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Marshall and Olkin (1997) introduced a general method for obtain-
ing more flexible distributions by adding a new parameter to an existing
one, called the Marshall-Olkin family of distributions. We introduce a
new class of distributions called the Marshall - Olkin Log-Logistic Ex-
tended Weibull (MOLLEW) family of distributions. Its mathematical
and statistical properties including the quantile function hazard rate
functions, moments, conditional moments, moment generating function
are presented. Mean deviations, Lorenz and Bonferroni curves, Rényi
entropy and the distribution of the order statistics are given. The Max-
imum likelihood estimation technique is used to estimate the model
parameters and a special distribution called the Marshall-Olkin Log
Logistic Weibull (MOLLW) distribution is studied, and its mathemat-
ical and statistical properties explored. Applications and usefulness of
the proposed distribution is illustrated by real datasets.
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1 Introduction

Marshall and Olkin (1997) derived an important method of including an extra
shape parameter to a given baseline model thus defining an extended dis-
tribution. The Marshall-Olkin transformation provides a wide range of be-
haviors with respect to the baseline distribution (Santos-Neo et al. 2014).
Adding parameters to a well-established distribution is a time-honored de-
vice for obtaining more flexible new families of distributions (Cordeiro and
Lemonte 2011). Several new models have been proposed that are some way
related to the Weibull distribution which is a very popular distribution for
modelling data in reliability, engineering and biological studies. Extended
forms of the Weibull distribution and applications in the literature include Xie
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et al. (2002), Bebbington et al. (2007), Cordeiro et al. (2010) and Silva et
al. (2010). When modeling monotone hazard rates the Weibull distribution
may be an initial choice because of its negatively and positively skewed density
shapes, it however does not provide a reasonable fit for modeling phenomenon
with non-monotone failure rates such as bathtub shaped and unimodal failure
rates which are common in reliability, engineering and biological Sciences.

This paper employs the Marshall-Olkin transformation to the Log-Logistic
Weibull distribution to obtain a new more flexible distribution to describe re-
liability data. Marshall and Olkin applied the transformation and generalized
the exponential and Weibull distribution. Subsequently, the Marshall- Olkin
transformation was applied to several well-known distributions: Weibull (Ghit-
tany et al. 2005, Zhang and Xie 2007). More recently, general results have
been addressed by Barreto-Souza et al. (2013) and Cordeiro and Lemonte
(2013). Santos-Nero et al. (2014) introduces a new class of models called the
Marshall-Olkin extended Weibull family of distributions which defines at least
twenty-one special models. Chakraborty and Handique (2017) presented the
generalized Marshall-Olkin Kumaraswamy-G distribution. Lazhar (2016) de-
veloped and studied the properties of the Marshall-Olkin extended generalized
Gompertz distribution. Kumar (2016) discussed the ratio and inverse moments
of Marshall-Olkin extened Burr Type III distribution based on lower general-
ized order statistics. However these authors do not employ the Marshall-Olkin
transformation in extending the Log-Logistic Weibull distribution (Oluyede et
al. 2016). The combined distribution of Log- Logistic and Weibull is obtained
from the product of the reliability or survival functions of the Log-logistic and
Weibull distribution. The Marshall-Olkin transformation is then employed
to obtain a new model called Marshall-Olkin Log-Logistic Extended Weibull
(MOLLEW) distribution. A motivation for developing this model is the advan-
tages presented by this extended distribution with respect to having a hazard
function that exhibits increasing, decreasing and bathtub shapes, as well as
the versatility and flexibility of the log-logistic and Weibull distributions in
modeling lifetime data.

The results in this paper are organized in the following manner. In section
2, we present the extended model called Marshall-Olkin Log-Logistic Extended
Weibull (MOLLEW) distribution, quantile function and hazard function. In
section 3, moments, moment generating function and conditional moments
are presented. Lorenz and Bonferroni curves are also presented in section 3.
Section 4 contain results on Rényi entropy. In Section 5, maximum likelihood
estimates of the model parameters are given. In section 6, the special case, that
is, the new model called the Marshall-Olkin Log-Logistic Weibull (MOLLW)
distribution its sub models, density expansion, quantile function, hazard and
reverse hazard function, moments, moment generating function, conditional
moments, Lorenz and Bonferroni curves and Rényi entropy are derived. Max-
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imum likelihood estimates of the model parameters are given in section 7. A
Monte Carlo simulation study to examine the bias and mean square error of the
maximum likelihood estimates are presented in section 8. Section 9 contains
applications of the new model to real data sets. A short conclusion remark is
given in section 10.

2 Marshall-Olkin Log-Logistic Extended Weibull Distribution

In this section, the model, hazard function and quantile function of the Marshall-
Olkin Log-Logistic Extended Weibull (MOLLEW) distribution are presented.
First, we present the class of extended Weibull distributions, Log-Logistic
Weibull distribution and the Marshall-Olkin Log-Logistic Extended Weibull
distribution.

Gurvich et al. (1997) pioneered the class of extended Weibull (EW) distri-
butions. The cumulative distribution function (cdf) is given by

G(x;α, ξ) = 1− exp[−αH(x; ξ)], x ∈ D, α > 0, (2.1)

where D is a subset of R, and H(x; ξ) is a non-negative function that depends
on the vector of parameters ξ. The corresponding probability density function
(pdf) is given by

g(x;α, ξ) = α exp[−αH(x; ξ)]h(x; ξ), (2.2)

where h(x; ξ) is the derivative of H(x; ξ). The choice of the function H(x; ξ)
leads to different models including for example, exponential distribution with
H(x; ξ) = x, Rayleigh distribution is obtained from H(x; ξ) = x2 and Pareto
distribution from setting H(x; ξ) = log(x/k). Now consider a general case
called log-logistic extended Weibull family of distributions. The distribution is
obtained via the use of competing risk model and is given by combining both
the log-logistic and extended Weibull family of distributions as given below
(Oluyede et al. 2016). The corresponding pdf is given by

f(x; c, α, ξ) = e−αH(x;ξ) (1 + xc)−1
{
αh(x; ξ) + cxc−1(1 + xc)−1

}
, (2.3)

for c, α, ξ > 0 and x ≥ 0. The cumulative distribution function (cdf) of the
distribution is given by

F (x; c, α, β) = 1− (1 + xc)−1e−αH(x;ξ), (2.4)

for c, α, ξ > 0. Santos-Neto et al. (2014) proposed a new class of models called
the Marshall-Olkin extended Weibull (MOEW) family of distributions based
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on the work by Marshall and Olkin (1997). The survival function is given as

G(x;α, δ, ξ) =
δ exp[−αH(x; ξ)]

1− δ exp[−αH(x; ξ)]
, (2.5)

where δ = 1− δ and for α, δ > 0. The associated hazard rate reduces to

h(x;α, δ, ξ) =
δh(x; ξ)

1− δ exp[−αH(x; ξ)]
, x ∈ D, α > 0, δ > 0. (2.6)

The corresponding pdf is given by

g(x;α, δ, ξ) =
δαh(x; ξ) exp[−αH(x; ξ)]

[1− δ exp[−αH(x; ξ)]]2
, x ∈ D, α > 0, δ > 0, (2.7)

where δ = 1− δ . The general case of Marshall-Olkin Log-Logistic Extended
Weibull (MOLLEW) family of distributions has survival function that is given
by

G
MOLLEW

(x; c, α, δ, ξ) =
δ(1 + xc)−1e−αH(x;ξ)

1− δ(1 + xc)−1e−αH(x;ξ)
. (2.8)

The pdf is given by

g
MOLLEW

(x; c, α, δ, ξ) =
δ(1 + xc)−1e−αH(x;ξ) {αh(x; ξ) + cxc−1(1 + xc)−1}

[1− δ(1 + xc)−1e−αH(x;ξ)]2

(2.9)
for c, α, ξ, δ > 0 and x ≥ 0. The parameter α control the scale of the dis-
tribution and c and ξ controls the shape of the distribution and δ is the tilt
parameter. The hazard and reverse functions of the MOLLEW distribution
are given by

h
MOLLEW

(x; c, α, ξ, δ) =
αh(x; ξ) + cxc−1(1 + xc)−1

1− δ(1 + xc)−1e−αH(x;ξ)
, (2.10)

and

τ
MOLLEW

(x; c, α, ξ, δ) =
αh(x; ξ) + cxc−1(1 + xc)−1

1− (1 + xc)−1e−αH(x;ξ)
, (2.11)

for c, α, ξ, δ > 0 and x ≥ 0, respectively.

