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Abstract

 We study the feasibility of designing an accelerometer-based gyroscope-free inertial

navigation system (INS) that usesonly accelerometers to compute the linear and angular

motions of a rigid body. A model for a micro-machined accelerometer is developed and

the accelerometer output equation is derived to relate the linear and angular motions of a

rigid body with respect to a fixed inertial frame. A sufficient condition is used to determine

if a configuration of accelerometers is feasible. If the condition is satisfied, the angular and

linear motions can be computedseparatelyusing two decoupled equations, one differen-

tial and one algebraic. A configuration of six accelerometers distributed on a cube-shaped

INS is considered. This configuration is feasible and the angular acceleration is a linear

combination of the accelerometer outputs. Based on this six-accelerometer configuration,

an algorithm is developed to compute both the angular and linear motions.
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Feasibility of a Gyroscope-free Inertial Navigation
 System for Tracking Rigid Body Motion

1. Introduction
Inertial navigation systems have been widely used in many diverse applications.

They include: automobiles, general aviation aircrafts, autonomous flying vehicles such as

helicopters, yachts, automated agricultural and construction vehicles, and submarine fleet.

Recently, robotics and image stabilisation are among some of the emerging areas that use

micro-machined navigation systems. Most inertial navigation systems use accelerometers

to sense linear accelerations and gyroscopes to sense angular velocity. In this report, we

study the feasibility of designing an accelerometer-based gyroscope-free inertial naviga-

tion system (INS) that usesonly accelerometers to compute the linear and angular motions

of a rigid body. In theory, a minimum of six accelerometers are required for a complete

description of a rigid body motion. The key to a solution of this problem is the choice of

location andorientation of the accelerometers. It will be shown that for some ‘‘nice’’ (or

feasible) configurations of accelerometers, the angular and linear motions can be com-

puted separately using two decoupled equations.

The relation between accuracy and price characteristics for different modern gyro-

scopes is shown in Figure 1.1. It shows that low-cost gyroscopes lack the accuracy that is

needed for precise navigation applications. Indeed, it has been reported in ([2], [4]) that,

due to challenges associated with micro-miniaturisation of gyroscopes, inexpensive batch-

processed gyroscopes cannot achieve the required levels of precision in the near future. A

precise micro-machined accelerometer, on the other hand, is more affordable. In fact, this

type of accelerometer has become one of the most notable applications of poly-silicon sur-

face-micromachining [5]. Due to recent breakthrough developments in micro-machining

technology, the costs of  micro-machined accelerometers is decreasing while their accu-

racy characteristics is being improved. Existing forecasts have indicated that this trend

will continue ([3], [8]). Also technically, there are far less fundamental physical con-
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straints that inhibit the precision of a micro-machined accelerometer than those that inhibit

the precision of a micro-machined gyroscope. So there is a potentially promising market

for developing accelerometer-based gyroscope-free inertial navigation systems.

The realisation of a gyroscope-free INS begins with: (1) the development of the

main principles of a gyro-free INS design, (2) the development of algorithms derived from

the principles for estimating navigation parameters. Semiconductor micro-machined

accelerometers are used as basic, sensing devices for an accelerometer-based gyro-free

INS. Using measurements from accelerometers strategically distributed on a rigid body

(e.g. a vehicle), a gyro-free INS algorithm estimates the body’s motion along the six

degrees of freedom (linear displacement and rotation of the body with respect to an iner-

tial reference frame). The next section discusses a mathematical model for a semiconduc-

tor accelerometer. Rigid body motion equations are derived in Section 3. A sufficient

condition is used in Section 4 to determine if a configuration of accelerometers is feasible.

A feasible configuration of six accelerometers will be considered in Section 5, and based
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    Figure 1.1: Accuracy and price characteristics of gyroscopes
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on this configuration, a basic gyro-free INS algorithm will be developed. Future work that

involves mainly algorithms for correcting INS measurement errors caused by various

sources are discussed in Section 6.

2. Modelling of an Accelerometer Sensor
A single axis accelerometer is a device with one input and one output that measures

its acceleration along a specific sensing axis. This electro-mechanical device is designed

to measure the physical quantity of acceleration of a rigid body to which it is firmly

attached, producing an electronic signal proportional to the projection of acceleration

along the sensing axis of the accelerometer. The projection of the acceleration vector is a

signed variable with its absolute value depending on the orientation and dynamics of the

accelerometer. If the velocity of the accelerometer is not changing in the inertial frame of

reference associated with the Earth, then the output of an accelerometer remains constant.

In addition to measuring changes in velocity, an accelerometer can also measure the pro-

jection of gravity onto its sensing axis. Therefore at any given moment the output of an

accelerometer measures the projection of the vector sum of the gravity and the projection

of acceleration induced by changes in body velocity. The physical structure of a single

axis accelerometer and its mathematical model are presented next.

2.1 General Physical Structure
An accelerometer generally consists of a proof mass suspended by compliant beams

attached to the rigid body. A simplified model of a single-axis accelerometer consists of a

proof mass  and two suspension beams that have an effective spring constant . There

is a damping factor  which affects the movement of the mass. Typically, an accelerome-

ter is modelled by a second-order mass-spring-damper system as shown in Figure 2.1.

 The input to the accelerometer is the force that acts on the mass and causes it to

move. Because of theguides, the motion of the mass is restricted to a specified sensing

direction, which is shown as the x-axis in Figure 2.1. Therefore the device measures the

acceleration  along the sensing direction x-axis. Customized electronic circuits can
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measure any change in , and generate a voltage signal proportional to  which is the

output of the accelerometer.

Without the loss of generality, one can neglect the damping , since the dynamic

response of a typical modern micro-accelerometer exceeds most rigid body dynamics by

at least an order of magnitude (i.e. 3000Hz vs. 100Hz). So the dynamics has asmall time

constant. This assumption holds for all vehicles operating at different speeds.

