Generating Functions

Nargiss Mouatta
February 27, 2013

Main Topics

* Definition of Generating Functions
* Operations on Generating Functions
* Famous Sequences

Definition of Generating Functions

- Informally, a generating function $F(x)$ is an infinite series
$F(x)=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}+\cdots$
- What are they used for?
- Analyzing the behavior of a sequence of numbers $\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\mathbf{1}} \boldsymbol{f}_{\mathbf{2}} \boldsymbol{f}_{\mathbf{3}} \ldots$
- Easy to think of $\boldsymbol{f}_{\boldsymbol{n}}$ as a coefficient of $\boldsymbol{x}^{\boldsymbol{n}}$ instead of enumerating the entire sequence up to $\boldsymbol{f}_{\boldsymbol{n}}$. (more examples to follow)

Easy Example

- What is the generating function for the series $1,1,1, \ldots$?
- $\mathrm{G}(\mathrm{x})=1+x+x^{2}+x^{3}+\cdots$.
- What is a simplified form for writing it?
- $\mathrm{G}(\mathrm{x})=\frac{\mathbf{1}}{\mathbf{1 - x}}$

Good news...

- We can find more complex generating functions by performing algebraic operations on easier generating functions.

Operations on Generating Functions

- 1) Scaling: Multiplying a generating function by a constant.
- Example: If we want the sequence $5,5,5, \ldots$ we can multiply the sequence $1,1,1, \ldots$ by 5 . So we can conclude that the generating function we want is:
$\overline{1-x}$
- 2) Substitution
- 3) Addition: How else can we get the generating function above? (hint: addition)

Operations on Generating Functions

4) Derivatives:

$$
\begin{aligned}
\frac{d}{d x} \frac{1}{1-x} & =\frac{d}{d x}\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& =1+2 x+3 x^{2}+\cdots+n x^{n-1}+\cdots
\end{aligned}
$$

- So we learn that $\frac{1}{(1-x)^{2}}$ is the generating
function for the sequence $1,2,3,4, \ldots$

Operations on Generating Functions

- 5) Right Shifting: Multiply by x to shift one step to the right, by x^{n} to shift by n steps.
- Using previous example:
- $1,2,3,4, \ldots$...

$0,1,2,3, \ldots$.
- $0,1,2,3, \ldots$...

$$
F(x)=\frac{1}{1+x}
$$

Operations on Generating Functions

- 6) Products:
- Let $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$

$$
\text { and } B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots
$$

- Then $\boldsymbol{C}(\boldsymbol{x})=\boldsymbol{A}(\boldsymbol{x}) * \boldsymbol{B}(\boldsymbol{x})$
- Proposition: The $\mathrm{n}^{\text {th }}$ coefficient of $\mathrm{C}(\mathrm{x})$ is

$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+a_{2} b_{n-2}+\ldots+a_{n} b_{0}
$$

Famous Sequences

- The Fibonacci Sequence 1, 1, 2, 3, 5, 8, 13, ... can be described by the recurrence relation:
$f_{0}=1$
$f_{1}=1$
$f_{n}=f_{n-1}+f_{n-2}$
We can use the recurrence relation to get the generating function $F(x)=\frac{x}{1-x-x^{2}}$
- (Derivation of coefficients in "Lectures on Generating Functions" by S. K. Lando, chapter2)

Famous Sequences

- The Catalan sequence $1,1,2,5,14,42,132, \ldots$ has the generating function

$$
\operatorname{Cat}(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

(Derivation of coefficients in "Lectures on Generating Functions" by S. K. Lando, chapter 2)

References

- Lando, S. K."2. Generating Functions for Wellknown Sequences", Lectures on Generating Functions. Providence, RI: American Mathematical Society, 2003. STML v. 23.
- Lehman Eric, Leighton F Tom, Meyer Albert R. "15. Generating Functions", Mathematics for Computer Science, Creative Commons, 2013.

