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Abstract

We study the feasibility of designing an accelerombgsed gyroscope-free inertial
navigation system (INS) that usasly accelerometers to compute the linear and angular
motions of a rigid body. A model for a micro-machined accelerometer is developed and
the accelerometer output equation is derived to relate the linear and angular motions of a
rigid body with respect to a &l inertial frame. A stitient condition is used to determine
if a configuration of accelerometers is feasible. If the condition is satisfied, the angular and
linear motions can be computseparatelyusing two decoupled equations, one differen-
tial and one algebraic. A configuration of six accelerometers distributed on a cube-shaped
INS is considered. This configuration is feasible and the angular acceleration is a linear
combination of the accelerometer outputs. Based on this six-accelerometer configuration,
an algorithm is developed to compute both the angular and linear motions.




Feasibility of a Gyroscope-free Inertial Navigation
System for Tracking Rigid Body Motion

1. Introduction

Inertial narigation systems & been widely used in mardiverse applications.

They include: automobiles, generaliation aircrafts, autonomous flyinghicles such as
helicopters, yachts, automated agricultural and construction vehicles, and submarine fleet.
Recently robotics and image stabilisation are among some of theggmgereas that use
micro-machined navition systems. Most inertial vigation systems use accelerometers

to sense linear accelerations and gyroscopes to sense armgjodzty. vin this report, we

study the feasibility of designing an accelerombtesed gyroscope-free inertialviga-

tion system (INS) that useslly accelerometers to compute the linear and angular motions
of a rigid body In theory a minimum of six accelerometers are required for a complete
description of a rigid body motion. Theykto a solution of this problem is the choice of
locationandorientationof the accelerometers. It will be st that for some'nice” (or
feasible) configurations of accelerometers, the angular and linear motions can be com-
puted separately using two decoupled equations.

The relation between accuyaand price characteristics for fdifent modern gyro-
scopes is shvn in Figure 1.1. It shes that lav-cost gyroscopes lack the accyrdloat is
needed for precise wigation applications. Indeed, it has been reported in ([2], [4]) that,
due to challenges associated with micro-miniaturisation of gyroscopegeirsve batch-
processed gyroscopes cannot achide required leels of precision in the near future. A
precise micro-machined accelerometer the other hand, is mordafiable. In &ct, this
type of accelerometer has become one of the most notable applications of poly-silicon sur-
face-micromachining [5]. Due to recent breakthrougleigments in micro-machining
technology the costs of micro-machined accelerometers is decreasing while their accu-
ragy characteristics is being impred. Existing forecasts wa indicated that this trend

will continue ([3], [8]). Also technicallythere aredr less fundamental pkical con-




straints that inhibit the precision of a micro-machined accelerometer than those that inhibit
the precision of a micro-machined gyroscope. So there is a potentially promising mark

for developing accelerometer-based gyroscope-free inertial navigation systems.
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Figure 1.1: Accuracy and price characteristics of gyroscopes

The realisation of a gyroscope-free INSyins with: (1) the deelopment of the
main principles of a gyro-free INS design, (2) theadepment of algorithms deed from
the principles for estimating w@ation parameters. Semiconductor micro-machined
accelerometers are used as basic, sensivigedefor an accelerometbased gyro-free
INS. Using measurements from accelerometers gicatiéy distributed on a rigid body
(e.g. a ehicle), a gyro-free INS algorithm estimates the b®dybtion along the six
degrees of freedom (linear displacement and rotation of the body with respect to an iner-
tial reference frame). The xtesection discusses a mathematical model for a semiconduc-
tor accelerometerRigid body motion equations are ded in Section 3. A sftitient
condition is used in Section 4 to determine if a configuration of accelerometers is feasible.

A feasible configuration of six accelerometers will be considered in Section 5, and based




on this configuration, a basic gyro-free INS algorithm will be developed. Future work that
involves mainly algorithms for correcting INS measurement errors causedrioys/

sources are discussed in Section 6.

2. Modelling of an Accelerometer Sensor

A single axis accelerometer is ava® with one input and one output that measures
its acceleration along a specific sensing axis. This electro-mechaniaa tedesigned
to measure the pkical quantity of acceleration of a rigid body to which it is firmly
attached, producing an electronic signal proportional to the projection of acceleration
along the sensing axis of the acceleromdtke projection of the acceleratioactor is a
signed variable with its absolutealue depending on the orientation and dynamics of the
accelerometelf the \elocity of the accelerometer is not changing in the inertial frame of
reference associated with the Earth, then the output of an accelerometer remains constant.
In addition to measuring changes &lacity, an accelerometer can also measure the pro-
jection of graity onto its sensing axis. Therefore ayaiven moment the output of an
accelerometer measures the projection of #wtor sum of the gvity and the projection
of acceleration induced by changes in bodjowity. The plysical structure of a single
axis accelerometer and its mathematical model are presented next.
2.1 General Physical Structure

An accelerometer generally consists of a proof mass suspended by compliant beams

attached to the rigid bodp simplified model of a single-axis accelerometer consists of a

proof massM and tw suspension beams thawvban efective spring constarit. There

is a damping factoD  which affects the movement of the mass. Typically, an accelerome-

ter is modelled by a second-order mass-spring-damper system as shown in Figure 2.1.
The input to the accelerometer is the force that acts on thevhassl causes it to

mowe. Because of thguides the motion of the mass is restricted to a specified sensing

direction, which is shen as the x-axis in Figure 2.1. Therefore theicke measures the

accelerationx, along the sensing direction x-axis. Customized electronic circuits can




measure anchange inx,, and generate aoitage signal proportional te, which is the

output of the accelerometer.
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Figure 2.1: General accelerometer structure and its mechanical model.

Without the loss of generalitpne can nglect the dampindgD, since the dynamic
response of a typical modern micro-accelerometeee&ds most rigid body dynamics by
at least an order of magnitude (i.e. 3000Hz vs. 100Hz). So the dynamicsrhal time
constant This assumption holds for all vehicles operating at different speeds.

