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Mathematical Logic a s  based o n  the Fheorjy of Tgpes. 

The following theory of symbolic logic recommended itself to me in the first 
instance by its ability to solve certain contradictions, of which t'he one best 
known to mathematicians is Burali-Forti's concerning the greatest ordinal." But 
the theory in question seems not wholly dependent on this indirect recom- 
mendation ; i t  has also, if I am not mistaken, a certain consonance with common 
sense which makes i t  inherently credible. This, however, is not a merit upon 
which much stress should be laid; for common sense is far more fallible than i t  
likes to believe. I shall therefore begin by stating some of the contradictions to 
be solved, and shall then show how the theory of logical types effects their 
solution. 

I. 

The Contradictions. 

(1) The oldest contradiction of the kind in question is the Epimenides. 
Epimenides the Cretan said that all Cretans were liars, and all other statements 
made by Cretans were certainly lies. Was this a l ie?  The simplest form of this 
contradiction is afforded by the man who says " I am lying ; )' if he is lying, he 
is speaking the truth, and vice versa. 

(2) Let w be the class of all those classes which are not members of them- 
selves. Then, whatever class x may be, " x  is a w " is equivalent -f- to " x  is not 
an x." Hence, giving to x the value w, '' w is a w " is equivalent to " w is not 
a w." 

(3) Let T be the relation which subsists between two relations R and X 
whenever R does not have the relation R to 8. Then, whatever relations R and 
S may be, ('R has the relation T to X" is equivalent to " R does not have the 

*See below. 

+Two propositions are called equivalent when both are true or both are false. 
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relation R to 8." Hence, giving the value T to both R and 8, " T has the rela- 
tion T to T" is equivalent to " T does not have the relation T to T." 

(4) The number of syllables in the English names of finite integers tends 
to increase as the integers grow larger, and must gradually increase indefinitely, 
since only a finite number of names can be made with a given finite number of 
syllables. Hence the names of some integers must consist of at  least nineteen 
syllables, and among these there must be a least. Hence "the least integer not 
nameable in fewer than nineteen syllables" must denote a definite integer; in 
fact, i t  denotes 111,777. But "the least integer not nameable in fewer than 
nineteen syllables " is itself a name consisting of eighteen syllables ; hence the 
least integer not nameable in fewer than nineteen syllables can be named in 
eighteen syllables, which is a contradiction.* 

(5) Among transfinite ordinals some can be defined, while others can not ;  
for the total number of possible definitions is N,, while the number of trans- 
finite ordinals exceeds N,. Hence there must be indefinable ordinals, and 
among these there must be a least. But this is defined as "the least indefinable 
ordinal,'' which is a contradiction.+ 

(6) Richard's paradox 1 is akin to that of the least indefinable ordinal. I t  
is as follows: Consider all decimals that can be defined by means of a finite 
number of words ; let E be the class of such decimals. Then E has K, terms; 
hence its members can be ordered as the 1st) 2nd, 3rd). . . . . Let N be a number 
defined as follows : If the nth figure in the nth decimal is p, let the nth. figure 
in N be p + 1 (or 0, if p = 9). Then N is different from all the members of E, 
since, whatever finite value n may have, the nth figure in N is different from the 
nth figure in the nth of the decimals composing E, and therefore N is different 
from the nth decimal. Nevertheless we have defined N in a finite number of 
words, and therefore Nought to be a member of E. Thus N both is and is not 
a member of E. 

(7)  Burali-Forti's contradiction 5 may be stated as follows : I t  can be shown 

*This contradiction was suggested to  me by Mr. G. G. Berry of the  Bodleian Library. 

t Cf. Kgiinig, 11 Ueber die Grundlagen der Mengenlehre nnd das Kontinuumproblem," Math. Annalen, Vol. 

L X I  (1905) ; A. C. Dixon, (1  On 1 well-ordered ' aggregates," Proc. London Math. Soc., Series 2, Vol. IV, P a r t  I 
(1906); and E. W. Hobson, < < O n  the  Arithmetic Continuum," ibid. The solution offered in the  last of these 

papers does n o t  seem t o  me adequate. 
$ Cf. Poincar6, 1cLes mathematiques e t  la  logique," Revue de Mhtaphysique et de Morale, Mai, 1906, especially 

sections V I I  and I X ;  also Peano, Revista de Mathematica, Vol.  VIII ,  No. 5 (1906), p. 149 ff. 

5 ' 6  Una questione sui numeri transfiniti," Rendiconti del circolo matematico di Palermo, Vol. X I  (1897). 
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that every well-ordered series has an ordinal number, that the series of ordinals 
up to and including any given ordinal exceeds the given ordinal by one, and (on 
certain very  natural :~ssumptionsj that  t,he series of all ordinals (in order of 
magnitude) is well-ordered. I t  follows that the series of all ordinals has an 
ordinal number, R say. But  in that case the series of all ordinals including R 
has the ordinal number + 1, which must be greater than R. Hence is not 
the  ordinal number of all ordinals. 

In  all the above contradictions (which are merely selections from an 
indefinite number) there is a common characteristic, which we may describe as 
self-reference or reflexiveness. The remark of Epimenides must include itself 
in i ts own scope I f  all classes, proxided they are not members of themselves, 
are members of w, this must also apply to w ; and similarly for the analogous 
relational contradiction. In  the cases of names and definitions, the paradoxes 
result from considering non-nameability and indefinability as elements in names 
and definitions. In  the case of Burali-Forti's paradox, the series whose ordinal 
number causes the difficulty is the series of all ordinal numbers. I n  each con- 
tradiction something is said about all cases of some kind, and from what is said 
a new case seems to be generated, which both is and is not of the same kind as 
the cases of which all were concerned in what was said. Let us go through the 
contradictions one by one and see how this occurs. 

