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Short Communication
	 In the last decade great interest has been demonstrated  
towards nanoparticles (NPs) especially for their unique characteristics 
which make NPs a powerful tool to work with in several fields, from  
engineering to medicine, from biology to materials sciences, from  
environmental sciences to (nano) toxicology [1]. In literature studies  
take into account different categories of NPs (metallic and  
non-metallic NPs, inert and reactive NPs); most of the papers talk 
about engineered NPs absorbed by inhalation, ingestion, via dermal 
penetration or intravenous perfusion [1]. The reason why NPs are 
widely used in so many fields of application is that they have a high 
surface/volume ratio, depending on the species they may be highly  
reactive, have unique physical and chemical properties, are able to  
easily pass through biological membranes, and finally they can be 
used for drug delivery [2,3]. All these characteristics on one hand 
make NPs useful, on the other hand NPs can turn out to be risky 
and harmful to handle, raising important issues about their toxicity,  
bioaccumulation and NPs-induced pathologies [4-6].

	 In this work we focus on a new type of NP, a non-engineered 
one derived from the biodestruction of polyurethane (PU) dental  
prostheses carried out by Staphylococcus aureus. In vitro experiments  
together with a “correlative” FIB/SEM/(S)TEM (Focused Ion  
Beam/Scanning Electron Microscope/(Scanning) Transmission  
Electron Microscope) analysis show that bacteria are able to adhere to 
the polymeric material (24-48 hours), form microcolonies (48 hours), 
and after longer incubation time (7 days) they are able to form biofilm  
[7]. Biofilm maturation is accompanied by the appearance of an  
exopolysaccharide (EPS) matrix. Bacteria embedded in biofilm  
operate a corrosive action on the plastic surface, becoming the PU a 
feeding source for the microorganisms [8,9], and as a result the PU 
surface results seriously damaged [7,10,11].

	 PU samples with different types of surfaces were provided by  
Dentalur Russia, Russian Federation. The culture of S. aureus was  
isolated from a patient with a periodontal disease and was incubated  
with PU slices of different roughness. A PU slice with a non-sawed  
surface in broth and a broth with S. aureus with no PU were the control  
samples. Biological specimens prepared for transmission electron  
microscopy underwent primary fixation, washing, secondary fixation,  
infiltration with transition solvent and resin, embedding, curing 
and cutting. Since traditional drying operations led to structural  
changes in the sample, the standard dehydration processes were not 
applied. Samples were stained with Alcian Blue in order to preserve the  
exopolysaccharide (EPS) matrix and coated with copper sulphate [7].

	 TEM and STEM images were acquired with a tecnai F20 X-TWIN 
microscope (FEI Company, USA) equipped with a 200 kV FEG  
column and a CCD detector. Bright Field (BF), Dark Field (DF) and 
High Angle Annular Dark Field (HAADF) techniques have been used  
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Abstract
	 Staphylococcus aureus is a gram-positive bacterium permanently  
present in the oral cavity, able to colonize polyurethane dental  
prostheses and to form biofilm. The bacterial action on the polymeric 
material results in the biodestruction of the polyurethane and in the 
formation of micro- and nano-particles. Electron microscopy, having 
a key role in the investigation of nanoparticles-bacteria interactions,  
points out that bacteria internalize polyurethane nanoparticles  
enveloped in membrane vesicles. In this work we discuss the uptake 
process of nanoparticles and the role of the bacterial cytoskeleton, 
important for the vesicular trafficking. We show images of membrane 
vesicles loaded with one or more polyurethane nanoparticles inside 
the bacterial cell, astride the membrane and out of the cell, in the 
extracellular medium.
	 This work opens new ways to the nanomedicine in the  
comprehension of bacterial secretion of membrane vesicles and 
their interactions with host cells, and raises new issues about 
the nanoparticles delivery guided by the dynamics of bacterial  
infections, and the related toxicological risks.
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Nanomedicine; Nanoparticles; Staphylococcus aureus; Toxicology
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to obtain images with improved contrast and resolution, in order to 
gain more information about PU NPs’ size and their relative position 
compared to cell structures [7].