We note that for arious emeging applications, the need for high bandwidth (BW)
could result in higher noise. Mever if the device BW and rigid body dynamics become
comparable, we can model théeet of damping by a simplewspass filter Taking into
account the assumption about dampDg the relationships between the acceleration,
force, motion of the mass, and output of the accelerometer can bevednesing the sim-

ple mechanical system shown in Figure 2.2.
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Figure 2.2: Forces exerted on the proof mass




In Figure 2.2 the accelerometer is firmly attached to the body efiale which is
moving along a sudce inclined at an angle relative to thex axis. The anglex corre-
sponds to the sensing direction of the acceleromeker two forces acting on the proof

mass are the gravitational force and the force on the vehicle. Newton’s second law gives:

> — - —
F = m[%HmDag— m[(3+ag)— m[laeq. (2.1)
. H . .
Here the acceleratioa,, is theator sum of the accelerations caused by the force on the

_)
vehicle and the gxdty ay = 9.8(nv sz). The accelerometer measures the projection of

ajq onto its sensing axis given by the inclination arngle

In order to analyse the measurement mechanism, a model for the spring that sus-
pends the proof mass must be created. If the abscle wf acceleration does not
exceed a certain accelerometer threshold (i.e. 50% full scale range for accelerometer

ADXLO5), then a linear model of a perfectly resilient spring can be assumed:

F = kik, (2.2)

Herek is the spring constant anq is the displacement as stoin Figure 2.2. Equation

(2.2) and the projection of (2.1) onto the accelerometer sensing axis can be equated:
k D(a =m Daeq.

ﬁ
Herea,, is the projection czieq on the accelerometer sensing axis. Therefore, the basic

q

equation for the accelerometer is:

. K X,
aeq = Xa = T . (23)
Equation (2.3) is general for all types of accelerometers. For accelerometers that use

the micro-machined technologyvo approaches for measurixg dominate the mask:

(i) capacitve sensing, (ii) piezoelectric sensing. These approachegrtanechanical

information into electrical signals by methods that are particular to the silicon technology.




The case of measuring,  using the capacitive mechanism is considered next. We will not

discuss the less common piezoresistive mechanism.

2.2 Capacitive Accelerometer Model
As shavn in Figure 2.3, a capaai# accelerometer monitors the change in capaci-
tance of the parallel plate capaggtistructure placed between the proof mass and the sub-

strate. (Note that the substrate is firmly attached to a rigid body.)

Volt guides
Uy =
<
M
X

Figure 2.3: Capacitive sensing mechanism
A change inx, causes a change in the capacitance defined by:
C=¢g2 (2.4)
a

wheree, is the permittivity of the air gap, aAd is the surface area on either side of the
proof mass where the springs are located.

The change in capacitance can be measured by applying an alternating current and
measuring its ééct on the electrostatic clggs across theag. Equations (2.3) and (2.4)
give:

 KDALE,
8q = Thmc

(2.5)

which measures the projection of acceleration onto the sensing axis of the device.
2.3 Mathematical Model of an Accelerometer

Figure 2.4 shars a proof body of magw in its equilibrium state without deflection

caused by an input force. LBt be the position of the centre of mass in its equilibrium




state. Letd denote thex-coordinate of the centre of mass. (Note that the guides limit the

body movement to be along tlke -axis). ket be the spring constant.
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Figure 2.4: Simplified model of an electro-mechanical accelerometer systernr

Let r, be the radiusactor of the centre of madd with respect to a fed inertial

—
frame, i.e.r, =O,M , whereO, is the centre of the inertial frame. Let tnait vector 6,

be the direction of m@ment of the accelerometdrhis is the sensing direction and is

shavn as the x-axis in Figure 2.4. When the body rot&eshanges in direction with

respect to the inertial frame. The position of the centre of masgeis lgy r, + 86, . The

proof body is under the influence of the following forces:

1) the resilient force of the springs = —kd6,

2) the gravity forcef; = mg, , wherg, is the gravity, and
3) the (total) reaction force from guidés. (Note that the reaction forcg is
orthogonalto the -axis, i.e.[f,, 6,00= 0).
By equating the forces on the body, the acceleration of the centre of mass is given by:
mEﬂ + d—22(69|)% = —kob, + ma, +f,
0 dt U
wheret is time. The acceleration in the direction of movement (i.e. sensing direction) is

then given by the projection &) , so we have:




_k
m

) L i, 0,0
3, 6,0+ (56, +256, +386,, 6,0= — 508, 6(1+ [y, 6+ —— (2.6)

Since[®,6,0=1,we havéiél, 6,0= 0 . Substituting these into (2.6) gives:

), 0,0+ 5+ 506, 0,0= — X5+ [, 6,

This formula can be rewritten as:

f, ~a, + 56, 8,0= ~5- X5, 2.7)

When a force is applied to the proof mass, the regipal response of the acceler-
ometer is characterised by the proof body displaced(¢ht (Note that our assumption in

damping implies that the time constant of this spring system modefyismall. So tran-

sients can be ignored.) The accelerometer then produces an alipge proportional to

o(t) . The right-hand side of equation (2.7) depends onlg(bn and contains no motion
parameters. All the terms on the left-hand side of (2.7) are motion parameters. Since one
obsenes only the “wltage” output of the accelerometene must consider the left-hand

side of (2.7) as the “logical” (effective) output of the accelerometer, i.e.
A= [ —a,+36,6/[ (2.8)
The logical output of the accelerometer consists of three parts:
D'“',, 0,C - projection of acceleration of the centre of mass onto the sensing direction,

(&, 0, - projection of gravitational acceleration onto the sensing direction,

[Bél, 6,C - projection of the product of the displacement and change in the sensing

direction over time onto the sensing direction.