(1) When a man says ' ( I  am lying," we may interpret his statement as:  
" There is a proposition which I am affirming and which is false." All state- 
m e n t , ~  that " there is" so-and-so may be regarded as denying that the opposite 
is always true; thus '( I am lying " becomes : " I t  is not true of all propositions 
that either I am not affirming them or they are true ;)' in other words, " I t  is 
not true for all propositions p that if I affirm p, p is true." The paradox 
results from regarding this statement as affirming a proposition, which must 
therefore come within the scope of the statement. This, however, makes i t  
evident that the notion of (' all propositions" is illegitimate ; for otherwise, there 
must be propositions (such as the above) which are about all propositions, and 
yet can not, without contradiction, be included among the propositions they are 
about. Whatever we suppose to be the totality of propositions, statements about 
this totality generate new propositions which, on pain of contradiction, must lie 
out'side the totality. I t  is useless to enlarge the totality, for that equally 
enlarges the scope of statements about the totality. Hence there must be no 
totality of propositions, and '( all propositions" must be a meaningless phrase. 
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(2) I n  this case, the class w is defined by reference 60 (' all classes,') and then 
turns out to be one among classes. If we seek help by deciding that no class is 
a member of itself, then z(i becomes the class of a11 classes, and we have to decide 
that this is not a rnember of itself, i. e., is not a class. This is only possible if 
there is no such thing as the class of all classes in the sense required by the 
paradox. That there is no such class results from the fact that, if we suppose 
there is, the supposition immediately gives rise (as in the above contradiction) 
to new classes lying outside the supposed total of all classes. 

(3) This case is exactly analogous to (2))  and shows that we can not 
legitimately speak of " all relations." 

(4) "The least integer not nameable in fewer than nineteen syllables" 
involves the totality of names, for i t  is "the least integer such that all names 
either do not apply to  it or have more than nineteen syllables." Here we 
assume, in obtaining the contradiction, that a phrase conhining " all names " is 
itself a name, though it appears from the contradiction that it can not be one of 
the names which were supposed to be all the names there are. Hence "all 
names " is an illegitimate notion. 

(5) This case, similarly, shows that " all definitions ') is an illegitimate 
notion. 

(6) This is solved, like (5)) by remarking that "all definitions" is an 
illegitimate notion. Thus the number E is not defined in a finite number of 
words, being in fact not defined a t  all.* 

(7) Burali-Forti's contradiction shows that "all ordinals " is an illegitimate 
notion ; for if not, all ordinals in order of magnitude form a well-ordered series, 
which must have an ordinal number greater than all ordinals. 

Thus all our contradictions have in common the assumption of a totality 
such that, if it were legitimate, it would a t  once be enlarged by new members 
defined in terms of itself. 

This leads us to the rule : "Whatever involves all of a collection must not 
be one of the collection ; " or, conversely : (' If, provided a certain collection had 
a total, i t  would have members only definable in terms of that total, then the 
said collection has no total." -f- 

- 

* Cf. t r  Les paradoxes de la logique," by the present author, Revue de Me'taphysique el de Morale, Sept., 1906, 

p. 645. 
t When I say that  a collection has no total, I mean that statements about a11 its members are nonsense. 

Furthermore, i t  will be found that the use of this principle requires the distinction of all and any considered in 
Section 11. 

30 
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The above principle is, however, purely negative in its scope. It suffices to 
show that many theories are wrong, but it does not show how the errors are to  
be rectified. We can not say: ( 'When I speak of all propositions, I mean all 
except those in which 'all propositions' are mentioned;" for in this explanation 
we have mentioned the propositions in which all propositions are mentioned, 
which we can not do significantly. I t  is impossible to avoid mentioning a thing 
by mentioning that we won't mention it. One might as well, in talking to a 
man with a long nose, say: " When I speak of noses, I except such as are inor- 
dinately long," which would not be a very successful effort to avoid a painful 
topic. Thus it is necessary, if we are not to sin against the above negative 
principle, to construct our logic without mentioning such things as "all propo- 
sitions" or "all properties," and without even having to say that we are 
excluding such things The exclusion must result naturally and inevitably from 
our positive doctrines, which must make it plain that "all propositions" and 
"all properties " are meaningless phrases. 

The first difficulty that confronts us is as to the fundamental principles of 
logic known under the quaint name of' "laws of thought." "All propositions 
are either true or false," for example, has become nleaningless. If it were 
significant, i t  would be a proposition, and would come under its own scope. 
Nevertheless, some substitute must be found, or all general accounts of deduction 
become impossible. 

Another more special difficulty is illustrated by the particular case of 
mathematical induction. We want to be able to say : '' If n is a finite integer, 
n has all properties possessed by 0 and by the successors of' all numbers possess- 
ing them." But here " all properties " must be replaced by some other phrase 

not open to the same objections. It might be thought that all properties pos- 
sessed by 0 and by the successors of all numbers possessing them" might be 
legitimate even if "all propertiesJJ were not. Rut in fact this is not so. We 

shall find tha t  phrases of the form " all properties which etc." involve all prop, 
erties of which the " etc." can be significantly either affirmed or denied, and not 
only those which in fact have whatever characteristic is in question ; for, in the 

absence of a catalogue of properties having this characteristic, a statement 

about all those that have the characteristic must be hypothetical, and of the 
form: " I t  is always true that, if a property has the said characteristic, then 

etc.)' Thus mathematical induction is prim2 facie incapable of heing significantly 
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enunciated, if " all properties" is a phrase destitute of meaning. This difficulty, 
as we shall see later, can be avoided ; for the present we must consider the laws 
of logic, since these are far more fundamental. 