We note that for various emerging applications, the need for high bandwidth (BW)

could result in higher noise. However, if the device BW and rigid body dynamics become

comparable, we can model the effect of damping by a simple low-pass filter. Taking into

account the assumption about damping, the relationships between the acceleration,

force, motion of the mass, and output of the accelerometer can be conceived using the sim-

ple mechanical system shown in Figure 2.2.
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Figure 2.1: General accelerometer structure and its mechanical model.
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In Figure 2.2 the accelerometer is firmly attached to the body of a vehicle which is

moving along a surface inclined at an angle  relative to the  axis. The angle  corre-

sponds to the sensing direction of the accelerometer. The two forces acting on the proof

mass are the gravitational force and the force on the vehicle. Newton’s second law gives:

. (2.1)

Here the acceleration  is the vector sum of the accelerations caused by the force on the

vehicle and the gravity . The accelerometer measures the projection of

 onto its sensing axis given by the inclination angle .

In order to analyse the measurement mechanism, a model for the spring that sus-

pends the proof mass must be created. If the absolute value of acceleration does not

exceed a certain accelerometer threshold (i.e. 50% full scale range for accelerometer

ADXLO5), then a linear model of a perfectly resilient spring can be assumed:

(2.2)

Here  is the spring constant and  is the displacement as shown in Figure 2.2. Equation

(2.2) and the projection of (2.1) onto the accelerometer sensing axis can be equated:

.

Here  is the projection of  on the accelerometer sensing axis. Therefore, the basic

equation for the accelerometer is:

. (2.3)

Equation (2.3) is general for all types of accelerometers. For accelerometers that use

the micro-machined technology, two approaches for measuring dominate the market:

(i) capacitive sensing, (ii) piezoelectric sensing. These approaches convert mechanical

information into electrical signals by methods that are particular to the silicon technology.

α x α

F m a⋅ m ag⋅+ m a ag+( )⋅ m aeq⋅= = =

aeq

ag 9.8 m s
2⁄( )=

aeq α

F k xa⋅=

k xa

k xa⋅ m aeq⋅=

aeq aeq

aeq xa
˙̇ k xa⋅

m
------------= =
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The case of measuring  using the capacitive mechanism is considered next. We will not

discuss the less common piezoresistive mechanism.

2.2 Capacitive Accelerometer Model
As shown in Figure 2.3, a capacitive accelerometer monitors the change in capaci-

tance of the parallel plate capacitive structure placed between the proof mass and the sub-

strate. (Note that the substrate is firmly attached to a rigid body.)

A change in  causes a change in the capacitance defined by:

(2.4)

 where  is the permittivity of the air gap, and  is the surface area on either side of the

proof mass where the springs are located.

The change in capacitance can be measured by applying an alternating current and

measuring its effect on the electrostatic charges across the gap. Equations (2.3) and (2.4)

give:

(2.5)

which measures the projection of acceleration onto the sensing axis of the device.

2.3 Mathematical Model of an Accelerometer

Figure 2.4 shows a proof body of mass  in its equilibrium state without deflection

caused by an input force. Let  be the position of the centre of mass in its equilibrium
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state. Let  denote the -coordinate of the centre of mass. (Note that the guides limit the

body movement to be along the -axis). Let  be the spring constant.

Let  be the radius-vector of the centre of mass  with respect to a fixed inertial

frame, i.e. , where  is the centre of the inertial frame. Let theunit  vector

be the direction of movement of the accelerometer. This is the sensing direction and is

shown as the x-axis in Figure 2.4. When the body rotates changes in direction with

respect to the inertial frame. The position of the centre of mass is given by . The

proof body is under the influence of the following forces:

1) the resilient force of the springs  ,

2) the gravity force , where  is the gravity, and

3) the (total) reaction force from guides. (Note that the reaction force  is

orthogonal to the -axis, i.e. ).

By equating the forces on the body, the acceleration of the centre of mass is given by:

where  is time. The acceleration in the direction of movement (i.e. sensing direction) is

then given by the projection on , so we have:

δ x

x k

Figure 2.4: Simplified model of an electro-mechanical accelerometer system
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(2.6)

Since , we have . Substituting these into (2.6) gives:

This formula can be rewritten as:

. (2.7)

When a force is applied to the proof mass, the real physical response of the acceler-

ometer is characterised by the proof body displacement. (Note that our assumption in

damping implies that the time constant of this spring system model is very small. So tran-

sients can be ignored.) The accelerometer then produces an output voltage proportional to

. The right-hand side of equation (2.7) depends only on and contains no motion

parameters. All the terms on the left-hand side of (2.7) are motion parameters. Since one

observes only the “voltage” output of the accelerometer, one must consider the left-hand

side of  (2.7) as the “logical” (effective) output of the accelerometer, i.e.

. (2.8)

The logical output of the accelerometer consists of three parts:

 - projection of acceleration of the centre of mass onto the sensing direction,

 - projection of gravitational acceleration onto the sensing direction,

 - projection of the product of the displacement and  change in the sensing

direction over time onto the sensing direction.

Typical values of  are about m, so the term  is very small compared

with the other acceleration terms and can be neglected. The accelerometer output (2.8)

then becomes:

. (2.9)
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In some previous papers ([1], [7]) the logical output is assumed to be only .

One must take gravity and change of the sensing direction into account. The inclusion of

the effect of gravity is important. Firstly, the gravity vector has constant orientation with

respect to the inertial frame; hence it can be used as a reference for calibrating an acceler-

ometer sensing axis. The gravity vector also acts as a reference for calibrating the axes of

a body frame relative to the Earth’s coordinate frame. Secondly, the presence of gravity

leads to significant errors in determining the relative changes in coordinates. A small error

in the orientation of a moving frame with respect to the Earth frame can result in a large

navigation error. Consider a levelled accelerometer whose sensing direction is off the hori-

zon by an angle  = 0.2 milli-radian. After  = 5 seconds, time integration of this

neglected gravity effect will produce a displacement error of the order

 m. This would exceed errors caused by accelerome-

ter measurement uncertainty. Thus, the effect of gravity cannot be neglected in describing

the motion of a rigid body.

3. Rigid Body Motion in R3

We have discussed in Section 2 that an accelerometer mounted at a point on a

rigid body  and pointed at a sensing direction  is a precision instrument

designed to measure the acceleration at the point in the direction  with respect to a

fixed inertial frame. In this section, we will describe the motion of a rigid body in in

terms of its linear displacement and rotation relative to an inertial frame. We will present

examples of tracking specific types of motion in Section 3.5, and show how accelerome-

ters can be used to determine linear and angular motions in Section 4.