Typical values of® are aboutl0™’ m, so the terntﬁél, 6,L is very smallcompared

with the other acceleration terms and can bglewted. The accelerometer output (2.8)

then becomes:

A= [0 a6 (2.9)




In some preious papers ([1], [7]) the logical output is assumed to be ﬁﬁlﬁl[.
One must taf gravity and change of the sensing direction into account. The inclusion of
the efect of graity is important. Firstlythe graity vector has constant orientation with
respect to the inertial frame; hence it can be used as a reference for calibrating an acceler-
ometer sensing axis. The gity vector also acts as a reference for calibrating tkee ak
a body frame relate to the Eartls coordinate frame. Secondiyre presence of grity
leads to significant errors in determining the relative changes in coordinates. A small error
in the orientation of a nwing frame with respect to the Earth frame can result inge lar
navigation errarConsider a Melled accelerometer whose sensing directionfithefhori-
zon by an anglep = 0.2 milli-radian. After T = 5 seconds, time ingeation of this

neglected graity effect will produce a displacement error of the order

ay [sing = 9.8[(2x 10_4) [5° m. This would exceed errors caused by accelerome-

ter measurement uncertainfyhus, the déct of gravity cannot be nglected in describing

the motion of a rigid body.
3. Rigid Body Motion in R®

We hare discussed in Section 2 that an accelerometer mounted at advpainta
rigid body > and pointed at a sensing directidd) [ R is a precision instrument

designed to measure the acceleration at the pbimt the direction 6, with respect to a

fixed inertial frame. In this section, we will describe the motion of a rigid bo®3im
terms of its linear displacement and rotation re¢ato an inertial frame. @will present
examples of tracking specific types of motion in Section 3.5, an bloav accelerome-

ters can be used to determine linear and angular motions in Section 4.

3.1 Rigid Body Motion Equation

In this section we will devie the equations that describe the linear and angular
motions of a rigid body with respect to an inertial framéh@duit loss of generalifythe

gravity can be neglected. When an accelerometer is mounted at a point M on the body, the




accelerometer output measures the acceleratidvh at ~ minus the gravity (see (2.9)). So the

gravity term should be included when one considers the output of an accelerometer.

rigid body
r
inertial frame

moving frame

observer
€,

Figure 3.1: Rigid Body Motion in R3
Let > be arigid body anl a point of> as shawn in Figure 3.1. LeD, be the cen-

tre of afixed inertial framewith an orthonormal basige,, e,, e5} . (Typically, this is the

standard basis iR>.) We also callO, the obsergr. The orthonormal inertial frame is
right-handed, that is, the cross produgfsce, = e;, e, xe; = €, e3xe; = e, hold.
The coordinate systefO, ; e , ,, €5} is called thenertial frame. Motion of the bodyx

is described by the translation of the cer@r@nd the rotation of a right-handed orthonor-

mal basis{ f,, f,, f5} with respect to the inertial frame. The coordinate system

{O;f,, f,, f5} is called thenoving frameassociated with the body.

Rigid body motion consists afanslationandrotation. The translation is gen by

—>
the vector coordinat®, = O, O of the centeO of the maing frame relatie to the inertial

frame. The rotation of the rigid body is described by the rotation of the viiy frame
with respect to the fixed inertial frame, and is described by a nkatrix
The matrixF descibes the rela® orientation of the mung basig f,, f,, f5} with

respect to the fixed inertial bagis;, e,, €5} . Thatfg,= Fe, k51,23 . Since the

10



bases{e;, e, e;} and{f,, f,, f;} are orthonormalF is orthogonal withFTF = |
(identity matrix). It then follvs thatdet( F) = £1. Since the mang frame is right-
handed, one must iadet( F) = fI(f2 x f3) = 1. The matrixF is called arotation

operator, or simply, aotation matrix.

One can ne describe the motion ok in terms of its translatiorR, (t) and its rota-

tion F(t) relatie to the inertial frame. Consider the pdimtof = as shan in Figure 3.1.

The \ectorr, = OTV' is the coordinate o in the inertial frame. Theectorr EOW is
the vector fromthe cent® td as seen from the obsérver . Then

r =R +r. (3.1)
where all the vectors in (3.1) are measured inrtbgial frame

Since X is rigid, the magnitude of (i.e. distance between cent& and M )
remains the same. Mever the direction off changes wheix rotates. The coordinates
of M in themoving frameare gven byu, = [F, f 0k = 1, 2, 3, which are the projec-

tions ofr onto the basisectors{ f,, f,, f;}. Again sinceX is rigid, the coordinates of
: . . 3 .
M in the maing frame remain the same, gQ(t) = constant. Thusi = zk_ L U 1S

independent of time(If {e,} is the standard basis, thanis the ector fromO toM in

. 3
the moving frame.) The vector can be expressegzla(\s_ . o, f O , SO we get

3 3
r=y,_ 060 =Y uFe = Fu (3.2)

Substituting (3.2) into (3.1) gives

r = R +Fu (3.3)
Thus the motion of gnpoint of ¥ can be described by the translatigy{t) and rotation
F(t) of Z relative to thenertial frame

The acceleration of the poiM  (relative to thertial frame) is given by

11



f = R +Eu (3.4)
SinceF is orthogonal, we ha#eF = | . Time differentiation of this equality gives:

FTF+FTF = 0
Define Q=FTF. So Q is skew-symmetriovith QT = —Q. Also Q =FTF and the
orthogonality of F imply

F = FQ. (3.5)
Differentiating (3.5) with respect to time gives:

F=FQ+FQ.
Using (3.5) we get

F = F(Q+Q%. (3.6)
So from (3.4) the acceleration of the pdiht  can also be expressed as:

=R +F(Q+Q%u. (3.7)
The output of an accelerometer can be obtained from (3.7), which we will next consider.