11. 

A11 and Any. 

Given a statement containing a variable x, say " x = x," we may affirm that 
this holds in all instances, or we may affirm any one of the instances without 
deciding as to which instance we are affirming. The distinction is roughly the 
same as that between the general and particular enunciation in Euclid. The 
general enunciation tells us something about (say) all triangles, while the par- 
ticular enunciation takes one triangle, and asserts the same thing of this one 
triangle. But the triangle taken is any triangle, not some one special triangle ; 
and thus although, throughout the proof, only one triangle is dealt with, yet the 
proof retains its generality. If we say : " Let ABC be a triangle, then the sides 
AB, AC are together greater than the side BC," we are saying something about 
one triangle, not about all triangles ; but the one triangle concerned is absolutely 
ambiguous, and our statement consequently is also absolutely ambiguous. We 
do not affirm any one definite proposition, but an undetermined one of all the 
propositions resulting from supposing ABC to be this or that triangle. This 
notion of ambiguous assertion is very important, and i t  is vital not to confound 
an ambiguous assertion with the definite assertion that the same thing holds in 
all cases. 

The distinction between (1) asserting any value of a propositional function, 
and (2) asserting that the function is always true, is present throughout rnathe- 
matics, as it is in Euclid's distinction of general and particular enunciations. In  
any chain of mathematical reasoning, the objects whose properties are being 
invetltigated are the arguments to auy value of some propositional function. 
Take as an illustration the following definition : 

(' We call f (x) continuous for x = a if, for every positive number o, different 
from 0, there exists a positive number E, different from 0, such that, for all 
values of 6 which are numerically less than E, the difference f ( a  + 8 )  - f (a)  is 
numerically less than o." 

Here the function f is any function for which the above statement has a 
meaning; the statement is about f, and varies as f varies. But the statement 
is not *bout o'or e or 6, because all possible values of these are concerned, not 
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one undetermined value. (In regard to E ,  the statement "there exists a positive 
number E such that etc." is the deuial t,hat the denial of " etc." is true of all  
positive numbers.) For this reason, when any value of n propositional function 
is asserted, the argument (e.g., f i n  the above) is called a real variable; whereas, 
when a function is said to be always true, or to be not always true, the argument 
is called an apparent variable." Thus i11 the above definition, f is a real 
variable, and a, E, 8 are apparent variables. 

When we assert any value of a propositional function, we shall say simply 
that we assert the propositional function. Thus if we enunciate the law of 
identity in the form "x  = x," we are asserting the function " x  = x ;" i. e., we 
are asserting any value of this function. Similarly we may be said to deny a 
propositional function when we deny any instance of it. We can only truly 
assert a propositional function if, b - r  value we choose, that value is true ; 
similarly we can only truly deny i t  if, whatever value we choose, that value is 
false. Hence in the general case, in which some values are true and some false, 
we can neither assert nor deny a propositional functi0n.T 

I f  cpx is a propositional function, we will denote by "(x) . cpx" the propo- 
sition " cpx is always true." Similarly " (x, y) . cp (x, 9)" will mean " cp (x, y) is 
always true," and so on. Then the distinction between the assertion of all 
values and the assertion of any is the distinction between (1) asserting (x) . cpx 
and (2) asserting cpx where x is undetermined. The latter differs from the 
former in that it can not be treated as one determinate proposition. 

The distinction between asserting cpx and asserting (x) . cpx was, I believe, 
first emphasized by Prege.$ His reason for introducing the distinction explicitly 
was the same which had caused it to be present in the practice of mathematicians; 
namely, thak deduction can only be effected with real variables, not with apparent 
variables. In  the case of Euclid's proofs, this is evident: we need (say) some 
one triangle ABC to reason about, though i t  does not matter what triangle i t  is. 
The triangle ABC is a real variable ; and although i t  is any triangle, i t  remains 
the same triangle throughout the argument. But in the general enunciation, 

*These two terms are due t o  Peano, who uses them approximately in the  above sense. Cf.,e. g., Formulaire 

.Math6matique, Vol. IV,  p. 5 (Turin, 1903). 

t M r .  MacColl speaks of 'Lpropositions" a s  divided in to  the three classes of certain, variable, a n a  im- 

possible. We may accept this  division a s  applying to  propositional functions. A function which can be 

asserted i s  certain, one which can be denied i s  impossible, and all others are (in Mr. MacColl's sense) variable. 

$See his  Grundgesetze der Arithmetik, Vol. I (Jena, 1893), $17, p. 31. 
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the triangle is an apparent variable. If we adhere: to the apparent variable, we 
can not perform any deductions, and this is why in all proofs, real variables 
have to be used. Suppose, to take the simplest case, that we know "qx  is 
always true," i. e. "(x) . qx," and we know "tpx always implies +x," i. e. "(x) . {$a 
implies +st." How shall we infer "+x is always true," i. e. '' (x) . +x?" We 
know it is always true that if q x  is true, and if q x  implies +x, then +x is true. 
But we have no premises to the effect that tpx is true and q x  implies +x ; what 
we have is : q x  is always true, and q x  alwccys implies +x. In  order to make our 
inference, we must go from "cpx is always true" to qz, and from " q x  always 
implies 4% " to " q x  implies +T," where the x ,  while remaining any possible 
argument, is to be the same in both. Then, from " q x "  and "qx  implies +x," 
we infer "$x;" thus +x is true for any possible argument, and therefore is 
always true. Thus in order to infer " (x) . +x fkom " (x) . q x "  and " (x) . { q x  
implies +x\," we have to pass from. the apparent to the real variable, and then 
back again to the apparent variable. This process is required in all mathematical 
reasoning which proceeds froin the assertion of all values of one or more propo- 
sitional funct,ions to the assertion of all values of some other propositional 
function, as, e. g., from " all isosceles triangles have equal angles a t  the base" to 
" all triangles having equal angles a t  the hase are isosceles." In particular, this 
process is required in proving Barbara and the other moods of the syllogism. 
I n  a word, all deduction operates with real variables (or with constants). 

