
Chaos 25, 097611 (2015); https://doi.org/10.1063/1.4917383 25, 097611

© 2015 Author(s).

Synchronization of chaotic systems
Cite as: Chaos 25, 097611 (2015); https://doi.org/10.1063/1.4917383
Submitted: 08 January 2015 • Accepted: 18 March 2015 • Published Online: 16 April 2015

 Louis M. Pecora and Thomas L. Carroll

ARTICLES YOU MAY BE INTERESTED IN

Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from
data
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 121102 (2017); https://
doi.org/10.1063/1.5010300

Nonlinear time-series analysis revisited
Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 097610 (2015); https://
doi.org/10.1063/1.4917289

Attractor reconstruction by machine learning
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 061104 (2018); https://
doi.org/10.1063/1.5039508

https://images.scitation.org/redirect.spark?MID=176720&plid=1828087&setID=405123&channelID=0&CID=673335&banID=520713627&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=4d3a63b87bd5f5693ee86ccae3f104349feae34a&location=
https://doi.org/10.1063/1.4917383
https://doi.org/10.1063/1.4917383
http://orcid.org/0000-0003-3075-0913
https://aip.scitation.org/author/Pecora%2C+Louis+M
https://aip.scitation.org/author/Carroll%2C+Thomas+L
https://doi.org/10.1063/1.4917383
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4917383
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4917383&domain=aip.scitation.org&date_stamp=2015-04-16
https://aip.scitation.org/doi/10.1063/1.5010300
https://aip.scitation.org/doi/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://aip.scitation.org/doi/10.1063/1.4917289
https://doi.org/10.1063/1.4917289
https://doi.org/10.1063/1.4917289
https://aip.scitation.org/doi/10.1063/1.5039508
https://doi.org/10.1063/1.5039508
https://doi.org/10.1063/1.5039508
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We review some of the history and early work in the area of synchronization in chaotic systems.

We start with our own discovery of the phenomenon, but go on to establish the historical timeline

of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has

always been intriguing, since chaotic systems are known to resist synchronization because of their

positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a

surprise. We show how people originally thought about this process and how the concept of

synchronization changed over the years to a more geometric view using synchronization

manifolds. We also show that building synchronizing systems leads naturally to engineering more

complex systems whose constituents are chaotic, but which can be tuned to output various chaotic

signals. We finally end up at a topic that is still in very active exploration today and that is

synchronization of dynamical systems in networks of oscillators. VC 2015 Author(s). All article

content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0

Unported License. [http://dx.doi.org/10.1063/1.4917383]

Chaotic systems can be very simple, but they produce
signals of surprising complexity. One characteristic of a
chaotic system is that the signals produced by a chaotic
system do not synchronize with any other system. It
therefore seems impossible for two chaotic systems to
synchronize with each other, but if the two systems
exchange information in just the right way, they can
synchronize. The conditions for synchronization can be
described mathematically, and extended to situations
where entire arrays of chaotic oscillators are coupled to
each other. When an array of synchronized oscillators
becomes desynchronized through the changing of a
parameter, the first differences that emerge between
oscillators can occur on short or long spatial scales.
Chaotic synchronization is very sensitive to noise added
to the coupling signal, but some techniques for overcom-
ing this sensitivity point to mechanisms that may already
exist in systems of coupled neurons. Eventually, the
theory of arrays of coupled chaotic oscillators led to
developments in the theory of networks.

I. INTRODUCTION

Because of its positive Lyapunov exponents, an isolated

chaotic system synchronizes with nothing else. The synchro-

nization of two or more chaotic systems is actually another

version of the usual thought experiment where one imagines

two initial conditions starting close to each other in phase

space. For two separated chaotic systems, trajectories starting

at close initial condition will diverge at first. It was counterin-

tuitive to have the two initial conditions case converge to the

same trajectory. We now realize that two identical uncoupled

chaotic systems have twice as many positive Lyapunov expo-

nents as either of the systems by themselves. If, on the other

hand, we add some sort of coupling between the isolated sys-

tems, we can alter the Lyapunov spectrum-depending on the

coupling and the specific systems, we could decrease or

increase the number of positive Lyapunov exponents. In our

original synchronizing system, we went from a total of two

positive Lyapunov exponents in the combination of two

uncoupled systems to one positive Lyapunov exponent in the

pair of coupled systems. We show below how we originally

handled this situation mathematically so we could calculate

the stability of the synchronized state. As we go through this

article, we will also show how this approach matured and

became general with a geometric way to view the synchroni-

zation in large networks of coupled oscillators.