2.1 Quantile Function

The MOLLEW quantile function can be obtained by inverting G(x) = 1− u,
where G(x) = u, 0 ≤ u ≤ 1, and

G
MOLLEW

(x; c, α, β, δ, ξ) =
δ(1 + xc)−1e−αH(x;ξ)

1− δ(1 + xc)−1e−αH(x;ξ)
. (2.12)
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The quantile function of the MOLLEW distribution is obtained by solving the
non-linear equation

αH(x; ξ) + log (1 + xc) + log

[
1− u

δ + (1− u)δ

]
= 0, (2.13)

using numerical methods. Consequently, random number can be generated
based on equation (2.13).

2.2 Expansion for the Density Function

Using the generalized binomial expression

(1− z)−k =
∞∑
j=0

Γ (k + j)

Γ (k)j!
zj, for |z| < 1, (2.14)

the MOLLEW pdf can be rewritten as follows:

g
MOLLEW

(x) =
∞∑
j=0

(j + 1)δδ
j
[(1 + xc)−1e−αH(x;ξ)]

j
(1 + xc)−1e−αH(x;ξ)

×
{
αh(x; ξ) + cxc−1(1 + xc)−1

}
=

∞∑
j=0

δδ
j
(1 + xc)−(j+1)−1e−α(j+1)H(x;ξ)

×
{
α(j + 1)h(x; ξ)(1 + xc) + c(j + 1)xc−1)

}
=

∞∑
j=0

w(j, δ)f
BW

(x, c, j + 1, α(j + 1), ξ), (2.15)

where w(j, δ) = δδ
j

and f
BW

(x, c, j + 1, α(j + 1), ξ) is the Burr XII Extended
Weibull pdf with parameters for c, α(j + 1), ξ, δ > 0 and x ≥ 0, respectively.
Thus MOLLEW pdf can be written as a linear combination of Burr XII Ex-
tended Weibull density functions. The mathematical and statistical properties
of the MOLLEW density function follows directly from those of the Burr XII
Extended Weibull density function.

3 Moments, Moment Generating Function and Conditional Moments

In this section, moments, moment generating function and conditional mo-
ments are given for the MOLLEW distribution. The rth moment of the MOLLEW
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distribution is given by

E(Xr) =

∫ ∞
0

xrg
MOLLEW

(x)dx

=

∫ ∞
0

xrδ(1 + xc)−1e−αH(x;ξ)
{
αh(x; ξ) + cxc−1(1 + xc)−1

}
× [1− δ(1 + xc)−1e−αH(x;ξ)]−2

dx

=

∫ ∞
0

xr
[ ∞∑
j=0

(j + 1)δδ
j
[(1 + xc)−1e−αH(x;ξ)]

j
(1 + xc)−1e−αH(x;ξ)

×
{
αh(x; ξ) + cxc−1(1 + xc)−1

} ]
dx

=
∞∑
j=0

δδ
j
[

(α(j + 1))

∫ ∞
0

xr(1 + xc)−(j+1)e−α(j+1)H(x;ξ)h(x; ξ)dx

+ (c(j + 1)

∫ ∞
0

xr+c−1(1 + xc)−(j+1)−1e−α(j+1)H(x;ξ)

]
dx.

Applying the power series expansion

e−α(j+1)H(x;ξ) =
∞∑
i=0

(−1)i[α(j + 1)H(x; ξ)]i

i!
,

we have

E(Xr) =
∞∑
j=0

δδ
j
[

(α(j + 1))

∫ ∞
0

xr(1 + xc)−(j+1)
∞∑
i=0

(−1)i[α(j + 1)H(x; ξ)]i

i!
h(x; ξ)dx

+ (c(j + 1))

∫ ∞
0

xr+c−1(1 + xc)−(j+1)−1
∞∑
i=0

(−1)i[α(j + 1)H(x; ξ)]i

i!

]
dx

=
∞∑
j=0

∞∑
i=0

δδ
j (−1)i

i!
(j + 1)i+1

[ (
αi+1

) ∫ ∞
0

xr(1 + xc)−(j+1)h(x; ξ)H(x; ξ)idx

+
(
cαi
) ∫ ∞

0

xr+c−1(1 + xc)−(j+1)−1H(x; ξ)i
]
dx.

(3.1)
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3.1 Conditional Moments

The rth conditional moment for MOLLEW distribution is given by

E(Xr|X > t) =
1

G
MOLLEW

(t)

∫ ∞
t

xrg
MOLLEW

(x)dx

=
1

G
MOLLEW

(t)
[
∞∑
j=0

∞∑
i=0

δδ
j (−1)i

i!
(j + 1)i+1

×
[ (
αi+1

) ∫ ∞
t

xr(1 + xc)−(j+1)h(x; ξ)H(x; ξ)idx

+
(
cαi
) ∫ ∞

t

xr+c−1(1 + xc)−(j+1)−1H(x; ξ)i
]
dx.

(3.2)

Note that once H(x; ξ) is specified, the moment and conditional moments can
be readily obtained.

3.2 Bonferroni and Lorenz Curves

In this subsection, we present Bonferroni and Lorenz curves. Bonferroni and
Lorenz curves have applications not only in economics for the study income
and poverty, but also in other fields such as reliability, demography, insurance
and medicine. Bonferroni and Lorenz curves for the MOLLEW distribution
are given by

B(p) =
1

pµ

∫ q

0

xg
MOLLEW

(x)dx =
1

pµ
[µ− T (q)],

and

L(p) =
1

µ

∫ q

0

xg
MOLLEW

(x)dx =
1

µ
[µ− T (q)],

respectively. The special cases for specified H(x; ξ) can be readily computed.

4 Rényi Entropy

The concept of entropy plays a vital role in information theory. The entropy
of a random variable is defined in terms of its probability distribution and can
be shown to be a good measure of randomness or uncertainty. In this section,
we present Rényi entropy for the MOLLEW distribution. Rényi entropy is an
extension of Shannon entropy. Rényi entropy is defined to be

IR(v) =
1

1− v
log

(∫ ∞
0

[g(x; c, α, ξ, δ)]vdx

)
, v 6= 1, v > 0. (4.1)
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Rényi entropy tends to Shannon entropy as v → 1. Note that [g(x; c, α, ξ, θ)]v =
gv(x) can be written as

gv(x) =

[
δ(1 + xc)−1e−αH(x;ξ)

{
αh(x; ξ) + cxc−1(1 + xc)−1

}
× [1− δ(1 + xc)−1e−αH(x;ξ)]−2

]v
=

∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)p

Γ (2v)j!p!