I t  might be supposed that we could dispense with apparent variables 
altogether, contenting ourselves with any as a substitute for all. This, however, 
is not the case. Take, for example, the definition of a continuous function quoted 
above: in this definition a, E, and 8 must be apparent variables. Apparent 
variables are constantly required for definitions. Take, e. g., the following : 
"An integer is called a prime when it has no integral factors except 1 and itself." 
This definition unavoidably involves an apparent variable in the form : (' If n is 
an integer other than 1 or the given integer, n is not a factor of the given integer, 
for all possible values of n " 

The distinction bet.ween all and any is, therefore, necessary to deductive 
reasoning, and occurs throughout mathematics; though, so far as I know, its 
importance remained unnoticed until Prege pointed it out. 

For  our purposes i t  has a different utility, which is very great. I n  the case 
of such variables as propositions or properties, " any value " is legitimate, though 
"all  values'' is not. Thus we may say: " p  is true or  false, where p is any 
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proposition," though we can not say " all propositions are true or  false." The 
reason is that, in the former, we merely affirm an undetermined one of the 
propositions of the form " p  is true or false," whereas in the latter we affirm (if 
anything) a new proposition, different from all the propositions of the form 
" p  is true or false." Thus we may admit " any value" of a variable in cases 
where " all values " would lead to reflexive fallacies ; for the admission of " any 
value" does not in the same way create new values. Hence the fundainental 
laws of logic can be stated concerning any proposition, though we can not 
significantly say that they hold of a71 propositions. These laws have, so to 
speak, a particular enunciation but no general enunciation. There is no one 
proposition which i s  the law of contradiction (say) ; there are only the various 
instances of the law. Of any proposition p: we can say: " p  and not-p can 
not both be true ;" but there is no such proposition as : " Every proposition p 
is such that p and not-p can not both be true." 

A similar explanation applies to properties. We can speak of any property 
of 2, but not of all properties, because new properties would be thereby 
generated. Thus we can say : " If n is a finite integer, and if 0 has the prop- 
erty 9, and m + 1 has the property 9 provided m has it, it follows that n has 
the property 9." Here we need not specify cp ; 9 stands for " any property." 
But we can not say : "A finite integer is defined as one which has every property 
9 possessed by 0 and by the successors of possessors." For  here i t  is essential 
to consider every property,* not any property ; and in using such a definition we 
assume that it embodies a property distinctive of finite integers, which is just 
the kind of assumption from which, as we saw, the reflexive contradictions 
spring. 

In  the above instance, it is necessary to avoid the suggestior~s of ordinary 
language, which is not suitable for expressing the distinction required. The 
point may be illustrated further as follows: If' induction is to be used for defining 
finite integers, induction must state a definite property of finite integers, not an 
ambiguous property. But if cp is a real variable, the statement " n  has the 
property ~JJ provided this property is possessed by 0 and by the successors of 
possessors " assigns to n a property which varies as 9 varies, and such a property 
can not be used to define the class of finite integers. We wish to say : " ' n  is a 
finite integer' means : 'Whatever property 9 may be, n has the property 9 pro- 

* This is indistinguishable from all properties.'' 
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vided tp is possessed by 0 and by the successors of possessors.' " But here 9 has 
become an apparent variable. To keep i t  a real variable, we should have to say:  
" Whatever property tp may be, ' n is a finite integer ' means: ' n has the property 
cp provided cp is possessed by 0 and by the successors of possessors.' " But  here 
the meailing of 'n is a finite integer' varies as cp varies, and thus such a definition 
is impossible. This case illustrates an important point, namely the following : 
(( The scope * of a real variable can never be less than the whole propositional 
function in the assertion of which the said variable occurs." That  is, if our 
propositional function is (say) " cpx: implies p," the assertion of this function will 
mean " any value of 'cpx implies p' is true," not " 'any value of q x  is t rue '  im- 
plies p." Tn the latter, we have really (' all values of cpx are true," arid the x is 
an apparent variable. 

111. 

The Meaning and Range of Generazzed Propositions. 

I n  this section we have to consider first the meaning of propositions in 
which the word all occurs, aud then the kind of collections which admit of 
propositions about all their members. 

I t  is convenient to give the name gene~.alized propositions not only to such as 
contain all, but also to such as contain some (undefined). The proposition "cpx 
is sometimes true" is equivalent to the denial of "not-cpx is always true ;" 
'(some A is B" is equivalent to  the denial of "all A is not B;" i. e., of "no A 
is B." Whether i t  is possible to find interpretations which distinguish "cpx is 
sometimes true" from the denial of " not-cpx is always true," it is unneces- 
sary to inquire ; for our purposes we may d e j n e  "cpx is sometimes true" as the 
denial of " not-cpx is always true." In any case, the two kinds of propositions 
require the same kind of interpretation, and axe subject to the same limitations. 
I n  each there is an apparent variable; and it is the presence of an apparent 
variable which constitutes what I mean by a generalized proposition. (Note 
that there can not be a real variable in any proposition; fbr what contains a real 
variable is a propositional function, not a proposition.) 