3.1 Rigid Body Motion Equation
In this section we will derive the equations that describe the linear and angular

motions of a rigid body with respect to an inertial frame. Without loss of generality, the

gravity can be neglected. When an accelerometer is mounted at a point M on the body, the

r I
˙̇ θI,〈 〉

φ T

ag φsin T
2

9.8 2 10
4–×( ) 5

2⋅ ⋅≈⋅ ⋅

M

Σ θI R
3∈

M θI

R
3
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accelerometer output measures the acceleration at  minus the gravity (see (2.9)). So the

gravity term should be included when one considers the output of an accelerometer.

Let  be a rigid body and  a point of  as shown in Figure 3.1. Let  be the cen-

tre of afixed inertial frame with an orthonormal basis . (Typically, this is the

standard basis in .) We also call  the observer. The orthonormal inertial frame is

right-handed, that is, the cross products , ,  hold.

The coordinate system  is called theinertial frame. Motion of the body

is described by the translation of the centre and the rotation of a right-handed orthonor-

mal basis  with respect to the inertial frame. The coordinate system

 is called themoving frame associated with the body.

Rigid body motion consists oftranslation androtation. The translation is given by

the vector coordinate  of the center  of the moving frame relative to the inertial

frame. The rotation of the rigid body is described by the rotation of the moving frame

with respect to the fixed inertial frame, and is described by a matrix .

The matrix  descibes the relative orientation of the moving basis  with

respect to the fixed inertial  basis . That is, , . Since the

M

OI

e1

e2

e3 O

f 1

f 2
f 3

inertial frame

moving frame

RI

r I

r
M

rigid bodyΣ

observer

Figure 3.1:   Rigid Body Motion inR3
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bases  and  are orthonormal,  is orthogonal with

(identity matrix). It then follows that . Since the moving frame is right-

handed, one must have . The matrix  is called arotation

operator, or simply, arotation matrix.

One can now describe the motion of  in terms of its translation  and its rota-

tion  relative to the inertial frame. Consider the point of  as shown in Figure 3.1.

The vector  is the coordinate of  in the inertial frame. The vector  is

the vector from the centre  to  as seen from the observer . Then

. (3.1)

where all the vectors in  (3.1) are measured in theinertial frame.

Since  is rigid, the magnitude of  (i.e. distance between center and  )

remains the same. However, the direction of  changes when  rotates. The coordinates

of  in themoving frame are given by , which are the projec-

tions of  onto the basis vectors . Again since  is rigid, the coordinates of

 in the moving frame remain the same, so  constant. Thus  is

independent of time. (If  is the standard basis, then is the vector from  to  in

the moving frame.) The vector  can be expressed as , so we get

(3.2)

Substituting (3.2) into (3.1) gives

(3.3)

Thus the motion of any point of  can be described by the translation  and rotation

 of  relative to theinertial frame.

The acceleration of the point  (relative to theinertial frame) is given by

e1 e2 e3, ,{ } f 1 f 2 f 3, ,{ } F FTF I=

det F( ) 1±=

det F( ) f 1
T

f 2 f 3×( ) 1= = F

Σ RI t( )

F t( ) M Σ

r I OI M≡ M r OM≡

O M OI

r I RI r+=

Σ r O M

r Σ

M uk r f k,〈 〉 k, 1 2 3, ,= =

r f 1 f 2 f 3, ,{ } Σ

M uk t( ) ≡ u ukekk 1=

3∑=

ek{ } u O M

r r f k,〈 〉 f kk 1=

3∑

r r f k,〈 〉 f kk 1=

3∑ ukFekk 1=

3∑ Fu= = =

r I RI Fu+=

Σ RI t( )
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(3.4)

Since  is orthogonal, we have . Time differentiation of this equality gives:

Define . So  is skew-symmetric with . Also  and the

orthogonality of  imply

. (3.5)

Differentiating  (3.5) with respect to time gives:

.

Using  (3.5) we get

. (3.6)

So from (3.4) the acceleration of the point  can also be expressed as:

. (3.7)

The output of an accelerometer can be obtained from (3.7), which we will next consider.

3.2  Accelerometer Output
Suppose an accelerometer of the type described in Section 2.3 is attached at a point

 of a rigid body . The coordinate and sensing direction of the accelerometer in the

moving frame are  and  (a unit vector), respectively. Note that, as explained in Sec-

tion 3.1, both  and  are independent of time. The corressponding coordinate and sens-

ing direction in theinertial frame are  and . Equation (2.9) states that

the output of the accelerometer is:

,          where (3.8)

Using (3.7) for  and  in (3.8), the output , expressed as a function of

thetime-independent variables ( , ), is:

ṙ̇ I Ṙ̇I Ḟ̇u+=

F FTF I=

FTḞ ḞTF+ 0=

Ω FTḞ≡ Ω ΩT Ω–= Ω FTḞ≡

F

Ḟ FΩ=

Ḟ̇ FΩ̇ ḞΩ+=

Ḟ̇ F Ω̇ Ω2
+( )=

M

r I
˙̇ RI

˙̇= F Ω̇ Ω2
+( )u+

M Σ

u θ

u θ

r Fu= θI Fθ=

A A r θI,( ) r I
˙̇ ag– θI,〈 〉= = r I RI r+=

r I
˙̇ θI Fθ= A r θI,( )

u θ
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(3.9)

where  and . The term  computes thelinear acce-

cleration (along ). The other term  computes theangular acceleration which

consists of thetangential (skew-symmetric ) andcentripetal (symmetric ) accelera-

tions. It will be shown in Section 4 that there are special configurations of accelerometers

that allow one to compute , and the coordinate of the centre of the body

in the inertial frame.

 The authors in ([1], [7]) have obtained an accelerometer output equation, but that

equation doesnot consider the transformation of coordinates between the inertial frame

and the moving frame. So their rotation matrix is always the identity matrix.

3.3 Some Properties of Rotation Operators

We recall that at all times,  satisfy  and , and

 is skew-symmetric. Let

.

This set is referred to as thespecial orthogonal group or therotation group of . It is

straight-forward to check that  is indeed a group under matrix multiplication. The

operator  is skew-symmetric, so it must have the form

(3.10)

The set of  skew-symmetric matrices is linear subspace of .

Lemma 3.1:Let .  is skew-symmetric if and only if there is aunique

such that  for all .

