Generating Functions

Nargiss Mouatta February 27, 2013

Definition of Generating Functions Operations on Generating Functions Famous Sequences

Definition of Generating Functions

Informally, a generating function F(x) is an infinite series

 $F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + \cdots$

- What are they used for?
- Analyzing the behavior of a sequence of numbers f₀ f₁ f₂ f₃...
- Easy to think of f_n as a coefficient of xⁿ instead of enumerating the entire sequence up to f_n. (more examples to follow)

Easy Example

- What is the generating function for the series 1, 1, 1, ?
- G(x)= $1 + x + x^2 + x^3 + \cdots$.
- What is a simplified form for writing it?
 C(v) = ¹
- $G(x) = \frac{1}{1-x}$

Good news...

 We can find more complex generating functions by performing algebraic operations on easier generating functions.

- 1) Scaling: Multiplying a generating function by a constant.
- Example: If we want the sequence 5, 5, 5, ... we can multiply the sequence 1, 1, 1, ... by 5. So we can conclude that the generating function we want is: _____
- 2) Substitution
- $\frac{1}{1-x}$
- 3) Addition: How else can we get the generating function above? (hint: addition)

4) Derivatives:

$$\frac{d}{dx}\frac{1}{1-x} = \frac{d}{dx}(1+x+x^2+x^3+\cdots)$$
$$= 1+2x+3x^2+\cdots+nx^{n-1}+\cdots$$

• So we learn that $\frac{1}{(1-x)^2}$ is the generating function for the sequence 1, 2, 3, 4, ...

- 5) Right Shifting: Multiply by x to shift one step to the right, by x^n to shift by n steps.
- Using previous example:
- 1, 2, 3, 4, • 0, 1, 2, 3, • 0, 1, 2, 3, $F(x) = \frac{1}{1+x}$

- 6) Products:
- Let $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ and $B(x) = b_0 + b_1 x + b_2 x^2 + \cdots$
- Then C(x) = A(x) * B(x)
- Proposition: The nth coefficient of C(x) is

$$c_n = a_0 b_n + a_1 b_{n-1} + a_2 b_{n-2} + \dots + a_n b_0$$

Famous Sequences

The Fibonacci Sequence 1, 1, 2, 3, 5, 8, 13, ... can be described by the recurrence relation:
 f₀ = 1
 f₁ = 1
 f_n = f_{n-1} + f_{n-2}

We can use the recurrence relation to get the generating function $F(x) = \frac{x}{1 - x - x^2}$

• (Derivation of coefficients in "Lectures on Generating Functions" by S. K. Lando, chapter2)

Famous Sequences

• The Catalan sequence 1, 1, 2, 5, 14, 42, 132, ... has the generating function

$$Cat(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

(Derivation of coefficients in "Lectures on Generating Functions" by S. K. Lando, chapter 2)

References

- Lando, S. K."2. Generating Functions for Wellknown Sequences", *Lectures on Generating Functions*. Providence, RI: American Mathematical Society, 2003. STML v. 23.
- Lehman Eric, Leighton F Tom, Meyer Albert R. "15. Generating Functions", *Mathematics for Computer Science*, Creative Commons, 2013.