II. THE DISCOVERYOF SYNCHRONIZATION

A. Synchronization with a goal in mind

By 1988, we had entered the world of nonlinear dynam-

ics and published several papers on nonlinear of spin waves

in magnetic materials.1,2 While the materials we were

studying were important for radiofrequency electronics, the

difficulty of the theory of spin waves prevented us from

translating nonlinear dynamics into useful applications.

While the Navy was supportive of basic research, at some

point we needed to be able to show how our basic science

might affect future applications. We needed to come up with

a more immediate application of chaos. One idea that came

to mind was some type of message masking or hiding, where

a chaotic signal covers or hides a real message in a signal.

Had we known a lot about cryptography and communica-

tions we might not have been so naive to think that this could

be done simply. But sometimes ignorance is a blessing in

another way. We talked for months on and off about ways to

do this, but came up with no good, testable version.

Early in 1989 after a dynamics conference, we decided

that combining two identical chaotic systems in a particular

way would be worth a try. The idea was to take a signal

from a component of one (the transmitter) and send it to a
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duplicate system (the receiver) where the receiver was miss-

ing the part of the system that the signal came from in the

transmitter, but this missing part was compensated for by

using the received signal at points in the receiver where the

missing part would have supplied the signal. This is a bit

confusing in words but clear in a diagram in Fig. 1.

If we have chosen the correct variable to drive the

response, then y0 and z0 subsystems will converge to y and z

as the systems evolve together on identical trajectories, i.e.,

the response variables will synchronize to the drive varia-

bles. We can think of this situation as the differences jy� y0j
and jz� z0j going to zero as time progresses. Below we will

make this rigorous and quantitative.

A type of system like Fig. 1 that we first tried was

actually a 2D map system constructed from logistic maps in

a very simple way

xnþ1

ynþ1

� �

¼
axnð1� xnÞ
bxnð1� ynÞ

� �

; (1)

ðznþ1Þ ¼ ðbxnð1� znÞÞ; (2)

where (1) is the drive and (2) is the response. For a¼ 3.9 and

b¼ 1.1, we see the chaotic attractor of the drive in Fig. 2(a).

If we start y and z at different values, we see the plot of

ln(jzn� ynj) in Fig. 2(b) which shows convergence of zn !
yn. This is not completely trivial since setting b¼ 1.6 gives

Fig. 2(c) for the difference in y and z, which shows there are

regions of the attractor where there are instabilities repelling

y and z although the systems still synchronize.

Although we were encouraged by this little calcula-

tion, we realized that we needed a more realistic

drive-response system to display convergence and hence

synchronization of one subsystem with another. That

meant we had to set up differential equations that would

more realistically mimic actual physical systems. And after

making that last statement, we realized we eventually

would make this whole approach more convincing if we

could find a physical system that could be built to show

synchronization.

We set up the usual Runge-Kutta (4,5) numerical solver

with some unusual (at the time) vector fields made from an

original vector field parts of the original (a subsystem) linked

to the original by a drive signal from the missing part. We

did this for the Lorenz and R€ossler systems along with sev-

eral others. The equations more clearly display what the

word description says (note drives and responses always

have the same parameter values)

_x ¼ rðy� zÞ

_y ¼ �xzþ rx� y _y0 ¼ �xz0 þ rx� y0

_z ¼ xy� bz _z ¼ xy0 � bz0 (3)

(a) is the Lorenz drive- response system using x driving;

_x ¼ �ðyþ zÞ

_y ¼ xþ ay _y0 ¼ xþ ay0

_z ¼ bþ zðx� cÞ _z0 ¼ bþ z0ðx� cÞ

(4)

(b) is the R€ossler drive-response system using x driving;

_x ¼ �ðyþ zÞ _x0 ¼ �ðyþ z0Þ

_y ¼ xþ ay

_z ¼ bþ zðx� cÞ _z0 ¼ bþ z0ðx0 � cÞ

(5)

(c) is the R€ossler drive- response system using y driving.

FIG. 1. The blocks and their labels represent the dynamic variables of the

systems. The blocks represent the individual rules for the dynamics and the

connections represent couplings. Thus, the drive or transmitter diagram may

represent three, coupled ordinary differential equations. In this setup, the

drive system sends the x signal to the response or receiver, which is missing

its x part, but is otherwise identical to the drive, i.e., the y0 and z0 subsystems

are identical to the y and z of the drive. This idea led to our first paper on

chaotic synchronization3 as well as our second paper.4

FIG. 2. The 2D logistic map system. (a) The attractor. (b) The convergence of the drive and response y and z components for the b¼ 1.1 case. (c) The conver-

gence of the drive and response y and z components for the b¼ 1.6 case.
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Immediate observations were that for parameters that

gave chaotic behavior x-driving worked to synchronize

Lorenz, y-driving worked to synchronize R€ossler, but x-driv-

ing did not work to synchronize R€ossler. For example, if we

start a R€ossler drive and a y-driven response from different x

and z values then let them evolve trajectories as we see in

Fig. 3(a). For a Lorenz system with x-driven response and

different y and z values, we get Fig. 3(b). This synchroniza-

tion has come to be called identical synchronization since

the result (at infinite time) is that the two systems (drive and

response) have exactly equal dynamical variables.