A u θ,( ) RI
˙̇ ag–( ) F Ω̇ Ω2

+( )u+ Fθ,〈 〉=

F
T

RI
˙̇ ag–( ) Ω̇ Ω2

+( )u+ θ,〈 〉=

P θ,〈 〉 Gu θ,〈 〉+=

P F
T
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˙̇ ag–( )= G Ω̇ Ω2

+= P θ,〈 〉

θ Gu θ,〈 〉

Ω̇ Ω2

Ω t( ) F t( ), RI t( )

t F t( ) F t( )FT
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Ω t( )

SO 3( ) F R
3 3×

FF
T

I det F( ) 1=,=,∈{ }=

R
3
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Ḟ=

Ω
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=
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3∈
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Proof: Consider a skew-symmetric  as given in (3.10). Let . For any

, we have

Conversely, given , the cross-product  is a linear operator, and it has a

matrix representation given by the skew-symmetric .

We shall use  or  to denote that  is thecross-product equiva-

lence of the  skew-symmetric matrix .

Lemma 3.2:For any , . This is the volume of the par-

allelogram spanned by the vectors  and .

Proof:  Let  be the  skew-symmetric matrix such that . By Lemma 2.1 and

since , we get

Consider the case when . Then the solution to the differential

equation  is given by , where  is the initial condition.

As it will become clear later, this solution corresponds to the rotation of a rigid body about

a unit vector , where  and is a positive scaling constant. The unit vector

 specifies the direction of rotation as given by the right-hand side. To ensure that

 is a rotation matrix, it suffices to show that  is a rotation since  is a

group under matrix multiplication. We first obtain an expression for the exponential ,

where  is skew-symmetric and .

Lemma 3.3:Let  be skew-symmetric and . The following relations

Ω ω ω1 ω2 ω3

T
=

a a1 a2 a3

T
=

ω a×
ω2a3 ω3a2–

ω3a1 ω1a3–

ω1a2 ω2a1–
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Ω ω↔ Ω S ω( )= ω

3 3× Ω

a b c R
3∈, , a b c×,〈 〉 a b× c,〈 〉=
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T
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hold:

(3.11)

(3.12)

Higher powers of  are given by:

, (3.13)

, (3.14)

Proof: The relation  can be verified by direct calculation, where  is

given by (3.10) and , and . Next, since , we have

,

Since (3.11) and (3.12) hold, the relationships (3.13) and (3.14) can be shown by induc-

tion. Suppose (3.13) and (3.14) are true for . Then for , we have

since . Also by (2.12) we have

So  the relations  (3.13) and (3.14) hold.

Using the results in Lemma 3.3, one can compute the exponential of a skew-sym-

metric matrix efficiently. This is referred to below as theRodrigues’ Formula.

Proposition 3.1: Let  be skew-symmetric and . Let . The exponen-

tial of  is given by

(3.15)

Ω2 ωωT ω 2
I–=

Ω3 ω 2Ω–=

Ω

Ω2k 1+
1–( )k ω 2kΩ= k 1 2 3 …, , ,=

Ω2k
1–( )k 1– ω 2k 1– Ω2

= k 2 3 …, ,=

Ω2 ωωT ω 2
I–= Ω

Ω ω↔ ω 2 ωi
2

i 1=
3∑= ω ω× 0=

Ω3 Ω Ω2⋅ ΩωωT ω 2Ω– ω ω×( )ωT ω 2Ω– ω 2Ω–= = = =

k l= k l 1+=

Ω2 l 1+( ) 1+ Ω2l 1+ Ω2
=

1–( )l ω 2lΩ ωωT ω 2
I–( )=

1–( )l 1+ ω 2 l 1+( )Ω=

Ωω ω ω× 0= =

Ω2 l 1+( ) Ω2lΩ2
1–( )l 1– ω 2l 1– Ω4

= =

1–( )l 1– ω 2l 1– Ω ω 2Ω–( )=

1–( )l ω 2l 1+ Ω2
=

Ω R
3 3×∈ Ω ω↔ θ R∈

Ωθ

e
Ωθ

I
Ω
ω

-------- ω θ( ) Ω2

ω
-------- 1 ω θcos–( )+sin+=
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Proof: Using (3.13) and (3.14) in Lemma 3.3, we can write  as:

Next we show that the exponential map transforms skew-symmetric matrices into

rotation matrices.

Lemma 3.4:Let  be skew-symmetric and . Then .

Proof:  Let . Since , we have . So

 and it follows that . To show that , we first note that

the composite map  is continuous and .

Since  can only take the discrete values , we conclude that .

So geometrically, a skew-symmetric matrix corresponds to an axis of rotation (via

the mapping ), and the exponential map generates a rotation corresponding to the

rotation about the axis  (relative to the inertial frame) by a specified angle. More

interestingly, the converse of Lemma 3.4 is also true. That is, every rotation matrix can be

expressed as the matrix exponential of some skew-symmetric matrix. A proof of this

assertion can be found in [6].

Proposition 3.2Let . There exists  and  such that ,

where .

The components of the vector  are called theexponential coordinates for

. Lemma 3.4 and Proposition 3.2 combine to give the following Euler theorem.

e
Ωθ

e
Ωθ

I
Ωθ( )2k 1+

2k 1+( )!
------------------------ Ωθ( )2k

2k( )!
-----------------

k 1=

∞

∑+
k 0=

∞

∑+=

I
1–( )k ω 2k 1+ θ

2k 1+

2k 1+( )!
------------------------------------------------- Ω

ω
--------⋅ 1–( )k ω 2kθ

2k

2k( )!
----------------------------------- Ω2

ω
--------⋅

k 1=

∞

∑–
k 0=

∞

∑+=

I
Ω
ω

-------- ω θ( ) Ω2

ω
-------- 1 ω θcos–( )+sin+=

Ω R
3 3×∈ θ R∈ e

Ωθ
SO 3( )∈

F e
Ωθ

= ΩT Ω–= e
Ωθ( )

1–
e

Ω– θ
e

ΩTθ
e

Ωθ( )
T

= = =

FF
T

I= det F( ) 1±= det F( ) 1=

β Ωβ e
Ωβ

det e
Ωβ( )→ →→ det 0( )exp( ) 1=

det F( ) 1± det F( ) 1=

Ω ω↔

ω θ

F SO 3( )∈ ω R
3∈ θ R∈ F e

Ωθ
=

Ω S ω( )=

ωθ R
3∈

F e
Ωθ

=
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Theorem 3.1 (Euler): Any rotation matrix  is equivalent to a rotation about a

fixed axis  through an angle .

