are set to 0.005\%. From Fig 4 we can see that CloStream outperforms the other three algorithms and has a good scalability for large dataset.

V. CONCLUSIONS

In this paper, we propose a novel algorithm CloStream to discover frequent closed itemsets over stream sliding windows. We use Cid List and the SET function to find the closed itemsets which have the common items with the added or deleted transaction. Different from the previous approaches which need to take a lot of time to search from a tree structure, CloStream only needs to do the intersections on the closed itemsets which return from the SET function and the added or deleted transaction without searching from our proposed structures. Besides, all the frequent closed itemsets can be obtained online based on any user-specified thresholds. The experimental results also show that our CloStream algorithm outperforms the three famous algorithms CFI-Stream, Moment and NewMoment on both synthetic datasets and real-world dataset.

REFERENCES