	 FIB/SEM images visible in Didenko et al. [7] document that as 
a consequence of the biodestructive action of S. aureus, micro- and  
nano-particles (which size ranges from 2-3 nm to 10 nm) detach  
themselves from the bulk PU and are embedded in the  
exopolysaccharide (EPS) matrix. Through TEM and STEM images in 
Didenko et al. [10] and Curia et al. [11] it is possible to detect PU NPs 
within S. aureus.

	 Electron microscopy images show the actual internalization of PU 
NPs inside bacterial cells, but which are the uptake mechanisms that 
induce NPs to enter cells? NPs are able to cross membranes, therefore 
they are readily absorbable by biological systems, moreover NPs are 
highly reactive, especially because of the small volume compared to 
the big surface [2]. NPs and bacterial cells are not the only characters 
playing: NPs (which surface can be positive, negative or neutral) in a 
biological medium are able to attract biomolecules and ionic species  
dispersed in the milieu and to build a cover made of selected  
biomolecules, called protein corona [12,13]. It can be affirmed that 
it is very difficult to find NPs dispersed in a biological medium not  
surrounded by a protein corona [13]. NPs enveloped by the protein 
cover need to be considered as real new objects, in fact NPs will not 
react directly with the bacterial cells, but the protein corona will  
interact with the bacterial cell wall, plasma membrane and  
cytoskeletal structures (important for the internalization process)  
[12-16].

	 Analyzing TEM and STEM images in references 7, 10 and 11 it 
is possible to observe that NPs inside S. aureus are surrounded by  
membrane vesicles (MVs). This important information allows us to 
affirm that the uptake process occurs through endocytosis. During 
the endocytic process, xenobiotic material is internalized by a cell 
through the invagination of the plasma membrane and the scission of 
MVs that envelop the external material [17]. Figure 1A shows exactly 
these steps: we can see free NPs (not surrounded by a MV) out of the 
cell, and MVs enveloping PU NPs within the bacterium; furthermore 
details of the membrane lysis and a ruffle are visible as well [7,10,11].

	 The NPs pathway from outside to inside the cell, delineates  
possible bacterial cytoskeletal structures. TEM and STEM images 
in references 7, 10 and 11 show that MVs loaded with one or more 
PU NPs are set out along linear routes that run across the whole cell, 
nearly drawing out the proof of the actual existence of the bacterial 
cytoskeleton [18-23].

	 Once a MV loaded with PU NPs has entered the bacterial cell,  
depending on the spatial distribution it can assume several names 
(early endosome, late endosome, lysosome and exosome) [24]. The 
last one (exosome) raises debates between authors since some accept 
that vesicular trafficking is possible only from outside the cell towards 
the inside [25], instead others agree that the trafficking can occur in 
both senses [26]. Our images finally put a stop to this argument, in fact 
in Figure 1 are visible MVs along linear pathways and in particular are 
shown MVs astride the bacterial cell and a MV outside the cell, in the 
external environment. This result confirms that the uptake process is 
reversible, vesicles can be secreted by the bacterium and suggests that 
the cytoskeleton plays a role in the secretion of MVs [27].

	 The secretion of MVs loaded with PU NPs from S. aureus supplies 
further proofs regarding the production of MVs from gram-positive  
bacteria. It was thought that the production of membranous  
structures was a peculiarity of gram-negative bacteria; instead 
it has been reviewed that MVs can be released by bacteria (both  
gram-negative and gram-positive), eukaryotes and even Archea 
[28]. The formation and secretion of extracellular vesicles, which can  
assume several names such as membrane vesicles (MVs), outer 
membrane vesicles (OMVs), exosomes, or shedding microvesicles, 
are therefore evolutionally conserved processes and the secreted  
vesicles preserve similar functions and mechanisms of release [28-31].  
Lee et al. [32] demonstrated through electron microscopy images and 
proteomics characterization that gram-positive bacteria naturally  
produce MVs and excrete them in the extracellular milieu,  
strengthening the thesis that vesicular trafficking is a two-ways  
process. MVs derived from S. aureus are similar to the OMVs  
produced by gram-negative bacteria. OMVs are spherical vesicles  

Figure 1: MVs loaded with NPs detectable in different regions.