3.2 Accelerometer Output

Suppose an accelerometer of the type described in Section 2.3 is attached at a point
M of a rigid bodyX. The coordinate and sensing direction of the accelerometer in the
moving frameareu and 6 (a unit \ector), respectely. Note that, asxplained in Sec-
tion 3.1, bothu and@ are independent of time. The corressponding coordinate and sens-
ing direction in thenertial frame are r = Fu and 8, = F0. Equation (2.9) states that

the output of the accelerometer is:
A= A(r6) = Dnl —-a5,6, L, wherer, = R, +r (3.8)
Using (3.7) for Fl an®, = FO in (3.8), the outputA(r, 8,), expressed as a function of

thetime-independentariables 0 9 ), is:

12



A(U,8) = R —ay) +F(Q+Q%u, FeO

= [F'(R —ay) +(Q+Q%)u, 60 (3.9)
[P, 801+ [Gu, 80

whereP = FT(IiI —ag) andG = O +Q?. The term[P, 6C computes thdinear acce-

cleration (alongf). The other termiGu, BC computes thengular acceleration which

consists of thdaangential(skew-symmetri(ﬂ )andentripetal(symmetric£22 ) accelera-
tions. It will be shavn in Section 4 that there are special configurations of accelerometers

that allav one to computé€(t), F(t), and the coordinate of the centre of the b8yift)

in the inertial frame.
The authors in ([1], [7]) hee obtained an accelerometer output equatianhtat
equation doesot consider the transformation of coordinates between the inertial frame

and the moving frame. So their rotation matrix is always the identity matrix.
3.3 Some Properties of Rotation Operators
We recall that at all times, F(t) satisfy F(t)FT(t) = | anddet( K(t)) = 1, and
Q(t) is skew-symmetric. Let
SO3) = {FOR3 FF' =1,det(F) = 1} .
This set is referred to as tepecial orthogonal groupr therotation groupof R®. Itis

straight-forward to check th&0Q(3) is indeed a group under matrix multiplication. The

operatorQ = F'F is skew-symmetric, so it must have the form

-w, w; O

The set of3 x 3 skew-symmetric matrices is linear subspact%3 of
Lemma3.1:LetQ OR> 3. Q is ske/-symmetric if and only if thens auniquew [J R®

such thatQa = wxa foralld R3 )

13



T
Proof: Consider a skew-symmetGz  as given in (3.10)ub et [001 w, wg} . For any

-
a= [al a, a3] , we have

X = —_ = — =
wXa = |wya; —W,a, w; 0 —w|a, = Qa
WA, — W, -w, w; 0 ||ag

Converselygiven w [J R3, the cross-produc - w x a is a linear operatpand it has a
matrix representation given by the skew-symme®ic . u
We shall useQ - w or Q = S(w) to denote thato is thecross-product equiva-

lenceof the3 x 3 skew-symmetric matri®

Lemma 3.2:For anya, b, clJ R , A, bx dl= [@Ax b cC. This is the volume of the par-
allelogram spanned by the vectasb  and

Proof: LetB be th& x 3 skew-symmetric matrix such that b . By Lemma 2.1 and
, T
sinceB° = —B , we get
T
a,bxdl=a'(bxc)=a (Bc) =(B'a) c =(-Ba)'c = [axh ¢ ™
Consider the case whe@(t) = congan . Then the solution to the &fential
equationF = FQ is gven by F(t) = F(to)th, whereF(ty) is the initial condition.
As it will become clear latethis solution corresponds to the rotation of a rigid body about

a unit vectorw [0 R® , Wher®  kw arklis a positre scaling constant. The uniator

w specifies the direction of rotation asren by the right-hand side.oTensure that

Qt

F(typ)e  is a rotation matrix, it sfites to shw that e is a rotation sinc&Q(3) is a

group under matrix multiplication. 8\irst obtain an»gression for the>€ponentia|eQe ,

whereQ is skew-symmetric aid] R

Lemma 3.3:LetQ O R®*2 be skew-symmetric a2l ~ w . The following relations

14



W' — o]’ (3.11)

@)
I

2
o] "Q (3.12)

(@)
I

Higher powers of2 are given by:

0 = ()Mw*Q, k=123 ... (3.13)

K= () Yu*te? k= 2,3, (3.14)

Proof: The relatio? = ww' —||<,o||2I can be verified by direct calculation, wkkre

given by (3.10) and@2 -~ w anH:b)II Z _1w2 . Next, sin@ex w = 0 , we have

Q° = 0° = Qwo' —W’Q = (exw' -lul*Q = -lul’Q,
Since (3.11) and (3.12) hold, the relationships (3.13) and (3.14) canwe bjionduc-
tion. Suppose (3.13) and (3.14) are truekior | . Thekfor|+1 , we have

- Q2I +1QZ

= (1) lwl” Q0w w1
N E R ae!

Q2(I +1)+1

sinceQw = wxw = 0. Also by (2.12) we have

20+1) _ 21-154

= (-1)' Ml
= (1) Ml oW *Q)
= (-1)'|wl* " 'Q?

So therelations (3.13)and (3.14)hold. &

Q

Using the results in Lemma 3.3, one can computetperential of a séw-sym-

metric matrix efficiently. This is referred to below as Rudrigues’ Brmula.

Proposition 3.2 LetQ [J R*™3 be skew-symmetric an@ - w . L&t R. The &ponen-

tial of QO is given by

2
20 _ |+ £ sin(Jw|0) + " ||(1 cos|w|8) (3.15)

ool

15
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Proof: Using (3.13) and (3.14) in Lemma 3.3, we can vette as:

(Qe)2k+l @ (Qe)
=1+ Z (2k + 1) Z (2K)!
. (-1)"e) 2" 10 K+l o 0@ (_1)k"w“2k92k 2
=1 +kZO (2k + 1)! o] Z (2k)! (A
02
=147 ||S|n(||u)||6)+”(h)”(1 cos|w| 6)

Next we show that the exponential map transforms skew-symmetric matrices into

rotation matrices.