)
× αp+v−w(1 + xc)−j−v−wxcw−wh(x; ξ)v−wH(x; ξ)p.

Thus,∫ ∞
0

gv(x)dx =
∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)p

Γ (2v)j!p!

)
× αp+v−w

∫ ∞
0

(1 + xc)−j−v−wxcw−wh(x; ξ)v−wH(x; ξ)pdx.

Consequently, Rényi entropy is given by

IR(v) =

(
1

1− v

)
log

( ∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)p

Γ (2v)j!p!

)
× αp+v−w

∫ ∞
0

(1 + xc)−j−v−wxcw−wh(x; ξ)v−wH(x; ξ)pdx

)
for v 6= 1, and v > 0.

5 Maximum Likelihood Estimation

Let X ∼ MOLLEW (c, α, ξ, δ) and ∆ = (c, α, ξ, δ)T be the parameter vector.
The log-likelihood function ` = `(∆) based on a random sample of size n is
given by

`(∆) = n log δ −
n∑
i=0

log (1 + xc
i
)− α

n∑
i=0

H(x
i
; ξ)

+
n∑
i=0

log

(
αh(x

i
; ξ) + cxc−1

i
(1 + xc

i
)−1
)
− 2

n∑
i=0

log

(
1− δ(1 + xc

i
)−1e−αH(xi ;ξ)

)
.

The elements of the score vector U =

(
∂`
∂δ
, ∂`
∂α
, ∂`
∂ξ
k
, ∂`
∂c

)
are given by

∂`

∂δ
=
n

δ
− 2

n∑
i=0

(1 + xc
i
)−1e−αH(xi ;ξ)

1− δ(1 + xc
i
)−1e−αH(xi ;ξ)

,
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∂`

∂α
= −

n∑
i=0

H(x
i
; ξ) +

n∑
i=0

αh(x
i
; ξ)

αh(x
i
; ξ) + cx

i
c−1(1 + xc

i
)−1

− 2δ
n∑
i=0

H(x
i
; ξ)(1 + xc

i
)−1e−αH(xi ;ξ)

1− δ(1 + xc
i
)−1e−αH(xi ;ξ)

,

∂`

∂ξ
k

= −
n∑
i=0

α
∂ H(x

i
; ξ)

∂ξ
k

+ α

n∑
i=0

∂ h(x
i
; ξ)

∂ξ
k

1

αh(x
i
; ξ) + cx

i
c−1(1 + xc

i
)−1

− 2δα
n∑
i=0

∂ H(x
i
; ξ)

∂ξ
k

(1 + xc
i
)−1e−αH(xi ;ξ)

1− δ(1 + xc
i
)−1e−αH(xi ;ξ)

,

and

∂`

∂c
= −

n∑
i=0

xc log xi
(1 + xci)

− 2α
n∑
i=0

δ(1 + xc
i
)−1e−αH(xi ;ξ)

1− δ(1 + xc
i
)−1e−αH(xi ;ξ) log x

i

+
xc−1
i

(1 + xc
i
)−1 − cx2c−1

i
(1 + xc

i
)−2 log x

i
+ cxc−1

i
(1 + xc

i
)−1 log x

i

αh(x
i
; ξ) + cx

i
c−1(1 + xc

i
)−1

.

The equations are obtained by setting the above partial derivatives to
zero are not in closed form and the values of the parameters c, α, ξ and δ
must be found via iterative methods. The maximum likelihood estimates of
the parameters, denoted by ∆̂ is obtained by solving the nonlinear equation
(∂`
∂c
, ∂`
∂α
, ∂`
∂ξ
k
, ∂`
∂δ

)T = 0, using a numerical method such as Newton-Raphson

procedure. The Fisher information matrix is given by I(∆) = [Iθi,θj ]4X4 =

E(− ∂2`
∂θi∂θj

), i, j = 1, 2, 3, 4, can be numerically obtained by MATLAB or

NLMIXED in SAS or R software. The total Fisher information matrix nI(∆)
can be approximated by

Jn(∆̂) ≈
[
− ∂2`

∂θi∂θj

∣∣∣∣
∆=∆̂

]
4X4

, i, j = 1, 2, 3, 4. (5.1)

For a given set of observations, the matrix given in equation (5.1) is obtained
after the convergence of the Newton-Raphson procedure via NLMIXED in SAS
or R software.

Now consider the Log-Logistic-Weibull distribution. This distribution is ob-
tained via the use of competing risk model and is given by combining both the
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Log-Logistic and Weibull distribution. In this case, we take H(x; ξ) = xβ in
the MOLLEW distribution. The MOLLW cdf is given by

F (x; c, α, β) = 1− (1 + xc)−1e−αx
β

, (6.1)

for c, α, β > 0. The corresponding pdf is given by

f(x; c, α, β) = e−αx
β

(1 + xc)−1
{
αβxβ−1 + cxc−1(1 + xc)−1

}
(6.2)

for c, α, β > 0 and x ≥ 0. Recall the extended case, Marshall-Olkin Log Lo-
gistic Extended Weibull (MOLLEW) distribution has survival function given
by

G
MOLLEW

(x; c, α, β, δ, ξ) =
δ(1 + xc)−1e−αH(x;ξ)

1− δ(1 + xc)−1e−αH(x;ξ)
(6.3)

with corresponding pdf given by

g
MOLLEW

(x; c, α, β, δ, ξ) =
δ(1 + xc)−1e−αH(x;ξ)

{
αβxβ−1 + cxc−1(1 + xc)−1

}
[1− δ(1 + xc)−1e−αxβ ]2

.

(6.4)
In this section, we study a special case of the family, namely Marshall-

Olkin Log-Logistic Weibull (MOLLW) distribution, by taking H(x; ξ) = xβ.
The MOLLW survival function is given by

G
MOLLW

(x; c, α, β, δ) =
δ(1 + xc)−1e−αx

β

1− δ(1 + xc)−1e−αxβ
. (6.5)

The corresponding pdf is given by

g
MOLLW

(x; c, α, β, δ) =
δ(1 + xc)−1e−αx

β {
αβxβ−1 + cxc−1(1 + xc)−1

}
[1− δ(1 + xc)−1e−αxβ ]2

(6.6)

for c, α, β, δ > 0 and x ≥ 0. Note that the parameter α control the scale of
the distribution, c and β controls the shape of the distribution and δ is the
tilt parameter. The plots of the MOLLW pdf is given in Figure 6.1. The
plots shows that the pdf can be L-shaped, decreasing, unimodal depending on
selected parameter values.

6.1 Quantile Function

The quantile function of the MOLLW distribution is obtained by solving the
non-linear equation

αxβ + log (1 + xc) + log

[
1− u

δ + (1− u)δ

]
= 0. (6.7)
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Figure 6.1: Plots of MOLLW PDF

The quantile function of the MOLLW distribution is obtained by solving the
non-linear equation using numerical methods. Consequently, random number
can be generated based on equation (6.7). Table 6.1 lists the quantile for
selected values of the parameters of the MOLLW distribution.