All this is not obvious, but it emphasized that we needed

a stability theory to explain why the phenomenon worked or

did not work for all systems we tried. The usual Lyapunov

exponents for the original Lorenz or R€ossler systems give no

information for the drive- response systems. But we can

follow a similar process to develop a variational equation for

our cases. For the Lorenz with x driving, we set y0 ¼ yþ dy

and z0 ¼ zþ dz and subtract the y-z subsystems of the drive

and response. This generates a variational equation for the

y-z response subsystem

d

dt

dy

dz

� �

¼
�1 x

x �b

� �

�
dy

dz

� �

: (6)

In a manner analogous to finding the usual Lyapunov expo-

nents, we evolve Eq. (6) along with the associated drive and

calculate stability exponents.5 Because these are different

from the usual Lyapunov exponents and they depend (are

conditional) on the x signal we call these exponents condi-

tional Lyapunov exponents.6 For the Lorenz and R€ossler

systems, we get the exponents as shown in Table I.

We can see immediately that the R€ossler x-driving y-z

subsystems is unstable and will not synchronize since one of

the conditional Lyapunov exponents is positive.

It is easy to see that this can apply to dynamical equa-

tions and systems of any dimension. And one can also gener-

alize to systems using multiple drive signals and maps.4

As the above was developed, we worked on implement-

ing this approach to synchronization in a real system.

Thomas Carroll had long been interested in analog com-

puters and circuits after seeing one in operation by his under-

graduate professor. The circuit used operational amplifiers,

capacitors, and resistors to simulate the equations for a

bouncing ball with damping, and the circuit output was dis-

played on an oscilloscope. There was now a good reason to

attempt to build an analog computer circuit: chaotic synchro-

nization. Although other physical systems might have

worked, a circuit can often be split into sub-circuits easily

just like in the synchronization technique that was developed

above. Tom found a chaotic circuit in the literature that had

been developed by Newcomb and Sathyan7 and Newcomb

and El-Leithy8 of the University of Maryland. The circuit

has two lobes of unstable foci analogous to a Lorenz system.

The circuit hopped between the lobes, but the hopping

occurred at values of the dynamical variables (the voltages

and currents) that made the system hysteretic. Tom built a

pair of circuits: a drive circuit and a response circuit that

synchronized to the drive circuit. This final experimental

confirmation was important. It showed that the technique

could be implemented in a real system with noise and param-

eter mismatch.

As for keeping the Navy interested in our work, we did

a live demonstration of chaotic synchronization and signal

masking in front of our lab director. As a plasma physicist,

he was skeptical of this new field of chaos, as he believed

plasma physicists were already studying nonlinear dynamics,

but he was intrigued enough by our new work to allow us to

continue. Tom Carroll even believes that chaotic synchroni-

zation directly caused him to be hired as a permanent

employee.

Most of the above (except the section on the 2D logistic

map synchronization) appears in our paper3 as well as our

second paper4 along with a lot of other information on this

approach to synchronization.

B. A reverse history of chaotic synchronization

In the world of science and mathematics, new proofs,

interesting phenomena, physical behavior, etc., are often dis-

covered more than once, often without knowledge of the pre-

vious work beforehand. This happened to us. It turns out that

synchronization of chaotic systems of the kind we presented

above (identical synchronization) was discovered several

times, often using different approaches. We list in reverse

historical order publications and other information that we

FIG. 3. R€ossler and Lorenz drive-

response systems. (a) The R€ossler y-

drive-response system of Eq. (5). The

y-component is the same in both drive

and response systems. The systems are

started out of sync, but the response

soon spirals into an attractor synchron-

ized with the drive. (b) The Lorenz x-

drive-response system of Eq. (3).

(Adapted from Refs. 3 and 4)

TABLE I. Conditional Lyapunov exponents for R€ossler and Lorenz.

System Drive Response Conditional Lyapunov exponents

R€ossler x (y,z) (þ0.2, �8.89)

a¼ 0.2, b¼ 0.2 y (x,z) (�0.056, �8.81)

c¼ 9.0 z (y,z) (þ0.1, þ0.1)

Lorenz x (y,z) (�1.81, �1.86)

r¼ 10, b¼ 8/3 y (x,z) (�2.67, �9.99)

r¼ 60.0 z (x,y) (þ0.0108, �11.01)
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discovered over the years after our initial work. The reverse

order here is not the order in which we actually discovered

them.