Lemma 3.4:LetQ OR>*® be skew-symmetricafd] R . Theh O SQ(3)

-1 . T T
Proof: LetF = eQe . Sinc&®QT = —Q |, we ha\(@Qe) =e Q8 _ eQ ® - (eQe) . So

FF' = | and it follows thatdet( F) = £1 . To show thatet( F) = 1 , we first note that

the composite map - Qf - e? det(e ) is continuous atek(exp(0)) = 1

Since det( F) can only take the discrete valads , we concludelétgF) = 1 ®
So geometricallya skew-symmetric matrix corresponds to an axis of rotation (via
the mappingQ ~ w), and the ®ponential map generates a rotation corresponding to the

rotation about the axiso (relatve to the inertial frame) by a specified an@le More
interestingly, the corerse of Lemma 3.4 is also true. That i&rg rotation matrix can be
expressed as the matrixponential of some &w-symmetric matrix. A proof of this
assertion can be found in [6].

Proposition 3.2Let F 0 SQ(3) . There existso [ R® anB0OR suchthat= e®° ,

whereQ = S(w) .

The components of thesgtor w6 [ R® are called thexponential coatinatesfor

F = ¢?°. Lemma 3.4 and Proposition 3.2 combine to give the following Euler theorem.

16



Theorem 3.1 (Euler) Any rotation matrixF O SQ(3) is equivalent to aatation about a

fixed axisw O R® through an angk([1 [0, 2m)
3.4 Rotation About a Fixed Axis

In this section we will obtair-(t) and Q(t) for rotations about fed axs. First
consider the case when a rigid body rotates about the z-axis (i.e. it hasvomhotian) at

a constant angular spegdad/sec in the anti-clockwise directione\féle the initial me-

ing frame{ f,(0) f,(0), f3(0} to be the standard ba$is, e,, e;} Rih
f>(0)

Y
£ (0) TR
w Vi v
AN /yt

N f1(0)

Figure 3.2: Rotation about the z-axis (yaw motion)

As shown in Figure 3.2, aftéseconds, the body frame is given{oly, (t), f,(t), f5(t)}

where
cos(yt) —sin(yt) 0
f1(t) = cosiytey + sin(ye, = [sin(yt)|» f2() = | costyy) | f2() = |0
0 0 1

Therefore, the rotation matrix is

cog(yt) —sin(yt) O
F(1) = [f1(0), F5(1), F3(t)] = |sin(yt) cos(yt) (3.16)

0 0

Next we obtainQ(t) which is given by
. 0-10
Q(t) = F,(t) FAt) =vy|1 0 g =Y, (3.17)
00

Recall that for a consta® , the solutiorfto= FQ is giverHgy) = F(to)eQt
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Q . "
SoF,(t) = e 4 One can also use the formula (3.15) in Proposition 3.1 to check that

t . .
© . The skew-symmetric mafdix corresponds to

F(t) is indeed equal teyQ

which is the axis of rotation.
Similarly, if a rigid body rotates about the x-axis (i.e. only pitch motion) at a con-

stant speedt in the anti-clockwise direction, then we get
1 0 0
Fx() = |0 cos(at) —sin(at)|

0 sin(at) cos(at)

000 1 aOt
Q(t) =ajpo-1 =0Q, ,Q, - w, = |pg|,and F(t) = e~
010 0

Also, for the case of rotation about the y-axis (i.e. only roll motion) at a constant

speedB , we get

cos(Bt) 0 sin(Bt)
Fy(t) = 0O 1 0
—sin(Bt) 0 cos(Pt)

00 0 Bt
Q(t) =Bj 0o 00 =BRQ, ,Q e w = [1,andF(t) =€ g

-10 0
We note that the rotation matrices about the three bassstae similar forms. In

fact, constant rotations aboutdtkaxes are related by similarity transformations. Consider
F = FQ whereQ is constant; so the body is rotating at a unit speed (1 rad./sec) about an

axisw withQ = S(w) . LetG be the similarity matrix that transform the rotation to that

about the z-axis. That isQ, = G'QG, GG =1, and F, = F,Q,. Then
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Q . ot .. . .
e = Ge G, SinceF(t) = F(to)eQt and F,(t) = F(tye Zt, it is immediate that

F(t) = F()G'.

Next consider a rotation about the z-axis. B¢t) be the angle of rotation. Similar
to (3.16), the rotation matrix is given by
cosO(t) —sinB(t) O

F(t) = | sinB(t) cosH(t)
0 0o 1

It is easy to check that

.. 0 -68(t) 0 0
Q) = FOFM = gy o o = 002, Q) - o) = | 0
0 0 0 o(t)

So for a rigid body rotating aboufiaedaxis, w(t) is indeed the body angulaglacity. In

general,w(t) is theinstantaneous angular velocitf the rotation described by (t). If

. Q
we takeB(t) = yt , we get our earlier result@f(t) = yQ,  aR@t) = e 2 . We sum-
marise this in the following lemma.

Lemma 3.5:Suppose a rigid body rotates arounébed axisw, with an angular speed

B(t) so thatw(t) = B(t)w,. The coresponding ske-symmetric matrixapresentation of
w(t) isQ(t) = G(t)QO,WhereQO - Wy . Thek(t) = F(to)ee(t)Qo solves the matrix

differential equationF = FQ t=t, .
Proof: It is straight-forward to check that

8(1)Q,

F(t) = F(tp)e 8(1)Q, = F(1)Q(1) m

3.5 Rigid Body Motion Examples
Example 1:Planar circulation and rotation about the vertical axis

Consider a rigid body. with centreOs, and an obseer atO, . Initially Oy is at a

distanced fronO, .LeR,(t) Dbethevectorfray Q9  attine
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X-Y PLANE

Figure 3.3: Planar circulation and rotation about the vertical axis
The bodyZ has tvo types of motion: (i)~ circles around the obsewO, on the x-y
plane and in the anti-clockwise direction at a constant angular gpestfsec. (i)~ also
rotates about theevtical z-axis at a constant angular sp&echd/sec. These two motions

are depicted in Figure 3.3. Le= 0 and R,(t;)= de;, where the standard basis

{e, e, e} is the inertial frame at the observer.