The first question we have to ask in this section is: How are we to interpret 
the word all in such propositions as '' all men are mortal ? " At first sight, i t  
might be thought that there could be no difficulty, that '( all men " is a perfectly 
- - 

* The scope of a real variable is the whole function of which any value " is in question. Thus in " $, 
implies p " the scope of x is not $x, but $x implies p." 
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clear idea, and that we say of all men that they are mortal. But to this view 
there are rnany objections. 

(1) If this view were right, it would seem that ' ( a l l  menare mortal" could 
not be true if there were no men. Yet, as Mr. Bradley has urged,* "Trespassers 
will be prosecuted " may be perfectly true even if no one trespasses ; and hence, 
as he further argues, we are driven to interpret such propositions as hypotheticals, 
meaning "if anyone trespasses, he will be prosecuted ;" i. e., "if x trespasses, 
x will be prosecuted," where the range of values which x may have, whatever i t  
is, is certainly not confined to those who really trespass. Similarly "all men 
are mortal' ' will mean "if x is a man, x is mortal, where x may hare any value 
within a certain range." What  this range is, remains to be determined ; but in 
any case i t  is wider than '' men," for the above hypothetical is certainly often 
true when x is not a man. 

(2) "All men" is a denoting phrase; and i t  would appear, for reasons which 
I have set forth elsewhere,-/- that denoting phrases never have any meaning in 
isolation, but only enter as constituents into the verbal expression of proposi- 
tions which contain no constituent corresponding to the denoting phrases in 
question. That is to say, a denoting ph~xse  is defined by means of the propo- 
sitions in whose verbal expression i t  occurs. Hence it is impossible that these 
propositions should acquire their meaning through the denoting phrases; we 
must find an independent interpretation of the propositions containing such 
phrases, and must not use these phrases in explaining what such propositions 
mean. Hence we can not regard "a11 men are mortal" as a statement about 
(' all men." 

(3) Even if there were such an object as "all nien," it is plain that i t  is 
not this object to which we attribute mortality when we say "all men are 
mortal." If we were attributing mortality to this object, we should have to say 
" all men is mortal." Thus the supposition that there is such an object as "all 
men " will not help us to interpret " all men are mortal." 

(4) I t  seems obvious that, if we meet something which may be a man or may 
be an angel in disguise, it comes within the scope of " all men are mortal'' to 
assert "if this is a man, it is mortal." Thus a.gain, as in the case of the tres- 
passers, it seems plain that we are really saying '( if anything is a man, it is 
mortal," and that the question whether this or that  is a man does not fall within 
the scope of our assertion, as it would do if the a71 really referred to "all men." 

*Logic, Part I, Chapter 11. t c '  On Denoting," Mind, October, 1805. 
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(5) We thus arrive a t  the view that what is meant by '(all men are mortal" 
may be more explicitly stated in some such form as " i t  is always true that if x 
is a man, x i s  mortal." Here we have to inquire as to the scope of the word 
always. 

(6) It is obvious that always includes some cases in which x is not a man, 
.as we saw in the case of the disguised angel. I f  x were limited to the case 
when x is a man, we could infer that x is a mortal, since if x is a man, x is a 
mortal. Hence, with the same meaning of aZways, we should find " i t  is always 
true that x is mortal." But i t  is plain that, without altering the meaning of 
always, this new proposition is false, though the other was true. 

(7) One might hope that "always " would mean "for all values of x." 
But "all values of x," if legitimate, would include as parts "all propositions" 
and "all functions," and such illegitimate totalities. Hence the values of x 
must be somehow restricted within some legitimate totality. This seems to lead 
us to the traditional doctrine of a " universe of discourse " within which x must 
be supposed to lie. 

(8) Yet it is essential that we should have some meaning of aZways 
which does not have to be expressed in a restrictive hypothesis as to x. For 
suppose ' I  alwaysJ' means " whenever x belongs to the class i." Then '( all men 
are mortal" becomes "whenever x belongs to the class i, if x is a man, x is 
mortal;" i. e., " i t  is always true that if x belongs to the class i, then, if x is a 
man, x is mortal." But what is our new always to mean? There seems no more 
reason for restricting x, in this new proposition, to the class i, than there was 
before for restricting i t  to the class man. Thus we shall be led on to a new wider 
universe, and so on a d  infiniturn, unless we can discover some natural restriction 
upon the possible values of (i. e., some restriction given with) the function "if x 
is a man, z is mortal," and not needing to be imposed from without. 

(9) I t  seems obvious that, since all men are mortal, there can not be any 
false proposition which is a value of the function (' if x is a man, x is mortal." 
For if this is a proposition at all, the hypothesis " x  is a man" must be a propo- 
sition, and so must the conclusion "x  is mortal." But if the hypothesis is false, 
the hypothetical is t rue;  and if the hypothesis is true, the hypothetical is true. 
Hence there can be no false propositions of the form "if x is a man, x is 
mortal." 

(10) It follows that, if any values of x are to be excluded, they can only be 
values for which there is no proposition of the form '(if x is a man, x is mortal;" 

3 1 
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i. e., for which this phrase is meaningless. Since, as we saw in (7)) there must be 

excluded values of x, it follows that the function "if x is a man, x is mortal" 
must have a certain range of signi$cance,* which falls short of all imaginable 
values of x, though it exceeds the values which are men. The restriction on x 

is therefore a restriction to the range of significance of the function " if x is a 
man, x is mortal." 