A) TEM image of S. aureus after incubation with PU. PU particles can 
be observed on the cell wall (black ↑), inside the cell surrounded by  
membranes (white ↑) and in the external environment, in the proximity of the 
cell wall (black dashed ↑); B) Portion of Figure 1A (TEM image); C) In order 
to help the reader in the identification of the objects in Figure 1B, here it is  
presented the superimposition of the Figure 1B with its elaborated line art  
(Figure 1D); D) Line art of Figure 1B.

Details of the membrane lysis and a ruffle are visible. MVs with size ranging 
from 20 nm to 40 nm are set out along linear routes that link the ruffle to the 
cellular inner parts, drawing out the position of the cytoskeletal structures. MVs 
are loaded with PU NPs and each MV has a different dose of NPs within itself 
(one or more NPs).

The ruffle region, where it is visible the membrane lysis, is important not only 
for the endocytosis of PU NPs, but even for the secretion of MVs loaded with 
NPs. In fact in Figure 1, it is possible to observe MVs inside the bacterium (In), 
MVs astride the bacterial membrane (As) and a MV outside the cell (Out), in 
the extracellular medium.

This information confirms that vesicular trafficking occurs from inside the cell 
to the outside and vice versa, and suggests the involvement of the cytoskeletal 
structures not only in the uptake processes but even in the excreting ones.

Arrows in Figure 1D indicate MVs situated in three different regions that will 
be analyzed in Figure 2.
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with diameters ranging from 20 nm to 200 nm; they are composed 
of lipopolysaccharides (LPS), phospholipids, outer membrane  
proteins, periplasmic proteins and are associated with several  
virulence factors (for instance toxins and adhesins). OMVs carry 
out different functions such as cell-cell communication (quorum 
sensing) [33], sensing of nutrients, killing of competitors, delivery of 
toxins or other virulence determinants to host cells, and modulation 
of host immune response [29,31,34-38]. The roles of MVs derived 
from gram-positive bacteria are similar to those of the OMVs: MVs 
are spherical vesicles smaller than the OMVs (MVs’ diameter ranges 
from 20 nm to 100 nm) that bacteria secrete in order to accomplish 
functions such as transfer of proteins, cell-cell signaling, sensing of 
nourishment, pathogenic purposes (infection), killing of competing 
bacteria [39], and antibiotic resistance [30-32].

	 In our experiment we face MVs loaded with xenobiotic material, 
PU NPs, derived from the biodestruction of dental prostheses carried 
out by S. aureus. It is worthwhile noting that NPs observed in our 
images cannot be ascribed to staining artifacts, since artifacts deriving 
for instance from lead citrate staining are larger and characterized by 
higher size dispersion.

	 We proceeded comparing the results obtained by our experiment 
with those showed by Lee et al. [32], in order to see if PU NPs could 
cause any modifications to the MVs. Three portions of the original 
image (Figure 1) that include MVs loaded with PU NPs inside the 
bacterial cell, astride the membrane and outside the cell are collected  
in Figure 2 (first column); these sections were elaborated and the  
resulting line arts are visible in the second column. In the third  
column it is presented the line art of Figures 1A and B of Lee et al. [32]. 
The outcomes of the comparison pointed out that not all of our MVs 
bring the same amount of PU NPs, in fact MVs are loaded with one  

or more NPs; the size of MVs (20-40 nm) loaded with PU NPs is in 
accordance with the literature [31,32], the bacterial membrane lysis is 
visible both in Lee et al.’s line art and in our images.

	 In addition we elaborated the inner MV (identified in Figure 2 
with a white bar) with MATLAB® in order to make the interpreta-
tion of the objects (membrane, NPs) easier (Figure 3); furthermore  

we made plots of the grayscale values of tiny sections of three types of 
MVs (In, As, Out) to highlight borders and inner material distribution  
(PU NPs) (Figure 4). The section of each MV analyzed is indicated in 
Figure 2 with a white bar.