Motion (i) is a linear motion, that is, the mog frame (centered &5) does not
rotate with respect to the inertial frame. It is easy to see that
R, (t)= dcos((nt)e; + sin(nt)e,)) (3.18)

This motion is eqwalent to the rotation of the inertial frame about tlegtival axis

through the observéd, . So using (3.16)-(3.17) in Section 3.4, we canRy(ite as:
0-10
R ()= R, (to)ennzt: éennztel , Where Q.= |1 0
00

The linear velocity and linear acceleration of the ce@fye  are obtained by differentiating

(3.18) with respect to time. We get
R (t)= n(-sin(nt)e, + cog(nt)e,)

R (t)= -dn*(cos(nt)e; + sin(nt)e,)

These formulas can be compacty written as:
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2 NQt
e

. Q.t .
Ri()= dne’ e, , Ri()= -dn’e" “e,

Note thatR, ()= —n°R(t) .

Motion (ii) is a constant angular rotation of thevimg frame about theertical z-

axis. So from our discussion in Section 3.4 and (3.16)-(3.17), we have

vo cos(Yt) —sin(Yt) O
F(t)=e "= |sin(Yt) cos(Yt)

0 0
and
0-10 0
Q(t)= YQ,=Y|1 0 , Qo w= 0
00 1

It is obvious thaQ= 0 (since the speed of rotation is constan®=s6Q + Qz): Q?

X -1 0
G:Q:Yzo_lo

00

The gravity is given byag: —ge; . So straight-forward calculations give

) cos(Yt)cos(nt) + sin(Yt)sin(nt)
P= F'(R —ay)= |-sin(Yt)cos(nt) + cog(Yt)sin(nt)|(-3n°)

o/ (-8n%)
Whenn = Y (i.e. when motions (i) & (ii) are synchronised), we get= (—ESr]z)e1 +

ge; which does not depend on time. u

Example 2:Periodic translational and angular accelerations

This example considers a rigid body motion with periodic translational and angular

accelerations. The rigid body hasotwnotions: (i) linear acceleration along the x-axis

given by a sinusoidal function, and (ii) sinusoidal roll motion about the y-axis.

(i) The linear acceleration along the x-axis is given by:
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R= a,,sin(kt)e; (3.19)
with initial conditions,R, (0)= 0 R (0)= v,e, . Hera K, Vo are all positive con-

max ""a

stants. It is easy to check that

. a a
R ()= [E{‘ﬁ e Eaxcos(kat)}el
a

a

and

ama amax .
R (t)= {Efo+ kaxﬁ_(k )zsm(kat)}el

a

(i) The sinusoidal roll motion is wen by w(t) = a(t)e,, where

a(t)= ap.,sSin(k,.t) is the angle of rotation and(t) is the angular speed. Then
Q(t)= a(t)Q, , where Q -~ w, = e, . By Lemma 3.5 and takifigty)= 1 , we get
F(t)= eV

By formula (3.15) in Proporition 3.1, we obtain

cosa(t) Osina(t)
0 1 0
—sina(t) 0 cosa(t)

F()= V%=

Also Q(t)= a(t)Q, . Since a(t)= oy,,sin(k,t), we hae a(t)= —(ku)za(t). So

Q(t)= ~(ky) a()Q, , andéx(t)= ~(k,)a(t)e, . -

4. Feasibility of a Gyro-free INS

A gyroscope-free inertial navigation system (INS) is a system thabnbescceler-
ometer measurements to compute the linear displacement and angular rotation of a rigid
body To achiee this, the accelerometers need to be sgfica#y distrituted on the rigid
body. A set of accelerometers whose outputs arficsrit to calculate the linear and angu-

lar motions of a rigid body will be called@asible configurationf accelerometers. In this
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section, we will present a gigient condition for which a configuration is feasible. A fea-

sible configuration for a prototype cube-shaped INS will be considered in Section 5.
ConsiderN acceleromters mounted at locatiams ..., uy of a rigid body> with
sensing directiong,, ..., 8, , respectiveBecall from Section 3.2 thqu;, 6,) are given
with respect to the moving frame, and ainee-independentrom (3.9) the accelerometer
output at locatioruy; is A; = A(u, 6,). Recall from Section 3.1 that the motionaofy
point of X is described by the translatiBn(t) (coordinate of the centre of the body) and
rotation F(t) of X relatve to the inertial frame. So a gyroscope-free INS needs to be
designed in such aay that given the measurememigt) at timand the initial condi-

tions, one can determirig (t)  amdt) . This depends on a “good” choice of 6,and

which we will now define.
Definition 4.1: A configurationC = {(u;, 6;);1<i<N} of N accelerometers mounted
on a rigid body ideasibleif the accelerometer outputd;, = A(u, 6;) 1<i<N ,andthe
initial conditions{ R, (ty), R, (tp), F(ty), If(to)} are suficient to determine the linear and
angular motionsR,(t) ané(t) ,fot>t,

Let J; = [u; %04, ...,uyx6y] andJ, = [0, ..., 0y]. (These are3 x N matri-
ces.) Also letJ = [JHJ;], an N x 6 matrix. Using the accelerometer output equation

(3.9) and Lemma 3.2, we get

A = A(Y,8) = [F'(R —ay) +(Q+0Q%)u, 80

P +dxu +Q°u, 6,0

[P, 6,0+ o, u; x 6,0+ 7u,, 6,0

6] P+(ux6) c+6 Q°u,

[(ui x0,)] eﬂ m + [eiTQqu
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So we have

A . BIQZU1
P
T A2
N OnQ Uy
If J has a left invers& [ RN , then (4.1) becomes
' eIQZul
m = QA-Q .. : (4.2)

BLQZUN

Sow andP = FT(IiI —ag) can bdecouplednto two systems of equations of the form:

W= f(w A) (4.3)

P = g(w, A) (4.4)

Since the matrix diérential equationF = FQ is embedded in (4.2) to relafeand Q |,
one can view (4.2) as anput-output dynamical systemwhere thanputis A, thestate

equationsare:

w = f(w, A); F=FQ Qow |, (4.5)
and theoutput equations (4.4):

S

P=F (R -3, = g(wA) . (4.6)
We note that the state equations are used to compute the angular motion, and the output
equation is used to compute the linear motion. So an algorithm for calcutihgand
R, (t) is as follows.