( 1  1) We thus reach the conclusion that " all men are mortal " means '' if x 
is a man, x is mortal, always," where always means "for all values of the 
function 'if x is a man, x is mortal.'" This is an  internal limitation upon x, 
given by the nature of the function ; and it is a limitation which does not require 
explicit statement, since i t  is impossible for a function to be true more generally 
than for all i ts  values. Moreover, if the range of significance of the function 
is i, the function "if x is an i, then if x is a man, x is mortal' ' has the same 
range of significance, since it can not be significant unless its constituent " if x 
is a man, x is mortal" is significant. But here the range of significance is again 
implicit, as i t  was in 'if x is a man, x is mortal ;' thus we can not make ranges 
of significance explicit, since the attempt to do so only gives rise to a new 
proposition in which the same range of significance is implicit. 

Thus generally : " (x) . rpx '' is to mean " rpx always." This may be inter- 
preted, though with less exactitude, as " rpx is always true," or, more explicitly : 
"All propositions of the form rpx are true," or "A11 values of the function rpx 
are true."-/- Thus the fundamental all is "all values of a propositional function," 
and every other a l l  is derivative frorn this. And every proposjtional function 
has a certain range of signijcance, within which lie the arguments for which the 
function has values. Within this range of arguments, the function is true or  
false ; outside this range, i t  is nonsense. 

The above argumentation may be summed up as follows: 
The difficulty which besets attempts to restrict the variable is, that 

restrictions naturally express themselves as hypotheses that the variable is of 
such or such a kind, and that, when so expressed, the resulting hypothetical is 
free from the intended restriction. For example, let us attempt to restrict the 

*A function is  said to be significant for  the  argument x if i t  has a value for  this argument. Thus  we may 
say shortly cc$x is  significant," meaning the  function g has a value for  the argument x." The range of 
significance of a function consists of all the arguments for which the  function i s  true, together with all the 
arguments for  which i t  i s  false. 

+A linguistically convenient expression for  this  idea is : $x is  t rue for  al l  possible values of x," a possible 
value being understood t o  be one for  which px is  significant. 
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variable to men, ar?d assert that, subject to  this restriction, "x is mortalJJ is 
always true. Then what is always true is that if x is a man, x is mortal;  and 
this hypothetical is true even when x is not a man. Thus a variable can never 
be restricted within a certain range if the propositional function in which the 
variable occurs remains significant when the variable is outside that  range. But 
if the function ceases to be significant when the variable goes outside a certain 
range, then the variable is ipso facto confined to that range, without the need of 
any explicit statement to that effect. This principle is to  be borne in mind in 
the development of logical types, to which we shall shortly proceed. 

We can now begin to see how i t  comes that " all so-and-so's" is sometimes 
a legitimate phrase and sometimes not. Suppose we say "all terms which have 
the property have the property 4." That means, according to the above 
interpretation, " 9 x  always implies +x." Provided the range of significance of 
cpx is the aame as that of +x, this statement is significant; thus, given any 
definite function qx, there are propositions about "all the terms satisfying 9x." 
But i t  sometimes happens (as we shall see more fully later on) that what appears 
verbally as one function is really many analogous functions with different ranges 
of significance. This applies, for example, to " p  is true," which, we shall find, 
is not really one function of p, but is diferent functions according to the kind 
of proposition that p is. In  such a case, the phrase expressing the ambiguous 
function may, owing to the ambiguity, be significant throughout a set of values 
of the argument exceeding the range of significance of any one function. I n  
such a case, all is not legitimate. Thus if we try to say '' all true propositions 
have the property 9," i. e., " 'p is true'  always implies qp," the possible argu- 
ments to  'p is true ' necessarily exceed the possible arguments to 9, and there- 
fore the attempted general statement is impossible. For this reason, genuine 
general statements about all true propositions can not be made. I t  may happen, 
however, that the supposed function 9 is really ambiguous like ' p  is true ;' and 
if i t  happens to have an ambiguity precisely of the same kind as that of ( p  is 
true,' we may be able always to give an interpretation to the proposition " ' p  is 
true ' implies 9p." This will occur, e. g., if $7 is " not-p is false.'' Thus we 
get an  appearance, in such cases, of a general proposition concerning all propo- 
sitions ; but this appearance is due to a systematic ambiguity about such words 
as true and false. (This systematic ambiguity results from the hierarchy of 
propositions which will be explained later on). We may, in all such cases, make 
our statement about any proposition, since the meaning of the ambiguous words 
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will adapt itself to any proposition. But if we turn our proposition into an 
apparent variable, and say something about all, we must suppose the ambiguous 
words fixed to this or that possible meaning, though it may be quite irrelevant 
which of their'possible meanings they are to have. This is how it happens both 
that all has limitations which exclude " all propositions," and that there never- 
theless seem to be true statements about " all propositions.'' Both these points 
will become plainer when the theory of types has been explained. 

I t  has often been suggested* that what is required in order that it may be 
legitimate to speak of all  of a collection is that the collection should be finite. 
Thus " all men are rnortal" will be legitimate because men form a finite class. 
But that is not really the reason why we can speak of "all men." VCThat is 
essential, as appears from the above discussion, is not finitude, but what may be 
called logical homogeneity. This property is to belong to any collection whose 
terms are all contained within the range of significance of some one function. 
I t  would always be obvious at a glance whether a collection possessed this 
property or not, if it were not for the concealed ambiguity in common logical 
terms such as true and false, which gives an appearance of being a single function 
to what is really a conglomeration of many functions with different ranges of 
significance. 

The conclusions of this section are as follows: Every proposition containing 
all asserts that some propositional function is always true ; and this means that 
all values of the said function are true, not that the function is true for all argu- 
ments, since there are arguments for which any given function is meaningless, 
i. e., has no value. Hence we can speak of a18 of a collection when and only 
when the collection forms part or the whole of the !range of significance of 
some propositional function, the range of significance being defined as the 
collection of those arguments for which the function in question is significant, 
i. e., has a value. 