1. In 1989, Aranson and Rul’kov published a paper ana-

lyzing synchronization zones in multidimensional dynamical

systems.9 This paper studied the parameters and bifurcation

diagrams of synchronized, driven microwave oscillators.

This is an early study of synchronization in nonlinear multi-

dimensional systems.

2. In 1989, Volkovskii and Rul’kov10 studied the

bifurcations which lead to stochastic locking in coupled, self

oscillating systems with piecewise nonlinear vector fields.

They studied both mutual and unidirectional coupling. As in

so many Russian papers on this subject, the authors also built

experiments to test the theory.

3. Afraimovich et al. published a now famous paper in

1986 (Ref. 11) on the mutual synchronization of two time

nonautonomous, chaotic oscillators. When we first came

across this paper, we were confused by the label of

“stochastic” and only later realized that it was identical

synchronization through the dynamics similar to our system.

At a conference, Rabinovich assured us that their approach

was actually a general version of what we had done. Their

equations of motion in Ref. 12 were

dx1

dt
¼ y1

dy1

dt
¼ �ky1 � x1 1þ q cos tþ x21

� �

� c1 y1 � y2ð Þ

dx2

dt
¼ y2

dy2

dt
¼ �ky2 � x2 1þ q cos tþ x22

� �

� c2 y2 � y1ð Þ:

(7)

The mutual couplings c1 and c2 provided a dissipative

dynamics pulling the two systems into synchrony despite

their chaotic behavior if the coupling was large enough. If

we set c1¼ 0 and let c2 ! 1, we turn the first line in Eq. (7)

into a drive and the second line into a response with y2
slaved to y1 just like our original approach. So Rabinovich

was right. However, he was gracious in saying that they

missed the possible applications of such synchronization,

which is what our paper provided.

4. Pikovskii published two papers that had synchroniza-

tion as their theme in 1984.13,14 By coupling chaotic systems,

Pikovskii found he could synchronize two chaotic attractors.

5. Starting in 1983, Fujisaka and Yamada published a

series of four papers on synchronization in chaotic systems

in Progress in Theoretical Physics.15–18 These papers investi-

gated in much detail several aspects of symmetrically

coupled identical chaotic systems and their synchronization.

The systems were thought of as locations along spatial axes

with a diffusive type coupling through a rdiscrete analog of

the usual diffusive coupling in continuous spatial systems,

that is the spatial Laplacian operator r2. This yields a set of

discrete, coupled ordinary differential equations (ODEs)

dxi
dt

¼ F xið Þ þ D
X

N

j¼1

xj � xið Þ; (8)

where D is the diffusion constant which acts like a coupling

constant linking the dynamics of different spatial locations

and, because of its dissipative nature, the coupling terms

make the synchronization of different spatial dynamical

locations possible for certain values of D. Fujisaka and

Yamada’s work is the earliest we know of for showing cha-

otic synchronization.

III. SYNCHRONIZATION SCENARIOS AND
PHENOMENA

Once one see the interesting phenomena emerging from

complex systems constructed from simpler components

(e.g., drive- response or coupling systems), one can easily

imagine constructing many new and interesting ensembles of

simple, chaotic, or nonchaotic components. As the field of

synchronization of chaotic systems began to grow, we would

characterize the use of various coupling schemes and

constructed systems as becoming a “cottage industry” in the

world of nonlinear dynamics. The literature on all the possi-

ble approaches is huge and we will not attempt to cover it

here. We will give only some highlights from our own work

and some others that introduced new interesting phenomena

discovered by constructing various coupled systems.

A. Building bigger synchronization systems from
smaller ones

One of the first extensions we did on the drive-response

approach is to cascade the systems so as to reproduce the

incoming drive signal when the drive and response synchron-

ize.19 This is shown in Fig. 4 below. Basically, we form two

drive-response systems so that the second one in the cascade

has the original drive component as part of the response,

thus reproducing the incoming drive signal.

We also showed that we could synchronize systems in

such a way that both the drive and response filled a subset of

the phase space with non-zero measure and they would syn-

chronize. The goal here was to find more random looking

functions which would serve communications better, but still

be deterministic so they could be synchronized. We accom-

plished this by starting with an n-dimensional phase space

and a linear, expanding map L (this provides the positive

Lyapunov exponents) that acts on the phase space points

and couples the components, i.e., the output is a linear

combination of the input components. Thus, if x(m) is the

n-dimensional vector of components, where m is the time

step, then we write that the linearly transformed vector is

FIG. 4. A schematic in how to set up a cascaded drive-response system that

reproduces the original drive signal. Note this is only possible when the two

different response systems are stable to their drive signal. For example, it is

possible with the Lorenz system above, but not the R€ossler system.