Table 6.1: MOLLW Quantile for Selected Values

(c, α, β, δ)

u (2.0,2.0,0.5,0.5,0.1) (2,0.5,2.0,0.5) (0.5,0.5,1.5,1.5) (0.4,1.0,0.4,0.7) (1.0,1.5,2.0,2.0)

0.1 0.00072 0.19099 0.0269 0..00027 0.17021

0.2 0..0347 0.28389 0.12019 0.00195 0.30481

0.3 0.00943 0.36744 0.27768 0.00675 0.42192

0.4 0.02060 0.45170 0.48049 0.01798 0.53029

0.5 0.04076 0.54273 0.71626 0.04229 0.63584

0.6 0.07666 0.64741 0.98551 0.09450 0.74393

0.7 0.14185 0.77644 1.30194 0.21219 0.86148

0.8 0.26549 0.95214 1.70267 0.51385 1.00116

0.9 1.53053 1.24431 2.30566 1.57612 1.19901
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6.2 Hazard and Reverse Hazard Functions

The hazard and reverse functions of the MOLLW distribution are given by

h
MOLLW

(x; c, α, β, δ) =
αβxβ−1 + cxc−1(1 + xc)−1

1− δ(1 + xc)−1e−αxβ
, (6.8)

and

τ
MOLLW

(x; c, α, β, δ) = (x; c, α, β, δ) =
αβxβ−1 + cxc−1(1 + xc)−1

1− (1 + xc)−1e−αxβ
, (6.9)

for c, α, β, δ > 0 and x ≥ 0, respectively.
Plots of the MOLLW hazard function are given in Figure 6.2. The plots

shows that the hazard function of the MOLLW can either be decreasing, bath-
tub followed by upside down bathtub or increasing-decreasing depending on
selected parameter values.

Figure 6.2: Plots of MOLLW Hazard

6.3 Some Sub-models

There are several new as well as well known distributions that can be ob-
tained from the MOLLW distribution. The sub-models include the following
distributions:

• When δ = 1, we obtain the Log-Logistic Weibull (LLW) distribution.

• When β = 2, we obtain the Marshall-Olkin Log-Logistic Rayleigh (MOLLR)
distribution.
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• If α→ 0+, we obtain the Marshall-Olkin Log-Logistic (MOLL) distribu-
tion.

• If c = 1, then the Marshall-Olkin Log-Logistic Weibull distribution re-
duces to the 3 parameter distribution with survival function

G
MOLLW

(x;α, δ, β) =
δ(1 + x)−1e−αx

β

1− δ(1 + x)−1e−αxβ
. (6.10)

• If c = 1 and β = 1, then the Marshall-Olkin Log-Logistic Weibull distri-
bution reduces to the 2 parameter distribution with survival function

G
MOLLW

(x;α, δ) =
δ(1 + x)−1e−αx

1− δ(1 + x)−1e−αx
. (6.11)

• If c = 1 and β = 2, then the Marshall-Olkin Log-Logistic Weibull dis-
tribution reduces to the 2 parameter distribution with survival function
given by

G
MOLLW

(x;α, δ) =
δ(1 + x)−1e−αx

2

1− δ(1 + x)−1e−αx2
. (6.12)

6.4 Expansion for the Density Function

Using the generalized binomial expression

(1− z)−k =
∞∑
j=0

Γ (k + j)

Γ (k)j!
zj, for |z| < 1,

the MOLLW pdf can be rewritten as follows:

g
MOLLW

(x) =
∞∑
j=0

w(j, δ)f
BW

(x, c, j + 1, α(j + 1), β), (6.13)

where w(j, δ) = δδ
j

and f
BW

(x, c, j + 1, α(j + 1), β) is the Burr XII Weibull
pdf with parameters for c > 0, j + 1 > 0, α(j + 1) > 0, and β > 0 respec-
tively. Thus MOLLW pdf can be written as a linear combination of Burr
XII-Weibull density functions. The mathematical and statistical properties of
the MOLLW distribution follows directly from those of the Burr XII Weibull
density function.
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In this section, moments, moment generating function and conditional mo-
ments are given for the MOLLW distribution. The rth moment of the MOLLW
distribution is given by

E(Xr) =
∞∑
j=0

δδ
j
[

(α(j + 1)β)

∫ ∞
0

xr+β−1(1 + xc)−(j+1)e−α(j+1)xβdx

+ (c(j + 1)

∫ ∞
0

xr+c−1(1 + xc)−(j+1)−1e−α(j+1)xβ
]
dx.

Applying the power series expansion

e−α(j+1)xβ =
∞∑
i=0

(−1)i[α(j + 1)xβ]i

i!
,

we have

E(Xr) =
∞∑
j=0

δδ
j
[

(α(j + 1)β)

∫ ∞
0

xr+β−1(1 + xc)−(j+1)
∞∑
i=0

(−1)i[α(j + 1)xβ]i

i!
dx

+ (c(j + 1))

∫ ∞
0

xr+c−1(1 + xc)−(j+1)−1
∞∑
i=0

(−1)i[α(j + 1)xβ]i

i!

]
dx

=
∞∑
j=0

∞∑
i=0

δδ
j (−1)i

i!
(j + 1)i+1

[ (
αi+1β

) ∫ ∞
0

xr+β+βi−1(1 + xc)−(j+1)dx

+
(
cαi
) ∫ ∞

0

xr+c+βi−1(1 + xc)−(j+1)−1
]
dx.

(6.14)

Let y = (1 + xc)−1 , then x = (1−y
y

)
1
c , and dx = c−1y−2(1 − y)

1
c
−1y1−

1
c dy,

6.5 Moments, Moment Generating Function and Conditional Moments
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so that

E(Xr) =
∞∑
j=0

∞∑
i=0

δδ
j (−1)i

i!
(j + 1)i+1

[ (
αi+1β

)
×

∫ 1

0

((
1− y
y

) 1
c
)r+β+βi−1

yj+1y−2c−1(1− y)
1
c
−1y1−

1
c dy

+
(
cαi
) ∫ 1

0

((
1− y
y

) 1
c
)r+c+βi−1

yj+2y−2c−1(1− y)
1
c
−1y1−

1
c

]
dy

=
∞∑
j=0

∞∑
i=0

δδ
j (−1)i

i!
(j + 1)i+1

[ (
c−1αi+1β

) ∫ 1

0

y−
r
c
−βi
c
−β
c
+j(1− y)−

r
c
+βi
c
+β
c
−1dy

+ αi
∫ 1

0

y−
r
c
−βi
c
+j(1− y)−

r
c
+βi
c dy

]
=

∞∑
j=0

∞∑
i=0

δδ
j (−1)i

i!
(j + 1)i+1

[ (
c−1αi+1β

)
B

(
j − 1

c
(r + βi+ β − c), 1

c
(r + βi+ β

)
+ αiB

(
j − 1

c
(r + βi− c), 1

c
(r + βi− c

)]
, (6.15)

where B(a, b) =
∫ 1

0
ta−1(1−t)b−1dt is the complete beta function. The moment

generating function (MGF) of the MOLLW distribution is given by MX(t) =
E(etX) =

∑∞
n=0

tn

n!
E(Xn), where E(Xn) is given above.