IV. 

The Hierarchy of Types. 

A type is defined as the range of significance of a propositional function, 
i. e., as the collection of arguments for which the said function has values. 
Whenever an apparent variable occurs in a proposition, the rapge of values of the 
apparent variable is a type, the type being fixed by the function of which ' l  all 

*E. g., b y  M .  PoincarB, Revue de Milaphysique et de Morale, Mai, 1906. 
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values " are concerned. The division of objects into types is necessitated by the 
reflexive fallacies which otherwise arise. These fallacies, as we saw, are to 
be avoided by what may be called the "vicious-circle principle ;" i. e., "no 
totality can contain members defined in terms of itself.'' This principle, in our 
technical language, becomes : " Whatever contains an apparent variable must 
not be a possible value of that variable." Thus whatever contains an apparent 
variable must be of a different type from the possible values of that variable ; 
we will say that it  is of a higher type. Thus the apparent variables contained 
in an expression are what determines its type. This is the guiding principle in 
what follows. 

Propositions which contain apparent variables are generated from such as 
do not contain these apparent variables by processes of which one is always the 
process of gene~alization, i. e., the substitution of a variable for one of the terms 
of a proposition, and the assertion of the resulting function for all possible 
values of the variable. Hence a proposition is called a generalized proposition 
when it  contains an apparent variable. A proposition containing no apparent 
variable we will call an elementary proposition. I t  is plain that a proposition 
containing an apparent variable presupposes others from which i t  can be 
obtained by generalization; hence all generalized propositions presuppose 
elementary propositions. In  an elementary proposition we can distinguish one 
or  more terms from one or more concepts ; the terms are whatever can be regarded 
as the subject of the proposition, while the concepts are the predicates or relations 
asserted of these terms.* The terms of elementary propositions we will call 
individuals; these form the first or lowest type. 

It is unnecessary, in practice, to know what objects belong to the lowest 
type, or even whether the lowest type of variable occurring in a given context 
is that of individuals or some other. For in practice only the relative types of 
variables are relevant; thus the lowest type occurring in a given context may 
be called that of individuals, so far as that context is concerned. I t  follows that 
the above account of individuals is not essential to  the truth of what follows ; 
all that  is essential is the way in which other types are generated from indi- 
viduals, however the type of individuals may be constituted. 

By applying the process of generalization to individuals occurring in 
elementary propositions, we obtain new propositions. The legitimacy of this 

*See Principles of Mathematics, $48. 
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process requires only that  no individuals should be propositions. That this is 
so, is to be secured by the meaning we give to the word individual. We may 
define an  individual as something destitute of complexity ; i t  is then obviously 
not a proposition, since propositions are essentially complex. Hence in applying 
the process of generalization to individuals we run no risk of incurring reflexive 
fallacies. 

Elementary propositions together with such as contain only individuals as 
apparent variables we will call j~s t -order  propositions. These form the second 
logical type. 

We have thus a new totality, that of first-order p~opositions. We can thus 
form new propositions in  which first-order propositions occur as apparent 
variables. These we will call second-order propositions; these form the third 
logical type. Thus, e. g., if Epimenides asserts "all first-order propositions 
affirmed by me are false," he asserts a second-order proposition; he may assert 
this truly, without asserting truly any first-order proposition, and thus no con- 
tradiction arises. 

The above process can be continued indefinitely. The n + l t h  logical type 
will consist of propositions of order n, which will be such as contain propositions 
of order m- 1, but of no higher order, as apparent variables. The types so 
obtained are mutually exclusive, and thus no reflexive fallacies are possible so 
long as we remember that an apparent variable must always be confined within 
some one type. 

I n  practice, a hierarchy of functions is more convenient than one of propo- 
sitions. Functions of various orders may be obtained from propositions of 
various orders by the method of substitution. I f  p is a proposition, and a a, con- 
stituent of p, let "p/a;x7' denote the proposition which results from substi- 
tuting x for a wherever a occurs in p. Then pla, which we will call a matrix, 
may take the place of a function ; its value for the argument x is p l a i x ,  and its 
value for the argument a is p. Similarly, if "p/(a,  b) ; (x, y)" denotes the result 
of first substituting x for a and then substituting y for b, we may use the double 
matrix p/(a, b) to represent a double function. I n  this way we can avoid 
apparent variables other than individuals and propositions of various orders. 
The order of a matrix will be defined as being the order of the proposition in 
which the substitution is effected, which proposition we will call the prototype. 
The order of a matrix does not determine its type: in the first place because i t  
does not determine the number of arguments for which others are to be substi- 
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tuted (i. e., whether the matrix is of the form p/a or p / \ a ,  b) or p / ( a ,  b, c) 
etc.); in the second place because, if the prototype is of more than the first 
order, the arguments may be either propositions or individuals. But i t  is plain 
that the type of a matrix is definable always by means of the hierarchy of 
propositions. 

Although i t  is possible to replace functions by matrices, and although this 
procedure introduces a certain simplicity into the explanation of types, i t  is 
technically inconvenient. Technically, i t  is convenient to replace the prototype 
p by $a, and to replace pla ; x by $x ; thus where, if matrices were being em- 
ployed, p and a would appear as apparent variables, we now have $ as our 
apparent variable. In order that  $ may be legitimate as an apparent variable, 
i t  is necessary that its values should be confined to propositions of some one type. 
Hence we proceed as follows. 