3.4 Rotation About a Fixed Axis
In this section we will obtain  and  for rotations about fixed axes. First

consider the case when a rigid body rotates about the z-axis (i.e. it has only yaw motion) at

a constant angular speed rad/sec in the anti-clockwise direction. We take the initial mov-

ing frame  to be the standard basis  in .

As shown in Figure 3.2, aftert seconds, the body frame is given by ,

where

, ,

Therefore, the rotation matrix is

(3.16)

Next we obtain which is given by

(3.17)

Recall that for a constant , the solution to  is given by .

F SO 3( )∈

ω R
3∈ θ 0 2π ),[∈

F t( ) Ω t( )

γ

f 1 0( ) f 2 0( ) f 3 0( ),{ , } e1 e, 2 e3},{ R
3

Figure 3.2: Rotation about the z-axis (yaw motion)

γ

γ t

γ t

 f1 (0)

 f2 (0)

 f1 (t) f2 (0)

f 1 t( ) f 2 t( ) f 3 t( ),,{ }

f 1 t( ) γt( )e1 γt( )e2sin+cos
γt( )cos

γt( )sin

0

= = f 2 t( )
γt( )sin–

γt( )cos

0

= f 3 t( )
0

0

1

=

Fz t( ) f 1 t( ) f 2 t( ) f 3 t( ),[ , ]
γt( )cos γt( )sin– 0

γt( )sin γt( )cos 0

0 0 1

= =

Ω t( )

Ω t( ) Fz t( )T
Ḟz t( ) γ

0 1– 0

1 0 0

0 0 1

γ Ωz= = =

Ω Ḟ FΩ= F t( ) F t0( )eΩt
=
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So . One can also use the formula (3.15) in Proposition 3.1 to check that

 is indeed equal to . The skew-symmetric matrix  corresponds to

which is the axis of rotation.

Similarly, if a rigid body rotates about the x-axis (i.e. only pitch motion) at a con-

stant speed  in the anti-clockwise direction, then we get

,

, and

Also, for the case of rotation about the y-axis (i.e. only roll motion) at a constant

speed , we get

, and

We note that the rotation matrices about the three basis axes have similar forms. In

fact, constant rotations about fixed axes are related by similarity transformations. Consider

 where  is constant; so the body is rotating at a unit speed (1 rad./sec) about an

axis  with . LetG be the similarity matrix that transform the rotation to that

about the z-axis. That is, , , and . Then

Fz t( ) e
γ Ωzt=

Fz t( ) e
γΩzt Ωz

Ωz ωz↔
0

0

1

=

α

Fx t( )
1 0 0

0 αt( )cos αt( )sin–

0 αt( )sin αt( )cos

=

Ω t( ) α
0 0 0

0 0 1–

0 1 0

αΩx Ω, x ωx↔
1

0

0

= = = Fx t( ) e
αΩxt=

β

Fy t( )
βt( )cos 0 βt( )sin

0 1 0

βt( )sin– 0 βt( )cos

=

Ω t( ) β
0 0 1

0 0 0

1– 0 0

βΩy Ω, y ωy↔
0

1

0

= = = Fy t( ) e
βΩyt=

Ḟ FΩ= Ω

ω Ω S ω( )=

Ωz G
TΩG= GG

T
I= Ḟz FzΩz=



19

. Since  and , it is immediate that

.

Next consider a rotation about the z-axis. Let  be the angle of rotation. Similar

to (3.16), the rotation matrix is given by

It is easy to check that

So for a rigid body rotating about afixed axis,  is indeed the body angular velocity. In

general,  is theinstantaneous angular velocity of the rotation described by . If

we take , we get our earlier result of  and . We sum-

marise this in the following lemma.

Lemma 3.5:Suppose a rigid body rotates around afixed axis  with an angular speed

 so that . The corresponding skew-symmetric matrix representation of

 is , where . Then  solves the matrix

differential equation , .

Proof: It is straight-forward to check that

3.5 Rigid Body Motion Examples
Example 1:Planar circulation and rotation about the vertical axis

Consider a rigid body  with centre , and an observer at . Initially  is at a

distance  from . Let  be the vector from  to  at timet.

e
Ωt

Ge
ΩztG

T
= F t( ) F t0( )eΩt

= Fz t( ) F t0( )e
Ωzt=

F t( ) Fz t( )GT
=

θ t( )

F t( )
θ t( )cos θ t( )sin– 0

θ t( )sin θ t( )cos 0

0 0 1

=

Ω t( ) F t( )T
Ḟ t( )

0 θ̇ t( )– 0

θ̇ t( ) 0 0

0 0 0

θ̇ t( )Ωz Ω t( ) ω↔, t( )
0

0

θ̇ t( )

= = = =

ω t( )

ω t( ) F t( )

θ t( ) γt= Ω t( ) γ Ωz= F t( ) e
γ Ωzt=

ω0

θ̇ t( ) ω t( ) θ̇ t( )ω0=

ω t( ) Ω t( ) θ̇ t( )Ω0= Ω0 ω0↔ F t( ) F t0( )e
θ t( )Ω0=

Ḟ FΩ= t t0≥

Ḟ t( ) F t0( )e
θ t( )Ω0θ̇ t( )Ω0 F t( )Ω t( )= =

Σ OΣ OI OΣ

δ OI RI t( ) OI OΣ
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The body  has two types of motion: (i)  circles around the observer  on the x-y

plane and in the anti-clockwise direction at a constant angular speed rad/sec. (ii)  also

rotates about the vertical z-axis at a constant angular speed rad/sec. These two motions

are depicted in Figure 3.3. Let  and , where the standard basis

 is the inertial frame at the observer.

Motion (i) is a linear motion, that is, the moving frame (centered at ) does not

rotate with respect to the inertial frame.  It is easy to see that

(3.18)

This motion is equivalent to the rotation of the inertial frame about the vertical axis

through the observer .  So using (3.16)-(3.17) in Section 3.4, we can write  as :

,   where .