Table 6.2 lists the first five moments together with the standard deviation
(SD or σ), coefficient of variation (CV), coefficient of skewness (CS) and coef-
ficient of kurtosis (CK) of the MOLLW distribution for selected values of the
parameters, by fixing β = 1.5 and δ = 1.5. Table 6.3 lists the first five mo-
ments, SD, CV, CS and CK of the MOLLW distribution for selected values of
the parameters, by fixing c = 1.0 and α = 1.5. These values can be determined
numerically using R and MATLAB. The SD, CV, CS and CK are given by
σ =

√
µ′2 − µ2,

CV =
σ

µ
=

√
µ′2 − µ2

µ
=

√
µ′2
µ2
− 1,

CS =
E [(X − µ)3]

[E(X − µ)2]3/2
=
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
,

and

CK =
E [(X − µ)4]

[E(X − µ)2]2
=
µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
,

respectively.
Plots of the skewness and kurtosis for selected choices of the parameter β

as a function of c as well as for some selected choices of c as a function of β are
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displayed in figure 6.3. The plots show that the skewness and kurtosis depend
on the shape parameters c and β.

Figure 6.3: Plots of skewness and kurtosis for selected parameter values
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Table 6.2: Moments of the MOLLW distribution for some parameter values;
β = 1.5 and δ = 1.5.

µ′s c = 0.5, α = 0.5 c = 0.5, α = 0.5 c = 2.0, α = 2.0 c = 2.0, α = 2.0

µ′1 0.9731853 0.4508166 0.9680721 0.5463952

µ′2 1.8408579 0.3554505 1.3474524 0.4096721

µ′3 4.6181391 0.3637649 2.4537575 0.3797837

µ′4 14.0188390 0.4463212 5.5553411 0.4151282

µ′5 49.2885587 0.6310007 15.0885743 0.5203804

SD 0.9453931 0.3901472 0.6405379 0.3333532

CV 0.9714420 0.8654233 0.6616635 0.6100954

CS 1.2864943 1.1160837 1.3506110 0.9314745

CK 4.7713115 4.3110027 5.9140779 4.1727749

Table 6.3: Moments of the MOLLW distribution for some parameter values;
c = 1.0 and α = 1.5.

µ′s β = 0.7, δ = 1.2 β = 1.0, δ = 1.0 β = 2.5, δ = 2.5 β = 1.5, δ = 0.4

µ′1 0.4753178 0.4482567 0.73153814 0.3171233

µ′2 0.6638554 0.4368200 0.66668141 0.2069297

µ′3 1.8042518 0.6781033 0.68452169 0.2027406

µ′4 8.0305974 1.4662326 0.76541391 0.2587302

µ′5 52.6285665 4.0931352 0.91608242 0.3988813

SD 0.6617616 0.4856809 0.36267529 0.3261326

CV 1.3922510 1.0834884 0.49577086 1.0284094

CS 3.7004265 2.3639005 0.09172126 2.0081229

CK 27.8806818 11.7875287 2.53674353 8.4925412

6.6 Conditional Moments

The rth conditional moment for MOLLW is given by

E(Xr|X > t) =
1

G
MOLLW

(t)

∫ ∞
t

xrg
MOLLW

(x)dx

=
1

G
MOLLW

(t)

∫ ∞
t

xrδ(1 + xc)−1e−αx
β {
αβxβ−1 + cxc−1(1 + xc)−1

}
× (1− δ(1 + xc)−1e−αx

β

)−2dx.
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Let y = (1 + xc)−1 , then x = (1−y
y

)
1
c , and dx = c−1y−2(1−y)

1
c
−1y1−

1
c dy,. Now

E(Xr|X > t) =
1

G
MOLLW

(t)

[ ∞∑
j=0

∞∑
i=0

δδ
j (−1)i

i!
(j + 1)i+1

×
[ (
c−1αi+1β

)
B(1+tc)−1

(
j − 1

c
(r + βi+ β − c), 1

c
(r + βi+ β

)
+ αiB(1+tc)−1

(
j − 1

c
(r + βi− c)), 1

c
(r + βi− c

)]
, (6.16)

where By(a, b) =
∫ y
0
xa−1(1 − x)b−1dx is the incomplete beta function. The

mean residual lifetime function of the MOLLW distribution is given byE(X|X >
t)− t.

6.7 Bonferroni and Lorenz Curves

In this subsection, we present Bonferroni and Lorenz Curves. Bonferroni and
Lorenz curves have applications not only in economics for the study income
and poverty, but also in other fields such as reliability, demography, insurance
and medicine. Bonferroni and Lorenz curves for the MOLLW distribution are
given by

B(p) =
1

pµ

∫ q

0

xg
MOLLW

(x)dx =
1

pµ
[µ− T (q)],

and

L(p) =
1

µ

∫ q

0

xg
MOLLW

(x)dx =
1

µ
[µ− T (q)],

respectively, where T (q) =
∫∞
q
xg(x)dx, is given by

τ(q) =

∫ ∞
q

xg
MOLLW

(x)dx =
∞∑
j=0

∞∑
i=0

δδ
j (−1)i

i!
(j + 1)i+1

(
c−1αi+1β

)
×

[
B(1+qc)−1

(
j − 1

c
(r + βi+ β − c), 1

c
(r + βi+ β

)
αi

+ B(1+qc)−1

(
j − 1

c
(r + βi− c), 1

c
(r + βi− c

)]
(6.17)

and q = G−1(p), 0 ≤ p ≤ 1.

6.8 Rényi Entropy

The concept of entropy plays a vital role in information theory. The entropy of
a random variable is defined in terms of its probability distribution and can be
shown to be a good measure of randomness or uncertainty. In this subsection,
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Rényi entropy of the MOLLW distribution is derived. An entropy is a measure
of uncertainty or variation of a random variable. Rényi entropy is an extension
of Shannon entropy. Note that [g(x; c, α, β, θ)]v = gv(x) can be written as

gv(x) =

[
δ(1 + xc)−1e−αx

β {
αβxβ−1 + cxc−1(1 + xc)−1

}
[1− δ(1 + xc)−1e−αx

β

]−2
]v

=
∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)p

Γ (2v)j!p!

)
× αp+v−wβv−wcw(1 + xc)−j−v−wxβp−βw+βv+cw−v.

Now,∫ ∞
0

gv(x)dx =

∫ ∞
0

∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)p

Γ (2v)j!p!

)
× αp+v−wβv−wcw(1 + xc)−j−v−wxβp−βw+βw+cw−vdx

=
∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)pαp+v−wβv−wcw−1

Γ (2v)j!p!

)
×

∫ 1

0

xβv−βw+βp+cw−v(1 + xc)−j−v−wdx

=
∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)pαp+v−wβv−wcw−1

Γ (2v)j!p!

)
×

∫ 1

0

y
1
c
(βw−βv−βp+v+jc+vc−c−1)(1− y)

1
c
(βv−βw+βp+cw−v+1−c)dy

=
∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)pαp+v−wβv−wcw−1

Γ (2v)j!p!

)
× B

(
1

c
(βw − βv − βp+ vc+ jc+ v + 1) ,

1

c
(βv − βw + βp+ cw − v + 1)

)
.

(6.18)

Consequently, Rényi entropy is given by

IR(v) =

(
1

1− v

)
log

[ ∞∑
j=0

∞∑
p=0

v∑
w=0

(
v

w

)(
(−1)pΓ (j + 2v)δvδ

j
(v + j)pαp+v−wβv−wcw−1

Γ (2v)j!p!

)]
× B

(
1

c
(βw − βv − βp+ vc+ jc+ v + 1) ;

1

c
(βv − βw + βp+ cw − v + 1)

)
(6.19)

for v 6= 1, and v > 0.
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7 Maximum Likelihood Estimation

Let X ∼ MOLLW (c, α, β, δ) and ∆ = (c, α, β, δ)T be the parameter vector.
The log-likelihood function ` = `(∆) based on a random sample of size n is
given by

`(∆) = n log δ −
n∑
i=0

log (1 + xc
i
)− α

n∑
i=0

xβ
i

+
n∑
i=0

log
{
αβxβ−1

i
+ cxc−1

i
(1 + xc

i
)−1
}
− 2

n∑
i=0

log(1− δ(1 + xc
i
)−1e−αx

β
i ).