097611-4 L. M. Pecora and T. L. Carroll Chaos 25, 097611 (2015)



just L x(m). However, we must add another function acting

on this expanded vector to fold it back into the original vol-

ume so the system will remain finite. We do this by using a

piecewise linear folding function F. Fig. 5 shows a simple

folding function analogous to a Bernoulli map. Another

version is just the map F(x)¼ (x1 mod k, x2 mod k, …, xn
mod k).

Then the iterated coupled maps are just written as

xdðmþ 1Þ ¼ F½LxdðmÞ� drive

xrðmþ 1Þ ¼ F½LxrðmÞ þ Cð~xr � xrÞ� response;
(9)

where xd is the drive vector, xr is the response vector, and

xr ¼ ðxd1; x
r
2; :::; x

r
nÞ, i.e., we drive only with the 1st compo-

nent of xd. Obviously, this can all be generalized (see

Ref. 20). The important point is that a very random attractor

can be synchronized with its driven partner, the response.

Fig. 6 shows a drive attractor for a 3D system. Note that the

attractor fills a 3D cubic volume. The synchronized response

is exactly the same.

An advantage of this synchronized system is that the

autocorrelations drop off to near zero after one step. The

synchronization decay is very fast with differences between

the drive and response down by a factor of 1000 in four

steps. However, the spectrum of the system is broad-band

and much like white noise. We built a circuit based on these

ideas to show proof of principle. In addition we could mix in

a message with the drive signal using the more robust XOR

between the signal and the drive signal. This was easily

recovered on the response side (see Ref. 20).

B. A conjecture disproven and Imposed bifurcations

An important finding by Peng et al. was that systems

with more than one positive Lyapunov exponent could still

be synchronized using one drive (scalar) signal.21 There was

speculation that one would need as many drive signals as

there were positive Lyapunov exponents in the original

system. The paper by Peng et al. cleared that controversy up.

Using their formulation as shown below in Eq. (10), we

found another interesting behavior of synchronized systems.

A postdoc working with us (Johnson) discovered that

we could optimize the linear coupling between the drive and

response by Peng et al. by tuning the coupling matrix to

have the best properties to rapidly and stably synchronize the

response.22 This resulted in the ability to synchronize the

response so well that even when the drive’s parameters

changed by as much as 50% and it underwent a bifurcation

(e.g., chaotic to periodic behavior), the response was carried

with it undergoing the same bifurcation despite having dif-

ferent parameters. The general scheme looks like this

_x ¼ FðxÞ drive

_y ¼ FðyÞ � BKTðy� xÞ response; (10)

where B and K are vectors which can be tuned to guarantee

the greatest stability of the response following Johnson

et al.22 We developed a four-dimensional experimental

system (a circuit) which has the dynamics of the following

ODE system:

_x1 ¼ �0:05x1 � 0:5x2 � 0:62x3

_x2 ¼ x1 þ qx2 þ 0:40x4

_x3 ¼ �2x3 þ gðx1Þ

_x4 ¼ �1:5x3 þ 0:18x4 þ hðx4Þ

gðx1Þ ¼ 10ðx1 � 0:68ÞHðx1 � 0:68Þ

hðx4Þ ¼ �0; 41ðx4 � 3:8ÞHðx4 � 3:8Þ;

(11)

where q is the bifurcation parameter varied between 0.05

and 0.91 and H is the Heaviside step function. With Eq. (11)

as the drive and the same with the coupling term as the

response, we ran experiments in which q is varied by 50% of

its value through a set of bifurcations. With the coupling

term tuned to give maximum stability for the parameter

matching case, we get the progression of attractors shown in

Fig. 7 going from periodic, to multiperiodic, and on to cha-

otic dynamics. The response (with q held constant) follows

the drive through the bifurcations. We called this behavior

imposed bifurcations.

C. Control theory joins the crowd

We note briefly here that for the last 10–15 years, many

control theory approaches have been proposed to ensure the

synchronization of a drive-response pair. This work is a bitFIG. 5. A folding map with mod at6k (from Ref. 60).

FIG. 6. Three-dimensional view of the full phase space trajectory for a vol-

ume preserving map (from Ref. 60).
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far afield for CHAOS and is certainly too large to include in

any concise fashion. We simply note that most control theory

techniques have been used to successfully synchronize two

chaotic systems, such as sliding mode control, linear matrix

inequalities (LMI), simple coupling, impulse stabilization,

and many others along with several applications of observer

theory to chaotic synchronization. One important contribu-

tion of control theory approaches is that for some systems, it

has been possible to prove global synchronization. This is a

much stronger result than linear stability theory, such as con-

ditional Lyapunov exponents above.