Basic Algorithm:

Step 1: UseF(t,), F(ty) and® = F'F Q  w , to determingt,)
Step 2: Solve (4.3) (numerically) to obtaunft) , and tlfu&) . (For example, atitime

forward Euler approximation ab(t)  givest [o(t;) = w(t;, ;) —w(t) )
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Step 3: Solve the matrix differential equatibn= FQ (numerically) to olfgir) . The

solution F(t;) must be a rotation matrix.

Step 4: SinceP(t) is given by the algebraic equation (4.4), the linear displad@(ignt

can be obtained by using, (t,), RI (ty) and integratRdt) = F(t)P(t) + ay . That is,

trs
R (t) = R(ty) + R (to)(t—tp) +J’[J'(F(T)P(T) + ag)dt}ds 4.7)

t0 l:0
We summarise these computation procedures in the following proposition.

Proposition 4.1(A sufiicient condition for feasibility): If theN x 6 matrix J has deft

inverse then the configuratio® = {(u,6,);1<i<N} is feasible. Also ifN <6, then
the configuration cannot be feasible.

5. A Six-accelerometer Configuration

For a gyro-free INS, the equations in (4.1) that relate the linear and angular motions
are, in general, gerned by a set of nonlinear f@ifential equations. These equations are
very difficult to solve numerically There are, hmever configurations of accelerometers
that would gie rise to a set alecoupleddifferential and algebraic equations (4.3)-(4.4)
for the angular and linear motions, thus making numericafjiaten of the decoupled
equations feasible. Theakto designing a feasible configuration is a good choice of the
location and sensing direction of the accelerometeessh¥ll consider the cube-shaped

INS first xkamined in [1] (despite that their accelerometer output equation is incorrect).

The design has one accelerometer at the centre of @eeloffa cube of lengtBL . The
sensing direction of each accelerometer is along the respective cube face diagonal, in such
a way that these diagonals formegular tetrahedronThis is shown in Figure 5.1.

Let the origin be the centre of the cube. So the six accelerometers are located at:

0 0-110
U=1[u..ul =Llo-1001 (5.1)
-1 0 000

The corresponding sensing directions are:
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(5.2)

Figure 5.1: A six-accelerometer configuration for a cube-shaped INS

It is easy to check that
1-10 0 1-

L
Jp = [up x8;...ug x 8] = 510 1-10- (5.3)
0 1-1-110

Lemma5.> Fori#j, izmi x0;,u;x8;0+ [;,0;,]= 0. And eachl<i<6 , we have
L

1 2 _ 2 _

L—2||ui><ei|| = land|6" =1 .

Proof: The assertions follow immediately from straight-forward calculations using,the

andJ, matrices. |

Proposition 5.1 The inverse of] = [JHJ;] is:
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1 L

_1 - A

Q=73 =3]*" (5.4)
P

Proof
1 L 1|1

_ —HY1 _ T T
JQ = [JI Jgi 1?7 = §|:L_2‘]1J1+‘]2J2:|
‘JZ

Since J; = [u; X 0;...us X Bg] andl, = [0,...65] ,thé¢i, j) entryaddQ is:

(JQ)y = %[L%(Ui x6)" (u; x ;) + eiTeJ

171
= §|:L_2D'Ii x0;, uj x B0+ [Bi’ejq

By Lemma 5.1,(JQ)iJ- isOfoi #j ,andis 1 for= | . Hen@e = ' .m

So by Proposition 4.1, the configuratioB, ,e = {(U;, 6;);1<i <6} is feasible.
We net prove the follaving result which will be useful in obtaining the state equation
w = f(w, A) and the output equatioR = g(w, A)

Lemma 5.2 The second term in the right-hand side of (4.1) is:

eIQZUl . 002003 -
=-LJ, W Wy whereQ o w = [wl 0, 003] ) (5.5)
0 Q%u, 0,0,

T
Proof Let @ = [032003 W, 0y ‘*’1‘*’2} . The u; and 6, for configuration C; e are

given in (5.1)-(5.2). It is easy to check that:

GIQzul = %(—wlw:s—wzws) = —LGI(I)
T~2, _ L _ T~
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L TA
W

9;92u3 = —2(—001002—0)10)3) = —L6;
2 ~
GZQ u, = %(—wlwﬁwl%) = —Lelco
T~2. _ L _ eTA
ol 02y, = L - _1o7¢
6%2 Ug = 72(— Wy 003+ Wyw3) = ~LBg0

Therefore (5.5) holds sincg, = [el 66}

Proposition 5.2 The decoupled equations (4.3)-(4.4) for configurati&y, e

W=l = > /2L AL+ Az—Ay—Ag
(o Ay—Ag— Ay + A
AptAy—As—Ag W,

1
P=—7A+A,-A,+A. tL|w,w
o 2|1t Rem AT A 1003
Ayt Azt Ayt Ag W0,

are:

(5.6)

(5.7)

Proof It is easy to check tha]tlJ; = Ojzand JZJ; = 215, whereQ; is the zero matrix

and | ; is the identity matrix iR>*° . so by Proposition 5.1 and Lemma 5.2, we get:

6;Q%u, 1. |H W, 05/ I (W3
15300, 1 0 |o,

Ql ... = 5L T|EFLI, (w0, 0= - W0

2 - 19| 5 L1l |12

B Q°ug Jo JO w050 (010,

Substituting (5.8) into (4.2) gives:

: 6,0%, 1y |A o
H=QA—Q T e 3}
5 A

0, Q Uy, J2 | |Ae

(5.8)




where® = [‘*’2‘*’3 W, Wy wlwz}T' Using J; in (5.3) andJ, in (5.2), we obtain (5.6)
and (5.7). This completes the proof. [ |
Remarks:

() In general, the state equation= f(w, A) ((4.3)) does not he a closed form solu-
tion. To obtain a numerical solution fas(t), one needs to approximade. For the config-

uration C, e, (5.6) implies thatw is alinear combinationof the six accelerometer

readings. Sow(t) has aclosed form solutionThis males numerical ingration easier

. t
(Take w(t) = A(t), so thato(t) = w(ty) +J’t A(t)dt Forward Euler appoximationof
0

the integral giveso(t;) = w(ty) + At Elzij__loA(tj) , whert = t; —t; _,. This is equi-

alent to forward Euler approximation af(t) At [to(t;) = w(t;, ;) —w(t) )

(I Recall that in the accelerometer output equation (3.9) the t&bm 6L, where
G=Q+ QZ, computes the angular acceleration. It consists datigential(skew-sym-
metric Q) and centripetal (symmetricQz) accelerations. Let us consider the angular
acceleration along the-axis (i.e.w;). The accelerometers at; and u, do not sense
motion along thex-axis, sow, doesotdepend on these measurements. d8ynmetry

of the sensing directions @, ug}  afd,, ug} cancels the symmetric part of the angu-

lar motion along thex-axis. That is, the centripetal acceleratmzul, 6,L measured at

u, (respectively,EQzuz, 8,L measured at,) cancels that measured &} (respectively,
that measured ai; ). This explains why, the asymmetric part of the angular motion, is

a linear combination of the outpuss;, A,, A;  aig

In conclusion, the basic idea is to first ®ottie state equations in (4.5) to obtain the
angular motionw(t), F(t). The output equation (4.6) is then used to obtain the linear

motion. These steps are summarised in the Basic Algorithm in Sectiont#heFconfigu-

29



ration Cgpe,® = f(w, A) = f(A) is a linear function ofA and P = g(w, A) . They
are given in (5.6)-(5.7).
6. Conclusions and Future Work

In this report, a model of a sade micro-machined silicon accelerometer has been
derived with the assumptions that are reasonable for applications inebatewnaiga-
tion. This model uses the outpubltage of a micro-machined accelerometevicke to
determine the acceleration of a rigid body along a sensing direction. Rigid body motion
equations and theorrectaccelerometer output equationvealso been demd. We have
also discussed relant properties of the rotation matrix, and presented rigid body
motion examples. The concept of a feasible configuration of accelerometers is introduced
in Section 4. It is shen that for a feasible configuration, the linear and angular motions
can be computed separately using ecoupled equations. In principle, there areyman
feasible configurations. keever for most of them, it is difcult to determinew(t) and
R, (t) accurately as a result of dependencesatmes calculated at previous time steps. In
Section 5 a set of six accelerometers distributed on the centres of the six faces of a cube is

investigated. This configuration is feasible. Moveg the angular acceleratiow(t) is a
linear combination of the accelerometer measurements, thing gb(t) a closed form
solutionand making numerical integration of (4.3) much easier.

To obtain precise estimates of the motion parameters, one must consideidhs v
sources that contnitbe to the computation errors accumulated in calculatof and

F(t) (the states in (4.5)), anR,(t) (the output in (4.6)). These INS error sources are: (i)

bias, scaledctor errors, (ii) temperature dependent drift, (iii) cross-axis séhsigrrors
(between a pair of accelerometersy) (ocation, orientation errors, (v) randomvibe

noise, (vi) attitude (reference frame) errors, (vii) numericalgnatison errors. Errors (i)

and (ii) suggest that the measured accelerometer output is indeed a nonlinear function of
the true acceleration. This needs to be carefully modelled to reflect the characteristics of
the deice being used. Errors invji are accelerometer alignment errors. A calibration

method needs to beddoped to determine these errors, and additional equations need to
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be derved to compensate these errors when calculating the motion parameters. Errors in
(iif) and (v) will need to be estimated and modelled uskgeamental data. An algorithm
needs to be deloped to estimate the error (vip Tpdate the parameters being corrected

in the algorithms that estimate the errors in (i), (i) and (vi), x@areal reference (e.qg.

GPS information) will be needed. Finally, the state equafion FQ in general does not
hawe a closed form solution and has to be adlmumerically. The numerical scheme must
ensure that(t) is a rotation matrix. The resultant errors from numerical approximations
must also be accounted foklgorithms that estimate or correct these errors will be
reported in several future reports.

The algorithms need to bgmerimentally tested toevify their correctness and accu-
racy. A brief description of the hardwe setup is as follows. The gyroscope-free INS pro-
totype consists of two main parts: (i) six accelerometers distributed on a cube as described
in Section 5, (ii) a PC with a special DSP processing board that computesitisioa
parameters. Figure 6.1 si® the six-accelerometer cube. The length of each side of the
cube is 20 cm. The sensors are accelerometer ADXLO5 from AnalageBeFigure 6.2
shavs the complete prototype of thevigation system which consists of the six-sensor
cube and the accompang PC for calculating the magation parameters, and a rate table

for calibration.

Figure 6.1: A Six-accelerometer multi-sensor Figure 6.2: Complete prototype navigation
system system with a rate table for calibration
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The QNX real-time operating system will be useat. this operating system, special
attention needs to bewvgin to ensure that the computation processes are synchronised
within the QNX framework.

The future work will also include a simulation tool that simulates the algorithms and
performs sensiity analysis. Using a user intade, the simulation tool will ake one to
specify the motion of a cube-shaped body aamdous parameters (e.g. size of the cube,
locations and orientations of the accelerometers). It alsesatlee user to select thfrent
levels of accelerometer errors and the discretisation time-step. Suppose the motion of the
cube-shaped INS is specified (e.g. constant angular rotation abowettibal\axis). One
can then compute the accelerometer output readings that correspond to the specified
motion. 1o simlulate the algorithms, one can spedidy example, the location error and
the noise leel in the sensor d&e, and then simulate the resultant motion of the body
The simulation results can be used #rify error bounds and sensity analyses on

parameter values.
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