The elements of the score function are given by

∂`

∂δ
=
n

δ
− 2

n∑
i=0

(1 + xc
i
)−1e−αx

β

1− δ(1 + xc
i
)−1e−αx

β
i

,

∂`

∂α
= −

n∑
i=0

xβ
i

+
n∑
i=0

βxβ−1
i

αβxβ−1
i

+ cx
i
c−1(1 + xc

i
)−1

− 2δ
n∑
i=0

xβ(1 + xc
i
)−1e−αx

β
i

1− δ(1 + xc
i
)−1e−αx

β
i

,

∂`

∂β
= −α

n∑
i=0

xβ
i

log xi +
n∑
i=0

αxβ−1
i

+ αβxβ−1
i

log xi

αβxβ−1
i

+ cx
i
c−1(1 + xc

i
)−1

− 2δα
n∑
i=0

xβ
i
(1 + xc

i
)−1e−αx

β
i log xi

1− δ(1 + xc
i
)−1e−αx

β
i

,

and

∂`

∂c
= −

n∑
i=0

xc
i
log xi

(1 + xc
i
)
− 2α

n∑
i=0

δ(1 + xc
i
)−2e−αx

β
i xc

i
log x

i

1− δ(1 + xc
i
)−1e−αx

β
i log x

i

+
xc−1
i

(1 + xc
i
)−1 − cx2c−1

i
(1 + xc

i
)−2 log x

i
+ cxc−1

i
(1 + xc

i
)−1 log x

i

αβxβ−1
i

+ cx
i
c−1(1 + xc

i
)−1

.

Note that the expectations in the Fisher Information Matrix (FIM) can
be obtained numerically. Let ∆̂ = (ĉ, α̂, β̂, δ̂) be the maximum likelihood es-
timate of ∆ = (c, α, β, δ). Under the usual regularity conditions and that the
parameters are in the interior of the parameter space, but not on the bound-

ary, we have:
√
n(∆̂ − ∆)

d−→ N4(0, I
−1(∆)), where I(∆) is the expected
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Fisher information matrix. The asymptotic behavior is still valid if I(∆) is
replaced by the observed information matrix evaluated at ∆̂, that is J(∆̂).
The multivariate normal distribution N4(0, J(∆̂)−1), where the mean vector
0 = (0, 0, 0, 0)T , can be used to construct confidence intervals and confidence
regions for the individual model parameters and for the survival and hazard
rate functions. That is, the approximate 100(1 − η)% two-sided confidence
intervals for c, k, α, β and δ are given by:

ĉ± Z η
2

√
I−1cc (∆̂), α̂± Z η

2

√
I−1αα(∆̂), β̂ ± Z η

2

√
I−1ββ (∆̂),

and δ̂ ± Z η
2

√
I−1δδ (∆̂),

respectively, where I−1cc (∆̂), I−1αα(∆̂), I−1ββ (∆̂), and I−1δδ (∆̂), are the diagonal ele-

ments of I−1n (∆̂) = (nI(∆̂))−1, and Z η
2

is the upper η
2
th percentile of a standard

normal distribution.

8 Simulation Study

In this section, we study the performance and accuracy of maximum like-
lihood estimates of the MOLLW model parameters by conducting various
simulations for different sample sizes and different parameter values. Equa-
tion 6.7 is used to generate random data from the MOELLW distribution.
The simulation study is repeated for N = times each with sample size n =
25, 50, 75, 100, 200, 400, 800 and parameter values I : c = 0.3, α = 1.3, β =
1.8, δ = 1.4 and II : c = 8.5, α = 0.3, β = 0.3, δ = 0.4. Four quantities are
computed in this simulation study.

(a) Average bias of the MLE ϑ̂ of the parameter ϑ = c, α, β, δ :

1

N

N∑
i=1

(ϑ̂− ϑ).

(b) Root mean squared error (RMSE) of the MLE ϑ̂ of the parameter ϑ =
c, α, β, δ : √√√√ 1

N

N∑
i=1

(ϑ̂− ϑ)2.

(c) Coverage probability (CP) of 95% confidence intervals of the parameter
ϑ = c, α, β, δ, i.e., the percentage of intervals that contain the true value
of parameter ϑ.
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(d) Average width (AW) of 95% confidence intervals of the parameter ϑ =
c, α, β, δ.

Table 8.1 presents the Average Bias, RMSE, CP and AW values of the
parameters c, α, δ and β for different sample sizes. From the results, we can
verify that as the sample size n increases, the RMSEs decay toward zero. We
also observe that for all the parametric values, the biases decrease as the sam-
ple size n increases. Also, the table shows that the coverage probabilities of
the confidence intervals are quite close to the nominal level of 95% and that
the average confidence widths decrease as the sample size increases. Conse-
quently, the MLE’s and their asymptotic results can be used for estimating
and constructing confidence intervals even for reasonably small sample sizes.

Table 8.1: Monte Carlo Simulation Results: Average Bias, RMSE, CP and
AW

I II

Parameter n Average Bias RMSE CP AW Average Bias RMSE CP AW

c 25 0.0650 0.1950 0.9230 0.5446 1.2155 3.2977 0.9360 9.4175
50 0.0275 0.1045 0.9380 0.3477 0.5025 1.7997 0.9480 6.0252
75 0.0196 0.0766 0.9460 0.2810 0.3313 1.3144 0.9470 4.7807
100 0.0159 0.0644 0.9500 0.2393 0.2378 1.0648 0.9570 4.0741
200 0.0104 0.0435 0.9540 0.1648 0.1164 0.7378 0.9430 2.8258
400 0.0067 0.0298 0.9430 0.1157 0.0455 0.5126 0.9520 1.9781
800 0.0062 0.0209 0.9550 0.0814 0.0161 0.3613 0.9470 1.3949

α 25 0.0480 0.7388 0.8800 2.4684 0.1009 0.4749 0.8590 0.9655
50 0.0185 0.4615 0.9230 1.7089 0.0308 0.1965 0.9190 0.4769
75 0.0091 0.3771 0.9320 1.3983 0.0140 0.0877 0.9210 0.3338
100 -0.0009 0.3176 0.9290 1.1968 0.0107 0.0774 0.9230 0.2810
200 -0.0207 0.2103 0.9440 0.8289 0.0041 0.0492 0.9440 0.1877
400 -0.0070 0.1510 0.9400 0.5865 0.0017 0.0329 0.9470 0.1297
800 -0.0182 0.1047 0.9560 0.4128 0.0015 0.0236 0.9480 0.0914

β 25 0.8538 2.3429 0.9320 4.1588 0.0411 0.1411 0.9570 0.4766
50 0.2740 0.7255 0.9540 2.1730 0.0174 0.0839 0.9570 0.3044
75 0.1521 0.4895 0.9450 1.6559 0.0128 0.0668 0.9480 0.2420
100 0.1122 0.3966 0.9550 1.3962 0.0117 0.0546 0.9670 0.2091
200 0.0638 0.2538 0.9570 0.9481 0.0071 0.0384 0.9440 0.1453
400 0.0390 0.1763 0.9370 0.6534 0.0032 0.0257 0.9510 0.1011
800 0.0269 0.1211 0.9480 0.4592 0.0032 0.0182 0.9550 0.0715