The linear velocity and linear acceleration of the centre  are obtained by differentiating

(3.18) with respect to time.  We get

These formulas can be compacty written as:

Figure 3.3: Planar circulation and rotation about the vertical axis

OΣOI

ϒ

η

RI t0( ) δ=

X - Y PLANE

Y

X

Σ Σ OI

η Σ

ϒ

t0 0= RI t0( ) δe1=

e1 e2 e3,{ , }

OΣ

RI t( ) δ ηt( )e1 ηt( )e2sin+( ) )cos=

OI RI t( )

RI t( ) RI t0( )e
ηΩzt δe

ηΩzte1== Ωz

0 1– 0

1 0 0

0 0 0

=

OΣ

ṘI t( ) δη ηt( )e1sin– ηt( )e2cos+( )=

Ṙ̇I t( ) δη2 ηt( )e1cos ηt( )e2sin+( )–=
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 ,

Note that .

Motion (ii) is a constant angular rotation of the moving frame about the vertical z-

axis.  So from our discussion in Section 3.4 and (3.16)-(3.17), we have

and

  ,

It is obvious that  (since the speed of rotation is constant), so .

The gravity is given by .  So straight-forward calculations give

When  (i.e. when motions (i) & (ii) are synchronised), we get  +

 which does not depend on time.

Example 2:Periodic translational and angular accelerations

This example considers a rigid body motion with periodic translational and angular

accelerations. The rigid body has two motions: (i) linear acceleration along the x-axis

given by a sinusoidal function, and (ii) sinusoidal roll motion about the y-axis.

(i) The linear acceleration along the x-axis is given by:

ṘI t( ) δηe
ηΩzte2= Ṙ̇I t( ) δη2

e
ηΩzte1–=

Ṙ̇I t( ) η2
RI t( )–=

F t( ) e
ϒΩzt

ϒt( )cos ϒt( )sin– 0

ϒt( )sin ϒt( )cos 0

0 0 1

==

Ω t( ) ϒΩz ϒ
0 1– 0

1 0 0

0 0 0

== Ωz ω↔ z

0

0

1

=

Ω̇ 0=̇ G Ω̇ Ω2
+( ) Ω2

==

G Ω2 ϒ2
1– 0 0

0 1– 0

0 0 0

==

ag ge3–=

P F
T

RI
˙̇ ag–( )

ϒt( ) ηt( )coscos ϒt( ) ηt( )sinsin+

ϒt( ) ηt( )cossin– ϒt( ) ηt( )sincos+

g δη2
–( )⁄

δη2
–( )==

η ϒ= P δη2
–( )e1=

ge3
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(3.19)

with initial conditions, , .  Here , ,  are all positive con-

stants.  It is easy to check that

and

     .

(ii) The sinusoidal roll motion is given by , where

 is the angle of rotation and  is the angular speed.  Then

, where .  By Lemma  3.5 and taking , we get

By formula  (3.15) in Proporition 3.1, we obtain

Also . Since , we have . So

, and .

4. Feasibility of a Gyro-free INS
A gyroscope-free inertial navigation system (INS) is a system that usesonly acceler-

ometer measurements to compute the linear displacement and angular rotation of a rigid

body. To achieve this, the accelerometers need to be strategically distributed on the rigid

body. A set of accelerometers whose outputs are sufficient to calculate the linear and angu-

lar motions of a rigid body will be called afeasible configuration of accelerometers. In this

Ṙ̇I amaxsin kat( )e1=

RI 0( ) 0= ṘI 0( ) voe1= amax Ka v0

ṘI t( ) v0

amax

ka
-----------+ 

  amax

ka
----------- kat( )cos– e1=

RI t( ) v0

amax

ka
-----------+ 

 t
amax

ka( )2
------------ kat( )sin– e1=

ω t( ) α̇ t( )e2=

α t( ) αmax kαt( )sin= α̇ t( )

Ω t( ) α̇ t( )Ωy= Ωy ωy↔ e2= F t0( ) I=

F t( ) e
α t( )Ωy=

F t( ) e
α t( )Ωy

α t( )cos 0 α t( )sin

0 1 0

α t( )sin– 0 α t( )cos

==

Ω̇ t( ) α̇̇ t( )Ωy= α t( ) αmax kαt( )sin= α̇̇ t( ) kα( )2α t( )–=

Ω̇ t( ) kα( )2α t( )Ωy–= ω̇ t( ) kα( )2α t( )e2–=
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section, we will present a sufficient condition for which a configuration is feasible. A fea-

sible configuration for a prototype cube-shaped INS will be considered in Section 5.

Consider  acceleromters mounted at locations  of a rigid body  with

sensing directions , respectively. Recall from Section 3.2 that  are given

with respect to the moving frame, and aretime-independent. From (3.9) the accelerometer

output at location  is . Recall from Section 3.1 that the motion ofany

point of  is described by the translation  (coordinate of the centre of the body) and

rotation  of  relative to the inertial frame. So a gyroscope-free INS needs to be

designed in such a way that given the measurements  at time and the initial condi-

tions, one can determine  and . This depends on a ‘‘good’’ choice of  and ,

which we will now define.

Definition 4.1: A configuration  of  accelerometers mounted

on a rigid body isfeasibleif the accelerometer outputs , , and the

initial conditions  are sufficient to determine the linear and

angular motions,  and , for .

 Let  and . (These are  matri-

ces.) Also let , an  matrix. Using the accelerometer output equation

(3.9) and Lemma 3.2, we get

N u1 … uN, , Σ

θ1 … θN, , ui θi,( )

ui Ai A ui θi,( )=

Σ RI t( )

F t( ) Σ

Ai t( ) t

RI t( ) F t( ) ui θi

C ui θi,( ) 1 i N≤ ≤;{ }= N

Ai A ui θi,( )= 1 i N≤ ≤

RI t0( ) RI
˙ t0( ) F t0( ) Ḟ t0( ),, ,{ }

RI t( ) F t( ) t t0≥

J1 u1 θ1× … uN θN×, ,[ ]= J2 θ1 … θN, ,[ ]= 3 N×

J J1
T

J2
T[ ]= N 6×

Ai A ui θi,( ) F
T

RI
˙̇ ag–( ) Ω̇ Ω2

+( )ui+ θi,〈 〉= =

P ω̇ ui× Ω2
ui+ + θi,〈 〉=

P θi,〈 〉 ω̇ ui θi×,〈 〉 Ω2
ui θi,〈 〉+ +=

θi
T
P ui θi×( )Tω̇ θi

TΩ2
ui+ +=

ui θi×( )T θi
T ω̇

P
θi

TΩ2
ui

+=
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So we have

(4.1)

If  has a left inverse , then (4.1) becomes

 . (4.2)

So  and  can bedecoupled into two systems of equations of the form:

(4.3)

(4.4)

Since the matrix differential equation  is embedded in (4.2) to relate and ,

one can view (4.2) as aninput-output dynamical system where theinput is , thestate

equations are:

   , (4.5)

and theoutput equation is (4.4):

  . (4.6)

We note that the state equations are used to compute the angular motion, and the output

equation is used to compute the linear motion. So an algorithm for calculating and

 is as follows.