A function whose argument is an  individual and whose value is always a 
first-order proposition will be called a first-order function. A function involving 
a first-order function or proposition as apparent variable will be called a second- 
order function, and so on. A function of one variable which is of the order 
next above that of its argument will be called a predicatice function ; the same 
name will be given to a function of several variables if there is one among these 
variables in respect of which the function becomes predicative when values are 
assigned to all the other variables. Then the type of a function is determined 
by the type of its values and the number and type of its arguments. 

The hierarchy of functions may be further explained as follows. A first- 
order function of an individual x will be denoted by $ ! x (the letters +, X, 8, 
f, g, F, G will also be used for functions). No first-order function contains a 
function as apparent variable ; hence such functions form a well-defined totality, 
and the 9 in cp ! x can be, turned into an apparent variable. Any proposition in 
which cp appears as apparent variable, and there is no apparent variable of higher 
type than 9, is a second-order proposition. I f  such a proposition contains an 
individual x, i t  is not a predicative function of x ;  but if i t  con+ains a first-order 
function 9, i t  is a predicative function of 9, and will be written f ! (4 ! 8). Then 
f is a second-order predicative function; the possible values o f f  again form a 
well-defined totality, and we can turn f into an apparent variable. We can 
thus define third-order predicative functions, which will be such as have third- 
order propositions for their values and second-order predicative functions for 
their arguments. And in this way we can proceed indefinitely. A precisely 
similar development applies to functions of several variables. 
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We will adopt the following conventions. Variables of the lowest type 
occurring in any context will be denoted by small Latin letters (excluding f 
and g, which are reserved for functions) ; a predicative function of an argument 
x (where x may be of any type) will be denoted by cp ! x (where 4, X, 8, f ,  g, F 
or G may replace 9 )  ; similarly a predicative function of two arguments x and y 
will be denoted by cp ! (x, y) ; a general function of x will be denoted by qx, and 
a general function of x and y by 9(x, y). I n  cpx, 9 can not be made into an  
apparent variable, since its type is indeterminate; but in 9 ! x, where 9 is a 
predicative function whose argument is of s0m.e given type, 9 can be made into 
an apparent variable. 

It is important to  observe that  since there are various types of propositions 
and functions, and since generalization can only be applied within some one type, 
all phrases containing the words " all propositions " or " all functions " are 
prim6 facie meaningless, though in certain cases they are capable of an unob- 
jectionable interpretation. The contradictions arise from the use of such phrases 
in cases where no innocent meaning can be found. 

I f  we now revert to the contradictions, we see a t  once that some of them 
are solved by the theory of types. Wherever "all propositions" are mentioned, 
we must substitute "all propositions of order n," where it is indifferent what 
value we give to n, but i t  is essential that n should have some value. Thus when 
a man says "I  am lying," we must interpret him as meaning: "There is a 
proposition of order n, which I affirm, and which is false." This is a proposition 
of order n + 1 ; hence the man is not affirming any proposition of order 12; 

hence his statement is false, and yet its falsehood does not imply, as that of 
" I am lying'' appeared to do, that he is making a true statement. This solves 
the liar. 

Consider next " the least integer not nameable in fewer than nineteen 
syllables." It is to be observed, in  the first place, that nameab7e must mean 
"nameable by means of such-and-such assigned names," and that the number of 
assigned names must be finite. For if i t  is not finite, there is no reason why 
there should be any integer not nameable in fewer than nineteen syllables, and 
the paradox collapses. We may ~ e x t  suppose that " nameable in terms of names 
of the class N" means ''being the only term satisfying some function composed 
wholly of names of the class N." The solution of this paradox lies, I think, in 
the simple observation that  " nameable in terms of names of the class N" is 
never itself nameable in terms of names of that class. I f  we enlarge N by 
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adding the name "nameable in terms of names of the class N," our fundamental 
apparatus of names is enlarged ; calling the new apparatus N', " nameable in 
terms of names of the class N1" remains not nameable in terms of names of the 
class N'. If we t ry  to enlarge N till i t  embraces all names, "nameable" be- 
comes (by what was said above) " being the only term satisfying some function 
composed wholly of names." But here there is a function as apparent variable ; 
hence we are confined to predicative functions of some one type (for non-predi- 
cative functions can not be apparent variables). Hence we have only to observe 
that nameability in terms of such functions is non-predicative in order to escape 
the paradox. 

The case of " the least indefinable ordinal " is closely analogous to the case 
we have just discussed. Here, as before, "definable" must be relative to some 
given apparatus of fundamental ideas; and there is reason to suppose that 
" definable in terms of ideas of the class N" is not definable in terms of ideas 
of the class N. I t  will be true that  there is some definite segment of the series 
of ordinals consisting wholly of definable ordinals, and having the least inde- 
finable ordinal as its limit. This lea.st indefinable ordinal will be definable by a, 
slight enlargement of our funda.menta1 apparatus ; but there will then be a new 
ordinal which will be the least that is indefinable with the new apparatus. If 
we enlarge our apparatus so as to include all possible ideas, there is no longer 
any reason to  believe that there is any indefinable ordinal. The apparent force 
of the paradox lies largely, I think, in the supposition that if all the ordinals 
of a certain class are definable, the class must be definable, in which case its 
successor is of course also definable ; but there is no reason for accepting this 
supposition. 

The other contradictions, that of Burali-Porti in particular, require some 
further developments for their solution. 

The Axiom of Reducibility. 

A propositional function of x may, as we have seen, be of any order;  hence 
any statement about " all properties of x " is meaningless. (A " property of x"  
is the same thing as a "propositional function which holds of x.") But it is 
absolutely necessary, if mathematics is to be possible, that  we should have some 
method of making statements which will usually be equivalent to what we have 
in  mind when we (inaccurately) speak of " all properties of x." This necessity 
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