δ 25 0.3599 3.3465 0.8260 6.9270 0.6220 6.2480 0.8610 9.5925
50 0.09897 0.8351 0.8810 2.8645 0.0992 1.3014 0.9230 1.1467
75 0.0663 0.6073 0.8970 2.2168 0.0225 0.1540 0.9280 0.5844
100 0.0408 0.5245 0.9050 1.8401 0.0184 0.1382 0.9420 0.4948
200 -0.0088 0.3111 0.9170 1.2004 0.0076 0.0845 0.9420 0.3299
400 -0.0027 0.2196 0.9360 0.8447 0.0029 0.0576 0.9600 0.2277
800 -0.0179 0.1492 0.9360 0.5858 0.0015 0.0428 0.9390 0.1606

9 Applications

In this section, we present examples to illustrate the flexibility of the MOLLW
distribution and its sub-models for data modeling. We fit the density function
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of the MOLLW, Marshall-Olkin log logistic exponential (MOLLE), Marshall-
Olkin log logistic Rayleigh (MOLLR), Marshall-Olkin log logistic and log lo-
gistic Weibull (LLW) distributions. We also compare the MOLLW distribution
to other models including the gamma-Dagum (GD) (Oluyede et al. 2016) and
beta Weibull (Lee et al. 2007) distributions. The GD and BW pdfs are given
by

g
GD

(x) =
λβδx−δ−1

Γ (α)
(1 + λx−δ)−β−1(− log[1− (1 + λx−δ)−β])α−1, x > 0,

and

g
BW

(x) =
kλk

B(a, b)
xk−1e−b(λx)

k

(1− e−(λx)k)a−1, x > 0,

respectively. The maximum likelihood estimates (MLEs) of the MOLLW pa-
rameters c, α, β, δ are computed by maximizing the objective function via the
subroutine NLMIXED in SAS as well (bbmle) package in R. The estimated val-
ues of the parameters (standard error in parenthesis), -2log-likelihood statistic,
Akaike Information Criterion, AIC = 2p−2 ln(L), Consistent Akaike Informa-

tion Criterion, (AICC = AIC + 2p(p+1)
n−p−1 ) and Bayesian Information Criterion,

BIC = p ln(n)−2 ln(L), where L = L(∆̂) is the value of the likelihood function
evaluated at the parameter estimates, n is the number of observations, and p
is the number of estimated parameters are presented in Tables 9.2 and 9.4
for the MOLLW distribution and its sub-models MOLLE, MOLLR, MOLL,
LLW, LLE and LW distributions and alternatives (non-nested) GD and BW
distributions. The Cramer von Mises and Anderson-Darling goodness-of-fit
statistics W ∗ and A∗, are also presented in these tables. These statistics can
be used to verify which distribution fits better to the data. In general, the
smaller the values of W ∗ and A∗, the better the fit. The AdequacyModel
package was used to evaluate the statistics stated above.

We can use the likelihood ratio (LR) test to compare the fit of the MOLLW
distribution with its sub-models for a given data set. For example, to test
β = 1, the LR statistic is ω = 2[ln(L(ĉ, α̂, β̂, δ̂)) − ln(L(c̃, α̃, 1, δ̃))], where ĉ,
α̂, β̂ and δ̂ are the unrestricted estimates, and c̃, α̃ and δ̃ are the restricted
estimates. The LR test rejects the null hypothesis if ω > χ2

ε
, where χ2

ε
denote

the upper 100ε% point of the χ2 distribution with 1 degrees of freedom.

9.1 Glass Fibers Data

Specifically we consider the following data set which consists of 63 observations
of the strengths of 1.5 cm glass fibers, originally obtained by workers at the
UK National Physical Laboratory. The data was also studied by (Smith and
Naylor 1987). The data observations are given below:
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Table 9.1: Glass fibers data

0.55 0.93 1.25 1.36 1.49 1.52
1.58 1.61 1.64 1.68 1.73 1.81
2.00 0.74 1.04 1.27 1.39 1.49
1.53 1.59 1.61 1.66 1.68 1.76
1.82 2.01 0.77 1.11 1.28 1.42
1.50 1.54 1.60 1.62 1.66 1.69
1.76 1.84 2.24 0.81 1.13 1.29
1.48 1.50 1.55 1.61 1.62 1.66
1.70 1.77 1.84 0.84 1.24 1.30
1.48 1.51 1.55 1.61 1.63 1.67
1.70 1.78 1.89

Estimates of the parameters of MOLLW distribution and its related sub-
models (standard error in parentheses), −2 ln(L), AIC, AICC, BIC, W ∗ and
A∗ are given in Table 9.2. Initial values for the MOLLW model in R code are
(c = 0.06, α = 0.15, β = 0.15, δ = 100.4).

Table 9.2: Estimates of Models for Glass fibers Data

Estimates Statistics

Model ĉ α̂ β̂ δ̂ −2 log L AIC AICC BIC W ∗ A∗

MOLLW 2.3671 0.3779 3.7953 29.1187 23.7877 31.7877 32.4773 40.3603 0.0862 0.4963
(1.8197) (0.6353) (1.9556) (37.8767)

MOLLE 5.9702 1.7415 1 196.7129 32.0457 42.0457 42.4525 48.4751 0.2956 1.6423
(1.5263) (0.9350) - (197.3287)

MOLLR 2.9412 1.2508 2 81.8760 29.1556 35.1556 35.5624 41.5853 0.2049 1.1245
(2.1648) (0.4351) - (39.8069)

MOLL 7.9224 - - 28.4663 45.5800 49.579 45.78 53.8662 0.4971 2.7498
(0.8725) (12.7027)

LLW 1.2716) 0.00885) 8.4472 - 90.0120 96.0120 96.4188 103.0425 0.4970 2.7498
(0.3961) (0.0053) (0.8923)

λ̂ β̂ δ̂ α̂
GD 68.4591 0.08732 11.2921 3.4731 36.9692 44.9692 45.6592 53.5417 0.3510 1.9284

(38.2861) (0.1939) (3.1002) (3.1763)

λ̂ k̂ â b̂
BW 0.3046 4.4451 1.1987 28.8812 33.4283 41.4283 42.1179 50.0082 0.2878 1.5770

(0.1019) 0.8567 (0.35094) 41.2092

The asymptotic covariance matrix of the MLE’s for the MOLLW model
parameters which is the observed Fisher information matrix I−1n (∆̂) is given
by: 

2.3661466 −0.3889304 1.4554194 −12.846596
−0.3889304 0.1374642 −0.5817194 6.667768
1.4554194 −0.5817194 2.5332639 −28.197423
−12.8465957 6.6677685 −28.1974230 396.969514

 ,
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and the 95% confidence intervals for the model parameters are given by c ∈
(2.3671±1.96×1.8197), α ∈ (0.3779±1.96×0.6353), β ∈ (3.7953±1.96×1.9556)
and δ ∈ (29.1187± 1.96× 37.8767), respectively.