Basic Algorithm:

Step 1: Use  and , , to determine .

Step 2: Solve (4.3) (numerically) to obtain , and thus . (For example, at time ,

forward Euler approximation of  gives .)

A

A1

…
AN

J ω̇
P

θ1
TΩ2

u1

…

θN
T Ω2

uN

+= =

J Q R
6 N×∈

ω̇
P

QA Q

θ1
TΩ2

u1

…

θN
T Ω2

uN

–=

ω̇ P F
T

RI
˙̇ ag–( )=

ω̇ f ω A,( )=

P g ω A,( )=

Ḟ FΩ= F Ω

A

ω̇ f ω A,( );= Ḟ FΩ Ω ω↔,=

P F
T

RI
˙̇ ag–( )= g ω A,( )=

F t( )

RI t( )

F t0( ) Ḟ t0( ), Ω F
T
Ḟ= Ω ω↔ ω t0( )

ω t( ) Ω t( ) ti

ω̇ t( ) ∆t ω̇ ti( )⋅ ω ti 1+( ) ω ti( )–=
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Step 3: Solve the matrix differential equation  (numerically) to obtain . The

solution  must be a rotation matrix.

Step 4:  Since  is given by the algebraic equation (4.4), the linear displacement

can be obtained by using  and integrating . That is,

(4.7)

We summarise these computation procedures in the following proposition.

Proposition 4.1 (A sufficient condition for feasibility): If the  matrix  has aleft

inverse, then the configuration   is feasible. Also if , then

the configuration cannot be feasible.

5. A Six-accelerometer Configuration
For a gyro-free INS, the equations in (4.1) that relate the linear and angular motions

are, in general, governed by a set of nonlinear differential equations. These equations are

very difficult to solve numerically. There are, however, configurations of accelerometers

that would give rise to a set ofdecoupled differential and algebraic equations (4.3)-(4.4)

for the angular and linear motions, thus making numerical integration of the decoupled

equations feasible. The key to designing a feasible configuration is a good choice of the

location and sensing direction of the accelerometers. We shall consider the cube-shaped

INS first examined in [1] (despite that their accelerometer output equation is incorrect).

The design has one accelerometer at the centre of each face of a cube of length . The

sensing direction of each accelerometer is along the respective cube face diagonal, in such

a way that these diagonals form aregular tetrahedron. This is shown in Figure 5.1.

 Let the origin be the centre of the cube. So the six accelerometers are located at:

(5.1)

The corresponding sensing directions are:

Ḟ FΩ= F t( )

F ti( )

P t( ) RI t( )

RI t0( ) RI
˙ t0( ), Ṙ̇I t( ) F t( )P t( ) ag+=

RI t( ) RI t0( ) ṘI t0( ) t t0–( ) F τ( )P τ( ) ag+( ) τd

t0

s

∫ sd

t0

t

∫+ +=

N 6× J

C ui θi,( ) 1 i N≤ ≤;{ }= N 6<

2L

U u1…u6[ ] L
0 0 1– 1 0 0

0 1– 0 0 1 0

1– 0 0 0 0 1

= =
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(5.2)

It is easy to check that

(5.3)

Lemma 5.1: For , . And each , we have

 and .

Proof: The assertions follow immediately from straight-forward calculations using the

and  matrices.

Proposition 5.1: The inverse of  is:

J2 θ1…θ6[ ] 1

2
-------

1 1 0 0 1– 1–

1 0 1 1– 0 1

0 1 1 1 1 0

= =

Figure 5.1: A six-accelerometer configuration for a cube-shaped INS

x

y

z

2L

1

2

3

4

5

6

J1 u1 θ1× …u6 θ6×[ ] L

2
-------

1 1– 0 0 1 1–

1– 0 1 1– 0 1–

0 1 1– 1– 1 0

= =

i j≠ 1

L
2

----- ui θi uj θ j×,×〈 〉 θi θ j,〈 〉+ 0= 1 i 6≤ ≤

1

L
2

----- ui θi× 2
1= θi

2
1=

J1

J2

J J1
T

J2
T[ ]=
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   . (5.4)

Proof:

Since  and , the  entry of   is:

By Lemma 5.1,  is 0 for , and is 1 for  . Hence .

So by Proposition 4.1, the configuration  is feasible.

We next prove the following result which will be useful in obtaining the state equation

 and the output equation .

Lemma 5.2: The second term in the right-hand side of (4.1) is:

  ,   where . (5.5)

Proof: Let . The  and  for configuration  are

given in (5.1)-(5.2). It is easy to check that:

Q J
1– 1

2
---

1

L
2

-----J1

J2

= =

JQ J1
T

J2
T 1

2
---

1

L
2

-----J1
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1
2
--- 1

L
2
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T
J1 J2

T
J2+= =

J1 u1 θ1× …u6 θ6×[ ]== J2 θ1…θ6[ ]= i j,( ) JQ

JQ( )ij
1
2
--- 1

L
2

----- ui θi×( )T
uj θ j×( ) θi

Tθ j+=

1
2
--- 1

L
2

----- ui θi uj θ j×,×〈 〉 θi θ j,〈 〉+=

JQ( )ij i j≠ i j= Q J
1–

=

Ccube ui θi,( ) 1 i 6≤ ≤;{ }=

ω̇ f ω A,( )= P g ω A,( )=

θ1
TΩ2

u1

…

θ6
TΩ2

u6

LJ2
T

ω2ω3

ω1ω3

ω1ω2

–= Ω ω↔ ω1 ω2 ω3

T
=

ω̂ ω2ω3 ω1ω3 ω1ω2

T
= ui θi Ccube

θ1
TΩ2

u1
L

2
------- ω1ω3– ω2ω3–( ) Lθ1

Tω̂–= =

θ2
TΩ2

u2
L

2
------- ω1ω2– ω2ω3–( ) Lθ2

Tω̂–= =
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Therefore (5.5) holds since .