	 The MVs formation and secretion from S. aureus occur both in 
vitro and in vivo [30,31], and increase the pathogenicity of S. aureus. 
In fact MVs represent a strategy for pathogenic bacteria to deliver  
a noxious cargo (included virulence factors) to host cells during  
infections [30,31]. S. aureus ability in evading the immune system and 
the developed high resistance against antibiotics can be linked again to 
the MVs’ action [28,30,31]. MVs modulate host defense and response 
establishing a niche with host cells [34,38], indeed MVs could act as 
decoys for antibodies making the production of antibodies ineffective  
for the clearance of the intact organisms [28,40]; moreover active  
hydrolytic enzymes such as β-lactamases are secreted from bacteria 
via the MVs to target antimicrobial agents [30]. The interaction of 
MVs secreted by bacteria with host cells can be ambivalent, in fact it 
could afford a vantage for the host that recognizes a foreign invader, 
and for the microorganism itself that misdirects the immune system 
[28].

	 In our in vitro experiments staphylococcal MVs transport PU NPs  
outside the bacterium, in the extracellular medium. Transposing our 
results to an in vivo hypothetical situation, we would have an infection 
worsened by the delivery of NPs to target host human cells [41]. MVs 
represent a further access that PU NPs would have to reach lots of 
body areas, in fact MVs could enter in the systemic circle [40], and 
spread both the infection and the foreign material to several body 
districts. PU NPs could exit the bacterium not only through secreted  
MVs, but even as a consequence of bacterial death or through  
exocytosis. In the last case NPs would not be surrounded by a MV, 
and would be free in the host organism [41]. The characteristics of 
NPs make them highly reactive with biological systems, but nowadays  
further studies need to be done in order to understand the  
interactions that NPs have with bacterial cells and then with host cells,  

Figure 2: Role of Electron Microscopy in the identification of the morphology 
and spatial distribution of MVs loaded with PU NPs.

Three different portions of Figure 1A that include MVs loaded with PU NPs 
inside the bacterial cell (In), astride the membrane (As) and outside the cell 
(Out) are shown in the first column and the respective line arts are visible in 
the central one.

In order to make a comparison between our outcomes and the results from 
literature, in the third column we present the line arts of Figures 1A and B of 
Lee et al. [32]. The size of MVs (in the range of 20-40 nm) loaded with PU NPs 
is similar to that of the MVs shown by Lee et al. (50 nm) and in accordance 
with the literature [31,32]. The bacterial membrane lysis is visible both in Lee 
et al.’s line art and in our images, meaning that MVs represent a new strategy 
that bacteria have to excrete internal material (proteins, cellular components, 
virulence factors) as well as xenobiotic NPs.

Figure 3: A different elaboration (via MATLAB®) of the inner MV loaded with 
PU NPs inside the bacterial cell (In) discussed in Figures 2 and 4 is reported 
to help in the identification of the object’s details.

The image is a surface plot which spatial coordinates are the X and Y axes; 
the Z axis refers to the original grayscale values, where the lower ones  
(associated to the blue color) correspond to the denser portions of the sample 
(membrane, NPs).
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and to study the actual toxicity of nanosized materials and the levels of 
bioaccumulation within cells.

	 In this work we showed results carried out by an analysis of  
electron microscopy images. We would like to highlight the  
importance of electron microscopy in NPs-related studies. The details 
provided by electron microscopy images are not so “readily readable”  
[42], in fact beyond the first simply visible results there are the  
sharpness of the observation and the subtlety of the analysis.

	 With this study we described a new type of secretion  
pathway through which bacteria secrete proteins, cellular components,  
virulence factors, and a new kind of cargo (PU NPs). This work raises 
new issues about the toxicological risks and the dosimetry of NPs in 
bacterial MVs and in host cells. In the same time this study opens new  

ways to the nanomedicine in the comprehension of the mechanisms 
of the bacterial secretion of MVs and their interactions with host cells, 
and in the delivery of xenobiotic material guided by the dynamics of 
bacterial infections.
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