D. Short wavelength bifurcations in simple coupled
sets of oscillators

A few years after working on synchronization of two

chaotic systems, we ventured into the realm of synchroniza-

tion in networks of oscillators. We began with the case of

oscillators coupled using general forms of linear diffusive

coupling, e.g., nearest neighbor linear diffusive coupling.

We examined both periodic and non periodic boundary con-

ditions. These systems are straightforward to analyze

because we can diagonalize the coupling matrix and reduce

the equations to easily interpreted forms. However, the

ingredients for much more general scenarios are in these

simple cases and we find some dynamical surprises along

with the seed for a very general result in cases of more com-

plex networks of oscillators.

In the case of linear diffusive coupling, we can write the

coupling matrix as a shift-invariant or circulant matrix. Here

are the equations of motion for the near-neighbor coupling

case along with the coupling matrix

_x ¼ FðxÞ þ rG � x; (12)

where x ¼ ðx1; :::; xNÞ, FðxÞ ¼ ðFðx1Þ; :::;FðxNÞÞ, r is the

coupling strength, and each xi is an n- dimensional dynami-

cal variable at one node/oscillator in the network and F is an

n-dimensional vector field, identical for each xi. The cou-

pling is through the nN-dimensional matrix G¼A� B,
where B is an n� n matrix picking out which components in

each xi are coupled to its neighbor and the coupling matrix G
is an N�N matrix given by

A ¼

�2 1 0 ::: 1

1 �2 1 ::: 0

0 1 �2 ::: 0

.

.

.
.
.
.

.

.

.
.
.
.

1 ::: 0 1 �2

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

: (13)

If s(t) is the synchronized motion of the system, that is,

when all oscillators in the network are synchronized and

follow the trajectory s(t), then we can view this as all the

motion settles onto a synchronization manifold of n dimen-

sions in an nN dimensional space. The synchronization

manifold is a flat hyperspace defined by all the equations of

the type xi¼ xj for i,j¼ 1,.,N. What is important is whether

s(t) is a stable motion at each value of r. This can be calcu-

lated from the variation of the equation of motion, Eq. (12),

along the s(t) trajectory given by the linear stability equa-

tions of motion

_n ¼ DFðsðtÞÞ � nþ rG � n: (14)

The Lyapunov exponents of Eq. (14) determine the

stability of the system, but as it stands, Eq. (14) does not

give a clear picture of the stability of the synchronous state.

This is because the perturbations which leave the state in

synchrony, i.e., perturbations which have all equal coordi-

nates, keeping the motion on the synchronization manifold,

are mixed in with the perturbations which desynchronize the

system. The former do not matter in the calculation of the

Lyapunov exponents for the stability of the synchronous

state. Only the perturbations which desynchronize the system

determine the stability of the synchronous state. To separate

the two sets of parallel and transverse perturbations effects

on stability, we need to make a transformation of the varia-

tional equations which separate the two. That transformation

is the diagonalization of the coupling term since the individ-

ual vector field part (F(x)) is already diagonal as a multiple

of the identity matrix.

The transformation which diagonalizes G is the discrete

Fourier transformation. This is the case for all shift invariant

(circulant) matrices. Recall the first term in Eq. (14) is really

1N � DFðsðtÞÞ, where 1N is the N�N identity matrix. Since

we are diagonalizing the first terms in the direct products,

this term is unchanged. Writing the new variational dynami-

cal variables as f ¼ Tn with T ¼ S� 1n, where S diagonal-

izes the circulant matrix A, we have a set of uncoupled

ODEs as one would get with any mode decomposition in a

linear equation

FIG. 7. In the first two panels, the attractors of Eq. (11) are shown as q is

varied in the drive through several bifurcations and the response follows, de-

spite its q being held constant. The third panel shows the change in the drive

bifurcation parameter (white bars), but the response parameter (black bars)

is held constant (from Ref. 22).
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_fk ¼ DF s tð Þð Þ þ rkkB½ � � f with kk ¼ 4 sin2
pk

N

� �

;

k ¼ 0; 1; :::;N � 1; (15)

that is, kk’s are the eigenvalues of matrix A.
At this point, Heagy, a postdoc working with us on this

problem who derived Eq. (15) made several important obser-

vations. One is that the eigenvalue k0¼ 0 is associated with

the variations in the synchronization state, i.e., variations

that do not desynchronize the oscillators. The eigenvector

for this state is (1,1,.,1)/�N. All other eigenvalues are associ-

ated with transverse variations which do desynchronize the

oscillators. It is the stability of the latter variations that mat-

ter for the study of the stability of the fully synchronized

state. If all the variations of the k 6¼ 0 eigenmodes have

negative Lyapunov exponents, then the synchronized state is

stable. If one or more are positive, the synchronized state is

unstable. And the most important observation is that the

variational equations (Eq. (15)) are of the same form for all

modes, except for the factor of kk multiplying the coupling

strength r. So if we solve for the Lyapunov exponents of one

mode as a function of coupling r, we automatically have the

exponents for all modes by just scaling their couplings

accordingly. It turns out that all these observations general-

ize to the case of arbitrary networks, including nonsymmetric

and weighted coupling cases; more on that later.