Proposition 5.2: The decoupled equations (4.3)-(4.4) for configuration  are:

(5.6)

(5.7)

Proof: It is easy to check that  and , where  is the zero matrix

and  is the identity matrix in . So by Proposition 5.1 and Lemma 5.2, we get:

(5.8)

Substituting (5.8) into (4.2) gives:

θ3
TΩ2

u3
L

2
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TΩ
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where . Using  in (5.3) and  in (5.2), we obtain (5.6)

and (5.7). This completes the proof.

Remarks:

(I) In general, the state equation  ((4.3)) does not have a closed form solu-

tion. To obtain a numerical solution for , one needs to approximate. For the config-

uration , (5.6) implies that  is a linear combination of the six accelerometer

readings. So  has aclosed form solution. This makes numerical integration easier.

(Take , so that .Forward Euler approximation of

the integral gives , where . This is equiv-

alent to forward Euler approximation of : .)

(II) Recall that in the accelerometer output equation (3.9) the term , where

, computes the angular acceleration. It consists of thetangential (skew-sym-

metric ) and centripetal (symmetric ) accelerations. Let us consider the angular

acceleration along the -axis (i.e. ). The accelerometers at  and  do not sense

motion along the -axis, so  doesnot depend on these measurements. Theasymmetry

of the sensing directions at  and  cancels the symmetric part of the angu-

lar motion along the -axis. That is, the centripetal acceleration  measured at

 (respectively,  measured at ) cancels that measured at  (respectively,

that measured at ). This explains why, the asymmetric part of the angular motion, is

a linear combination of the outputs  and .

In conclusion, the basic idea is to first solve the state equations in (4.5) to obtain the

angular motion , . The output equation (4.6) is then used to obtain the linear

motion. These steps are summarised in the Basic Algorithm in Section 4. For the configu-
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ration ,  is a linear function of  and . They

are given in (5.6)-(5.7).

6. Conclusions and Future Work
In this report, a model of a surface micro-machined silicon accelerometer has been

derived with the assumptions that are reasonable for applications in road vehicle naviga-

tion. This model uses the output voltage of a micro-machined accelerometer device to

determine the acceleration of a rigid body along a sensing direction. Rigid body motion

equations and thecorrect accelerometer output equation have also been derived. We have

also discussed relevant properties of the rotation matrix, and presented two rigid body

motion examples. The concept of a feasible configuration of accelerometers is introduced

in Section 4. It is shown that for a feasible configuration, the linear and angular motions

can be computed separately using two decoupled equations. In principle, there are many

feasible configurations. However, for most of them, it is difficult to determine  and

 accurately as a result of dependences on values calculated at previous time steps. In

Section 5 a set of six accelerometers distributed on the centres of the six faces of a cube is

investigated. This configuration is feasible. Moreover, the angular acceleration  is a

linear combination of the accelerometer measurements, thus giving  a closed form

solution and making numerical integration of (4.3) much easier.

To obtain precise estimates of the motion parameters, one must consider the various

sources that contribute to the computation errors accumulated in calculating  and

 (the states in (4.5)), and  (the output in (4.6)). These INS error sources are: (i)

bias, scale factor errors, (ii) temperature dependent drift, (iii) cross-axis sensitivity  errors

(between a pair of accelerometers), (iv) location, orientation errors, (v) random device

noise, (vi) attitude (reference frame) errors, (vii) numerical integration errors. Errors (i)

and (ii) suggest that the measured accelerometer output is indeed a nonlinear function of

the true acceleration. This needs to be carefully modelled to reflect the characteristics of

the device being used. Errors in (iv) are accelerometer alignment errors. A calibration

method needs to be developed to determine these errors, and additional equations need to

Ccube ω̇ f ω A,( ) f A( )= = A P g ω A,( )=

ω t( )

RI
˙ t( )

ω̇ t( )

ω t( )

ω t( )
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be derived to compensate these errors when calculating the motion parameters. Errors in

(iii) and (v) will need to be estimated and modelled using experimental data. An algorithm

needs to be developed to estimate the error (vi). To update the parameters being corrected

in the algorithms that estimate the errors in (i), (ii) and (vi), an external reference (e.g.

GPS information) will be needed. Finally, the state equation  in general does not

have a closed form solution and has to be solved numerically. The numerical scheme must

ensure that  is a rotation matrix. The resultant errors from numerical approximations

must also be accounted for. Algorithms that estimate or correct these errors will be

reported in several future reports.

The algorithms need to be experimentally tested to verify their correctness and accu-

racy. A brief description of the hardware setup is as follows. The gyroscope-free INS pro-

totype consists of two main parts: (i) six accelerometers distributed on a cube as described

in Section 5, (ii) a PC with a special DSP processing board that computes the navigation

parameters. Figure 6.1 shows the six-accelerometer cube. The length of each side of the

cube is 20 cm. The sensors are accelerometer ADXL05 from Analog Devices. Figure 6.2

shows the complete prototype of the navigation system which consists of the six-sensor

cube and the accompanying PC for calculating the navigation parameters, and a rate table

for calibration.

Ḟ FΩ=

F t( )

Figure 6.1: A Six-accelerometer multi-sensor
system

Figure 6.2: Complete prototype navigation
system with a rate table for calibration
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The QNX real-time operating system will be used. For this operating system, special

attention needs to be given to ensure that the computation processes are synchronised

within the QNX framework.

The future work will also include a simulation tool that simulates the algorithms and

performs sensitivity analysis. Using a user interface, the simulation tool will allow one to

specify the motion of a cube-shaped body and various parameters (e.g. size of the cube,

locations and orientations of the accelerometers). It also allows the user to select different

levels of accelerometer errors and the discretisation time-step. Suppose the motion of the

cube-shaped INS is specified (e.g. constant angular rotation about the vertical axis). One

can then compute the accelerometer output readings that correspond to the specified

motion. To simlulate the algorithms, one can specify, for example, the location error and

the noise level in the sensor device, and then simulate the resultant motion of the body.

The simulation results can be used to verify error bounds and sensitivity analyses on

parameter values.
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