The LR test statistic of the hypothesis H0: MOLLE against Ha: MOLLW,
H0: MOLLR against Ha: MOLLW, and H0: MOLL against Ha: MOLLW
and LLW against Ha: MOLLW, are 8.258 (p-value = 0.0045), 5.3679 (p-value
= 0.02051), 21.7923 (p-value= 1.96 × 10−5) and 66.2243 (p-value= 0.00001).
We can conclude that there are significant differences between MOLLW and its
sub-models: MOLLE, MOLLR, MOLL, and LLW distributions at the 5% level
of significance. The values of the statistics: AIC, AICC and BIC also shows
that the MOLLW distribution is a better fit than the non-nested GD and BW
distributions for the glass fibers data. There is also clear evidence based on
the goodness-of-fit statistics W ∗ and A∗ that the MOLLW distribution is by
far the better fit for the glass fibers data. Plot of the fitted densities, and the
histogram of the data are given in Figure 9.1.

Figure 9.1: Fitted densities for glass fiber data

9.2 Breaking Stress of Carbon Fibres (in Gba) Data

This data set consists of 66 uncensored data on breaking stress of carbon fibres
(in Gba) (Nicholas and Padgett 2006). The data values are given Table 9.3.

Estimates of the parameters of MOLLW distribution and its related sub-
models (standard error in parentheses), −2 ln(L), AIC, AICC, and BIC are
given in Table 9.2. Initial values for the MOLLW model in R code are (c =
5.326, α = 0.15, β = 1.56, δ = 1.4).
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Table 9.3: Carbon fibers data

0.39 0.85 1.08 1.25 1.47 1.57
1.61 1.61 1.69 1.80 1.84 1.87
1.89 2.03 2.03 2.05 2.12 2.35
2.41 2.43 2.48 2.50 2.53 2.55
2.55 2.56 2.59 2.67 2.73 2.74
2.79 2.81 2.82 2.85 2.87 2.88
2.93 2.95 2.96 2.97 3.09 3.11
3.11 3.15 3.15 3.19 3.22 3.22
3.27 3.28 3.31 3.31 3.33 3.39
3.39 3.56 3.60 3.65 3.68 3.70
3.75 4.20 4.38 4.42 4.70 4.90

Table 9.4: Estimates of Models for Carbon fibers Data

Estimates Statistics

Model ĉ α̂ β̂ δ̂ −2 log L AIC AICC BIC W ∗ A∗

MOLLW 1.6752 0.2786 1.9393 50.1701 169.4 177.4 178.1 186.2 0.0404 0.2643
(1.5051) (0.6144) (1.1526) (57.8832)

MOLL 4.8958 - - 131.97 183.3 187.3 187.5 191.7 0.0961 0.8804
(0.5137) (75.1761)

LLW 0.3318 0.00568 4.3347 - 252.7 258.1 259.1 265.3 0.2167 1.8405
(0.1703) (0.00442) (0.55)

LLE 1.5296 0.3624 1 - 591.2 595.2 595.4 599.6 0.3492 1.9224
(0.1473) (0.4461)

λ̂ β̂ δ̂ α̂
GD 5.271 8.7229 2.6974 0.2653 198.2 206.2 206.8 214.9 0.4380 2.4110

(2.5145) (1.4628) (0.2773) (0.004730)

λ̂ k̂ â b̂
BW 0.1886 4.0692 0.7601 6.6366 171.8 179.8 180.5 188.6 0.0846 0.5040

(0.01883) (1.2754) (0.3697) (2.3168)

The asymptotic covariance matrix of the MLE’s for the MOLLW model
parameters which is the observed Fisher information matrix I−1n (∆̂) is given
by: 

2.2655 −0.7684 1.3251 −45.3059
−0.7684 0.3775 −0.7018 31.4482
1.3251 −0.7018 1.3285 −60.1852
−54.3059 31.4482 −60.1852 3350.46

 ,

and the 95% confidence intervals for the model parameters are given by c ∈
(1.6752±1.96×1.5051), α ∈ (0.2786±1.96×0.6144), β ∈ (1.9393±1.96×1.1526)
and δ ∈ (50.1701± 1.96× 57.8832), respectively.

The LR test statistic of the hypothesis H0: LLW against Ha: MOLLW,
H0: LLE against Ha: MOLLW, and H0: MOLL against Ha: MOLLW and are
83.3 (p-value = 0.00001), 421.8 (p-value = 0.00001), 13.9 (p-value= 0.000959).
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We can conclude that there are significant differences between MOLLW and
the sub-models: LLW, LLE, and MOLL distributions at the 5% level of signif-
icance. The values of the statistics: AIC, AICC and BIC also shows that the
MOLLW distribution is a better fit than the non-nested GD and BW distri-
butions for the carbon fiber data. Infact, there is also clear evidence based on
the Cramer von Mises and Anderson-Darling goodness-of-fit statistics W ∗ and
A∗ that the MOLLW distribution is by far the better fit for the carbon fiber
data. Plot of the fitted densities, and the histogram of the data are given in
Figure 9.2.

Figure 9.2: Fitted densities for carbon fiber data

10 Concluding Remarks

A new class of distributions called the MOLLEW distribution and its spe-
cial case MOLLW are presented. This general and specific class of distribu-
tions and some of its structural properties including hazard and reverse hazard
functions, quantile function, moments, conditional moments, Bonferroni and
Lorenz curves, Rényi entropy, maximum likelihood estimates, asymptotic con-
fidence intervals are presented. Applications of the specific MOLLW model to
real data sets are given in order to illustrate the applicability and usefulness
of the proposed distribution. MOLLW distribution has a better fit than some
of its sub-models and the non-nested GD and BW distributions for the glass
fibers data and carbon fibers data.
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A R Code: Define Functions

# MOLLW pdf
MOLLW pdf=func t i on ( c , alpha , beta , de l ta , x ){
( d e l t a ∗exp(−alpha ∗(xˆ beta ))∗(1+xˆc )ˆ(−1)∗
( alpha∗beta∗x ˆ( beta−1)+(c∗x ˆ( c−1)∗(1+xˆc )ˆ(−1)))/
(1−(1−de l t a )∗(1+xˆc )ˆ(−1)∗ exp(−alpha ∗(xˆ beta ) ) ) ˆ 2 )
}
# MOLLW cdf
MOLLW cdf=func t i on ( c , alpha , beta , de l ta , x ){

(1−(1+xˆc )ˆ(−1)∗ exp(−alpha ∗(xˆ beta ) ) ) /
(1−(1−de l t a )∗(1+xˆc )ˆ(−1)∗ exp(−alpha ∗(xˆ beta ) ) )
}

# MOLLW hazard
MOLLW hazard=func t i on ( c , alpha , beta , de l ta , x ){
MOLLW pdf( c , alpha , beta , de l ta , x )/
(1−MOLLW cdf( c , alpha , beta , de l ta , x ) )}

#MOLLW q u a n t i l e
MOLLW quantile=func t i on ( c , alpha , beta , de l ta , u){
f=func t i on ( x ){
alpha ∗(xˆ beta)+ log (1+xˆc)+ log (1−u)− l og ( de l t a+(1−u)∗(1− de l t a ) )
}
y=un i root ( f , c ( 0 , 100 ) ) $root
re turn ( y ) $
}

#MOLLW moments
MOLLW moments=func t i on ( c , alpha , beta , de l ta , r ){
f=func t i on (x , c , alpha , beta , de l ta , r ){
( xˆ r )∗ (MOLLW pdf(x , c , alpha , beta , d e l t a ) )
}
y=i n t e g r a t e ( f , lower =0,upper=Inf , s u b d i v i s i o n s =1000000 ,
c=c , alpha=alpha , beta=beta , d e l t a=del ta , r=r )
re turn ( y$value ) $
}
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