When we applied this theory to R€ossler oscillators

coupled to nearest neighbors through the x variable, we

discovered a new phenomenon called a short wavelength

bifurcation.23 The origin of this name and the phenomenon

is easily seen by considering the point above about each

mode having the same functional form of Lyapunov expo-

nent vs. r except for the argument being scaled by the eigen-

values kk. Suppose we have a ring of four R€ossler oscillators

coupled through their x variables to nearest neighbors, then

we will have two modes present (one of which is two-times

degenerate) given by k1¼ k3¼ 4 sin2 p
4

� �

¼ 2 for the longer

wave length mode and the other given by k2¼ 4 sin2 p
2

� �

¼ 4

for the shorter wavelength. By wavelength here we are think-

ing of the form of the perturbations associated with each

mode around the ring. Hence, the shorter wavelength mode

acts as though the coupling is twice as large. This leads to a

plot of the maximum Lyapunov exponents l for these trans-

verse modes vs. coupling as in Fig. 8.

The curves are the same, but are scaled differently in

their argument. Note that for the x-coupled R€ossler oscilla-

tors increasing the coupling can desynchronize the oscilla-

tors. The shortest wavelength mode goes unstable first. This

is somewhat counterintuitive since most instabilities in diffu-

sive coupling come from decreasing coupling strength until

the longest wavelength mode becomes unstable. In a sense,

this is an extreme form of a Turing bifurcation.24 The loss of

synchronization stability for this case at high coupling is

consistent with Table I which shows the x-driven response is

unstable since the drive- response systems is the same as a

diffusive, one-way coupling in which the coupling becomes

infinite. A short wavelength bifurcation or instability also

implies that some networks of the oscillators never have

stable chaotic synchronization. In the case of the ring config-

uration above for the parameters used for the R€ossler there is

a size effect25 for which adding more oscillators to the ring

will eventually prohibit any synchronization because the

highest mode will undergo a short wavelength bifurcation as

coupling increases before the lowest mode becomes stable.

E. Attractor bubbling and riddled basins of attraction

In 1991, Pikovsky and Grassberger26 found that symme-

try breaking bifurcations, as the coupling strength is changed

between initially identical, synchronized chaotic one-

dimensional systems, can cause certain orbits on the attractor

to become unstable causing excursions out of the synchro-

nous state. They exhibited the local strange invariant set

which caused the excursions. This was the first evidence

noted in the literature for a phenomenon latter called attrac-

tor bubbling. In 1994, Ashwin et al.,27,28 published papers

which also showed that as one changes a parameter (e.g.,

coupling strength) that decreases the stability of the synchro-

nous state of coupled, chaotic oscillators the dynamics and

associated attractor geometry go through a series of changes.

The first occurs when the synchronized attractor loses

asymptotic stability. For example, certain periodic orbits in

the synchronized chaotic attractor become unstable. At this

stage, if there is a coexisting attractor that the system will

eventually be attracted to as the parameter changes, the basin

of attraction for the chaotic attractor becomes riddled with

points from the basin of attraction of the coexisting attrac-

tor.29–31 The second change occurs at another parameter value

the attractor becomes a chaotic saddle, no longer a true attrac-

tor. And the third change in behavior as the parameter contin-

ues to be varied is that the saddle becomes a chaotic repeller.

During the first stage if there is a little noise or parame-

ter mismatch on the synchronized chaotic systems, then the

systems will occasionally diverge from the synchronized

state, then return to it. This constant fluctuation is what is

usually called “Attractor Bubbling.” It occurs when the

synchronized trajectory wanders near one of the unstable

sets (e.g., a periodic orbit) and the system is temporarily

kicked out of sync. If there is no coexisting attractor, the sys-

tem will just bubble. Ashwin et al.,27,28 demonstrated the

bubbling behavior in two coupled electronic circuits.

In studying the short-wavelength bifurcation/loss of syn-

chronization stability, we noted that there are two coexisting
FIG. 8. Plot of the maximum Lyapunov exponents for the three transverse

modes in the four-R€ossler ring (from Ref. 23).
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attractors near the desynchronization threshold for the high-

est mode. Ott suggested that this situation might display rid-

dled basins of attraction.32 They are arranged spatially like

the wave of instability of the highest mode and a symmetric

partner to it. In Fig. 9(a), we show the chaotic attractors for

the original ring of four R€ossler and the two symmetrically

arranged periodic attractors which coexist with the synchron-

ized chaotic attractors, and the attractors left after the cou-

pling parameter is set at a value where the synchronized

state is unstable. We automated our original four-R€ossler

experiment so we could scan a part of the phase space which

showed the highest spatial frequency of deviations from the

chaotic synchronized state (the spatial frequency of the peri-

odic oscillator placement). This gave the first experimental

picture of a riddled basin of attraction.33

F. Generalized synchronization and deeper relations
between the drive and response

An important concept came out in the early 1990s which

captures possible relationships between a drive and a

synchronized response or, more generally, a stable response.

This was called generalized synchronization34 because the

response is stable (conditional Lyapunov exponents are all

positive), but is a different system from the drive, this is not

identical synchronization as above, but a generalized form of

it, hence the name. A criterion of generalized synchroniza-

tion is that there is a function, say, u, from the drive to the

response so each point on the drive attractor x(t) is mapped

to a point y(t)¼u(x(t)) on the response. The stability of the

response is necessary for such a function to exist, but is not

sufficient (see below). In a followup paper Abarbanel et al.35

provided a tool to check easily for the possibility of general-

ized synchronization, the auxiliary system method. This con-

sists of starting with two identical responses and driving both

with the same system. If the systems are stable and there is

only one basin of attraction, then the two responses will syn-

chronize and plotting the variables of one against their coun-

terparts on the other response should yield the signature

straight, diagonal line of synchronization. There have been

many followup studies and discoveries of generalized syn-

chronization and to this day the concept remains interesting.

We mentioned above that there are times when the sta-

bility of the response is not enough to guarantee that the

function u exists. An example is a periodic system driving a

nonlinear system that has gone through a period-doubling

bifurcation. This means that the drive goes around its attrac-

tor twice while the response goes around once. Hence, there

must be two points on the response which correspond to

each point on the drive. Of course, mathematically, a func-

tion cannot do that. This situation was found to exist (sur-

prisingly) in a chaotic response by Parlitz et al.36 In the latter

case, the drive and response were chaotic, but the response

was entrained in a 2:1 way. For example, an unstable peri-

odic orbit in the drive had a period-doubled unstable orbit in

the response associated with it.

G. The noise problem

We mentioned above that we were initially somewhat

na€ıve about the difficulties of actually using chaos for a com-

munication system. Identical synchronization between two

chaotic systems in the presence of noise becomes impossible

for noise whose amplitude is greater than approximately

10% of the signal amplitude. The chaotic response system

mixes noise and signal in a nonlinear fashion, making it

impossible to separate the two by conventional methods,

such as filtering or correlation.

Sterling made one attempt to reduce the effect of noise

on a chaotic shift map.37 Sterling considered maps of the

form

ynþ1 ¼ f ðyn; xnÞmod 1;

where x is a driving signal. A noise signal added to xn could

cause yn to exceed the threshold for the modulus function,

FIG. 9. Attractors and their riddled basins of attraction. (a) The original,

banded synchronized chaotic attractors along with the coexisting pair of per-

iodic attractors. (b) The riddled basins of attraction represented by the high

Fourier spatial frequency (2nd mode) of the fluctuations from the synchron-

ized, chaotic state. White points go to either of the periodic attractors and

black to the synchronized chaotic attractor. This Fourier mode is the same as

the unstable mode from the short wavelength instability and so captures

most of the spatial displacement from the chaotic attractor. (c) A close up of

the riddled basin is shown in the inset for (b) (from Ref. 33).
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which would show up as a sudden change in the value of yn;

lack of a corresponding change in xn indicated that the

change was due to noise.

We realized that conventional noise reduction schemes

depend on some form of time integration over a long time,

the signal should integrate to some finite values, while the

noise integrates to zero. Even simple filters sum values of a

signal from a range of different times. We designed a chaotic

system that operated on two different time scales to take

advantage of time integration.

The two-frequency chaotic system was based on a piece-

wise linear version of the Rossler system.38 Denoting the

piecewise linear Rossler vector field as Rpl allowed the two

frequency Rossler system to be represented schematically as

dXf =dt ¼ ð1=sf ÞRplðXf Þ þ bXsð1; 0; 0Þ

dXs=dt ¼ ð1=sf ÞRsðXf Þ þ cXf ð1; 0; 0Þ;

where f¼ fast, s¼ slow, and pl¼ piecewise linear.

The slow vector field, Rs, was similar to Rpl, but it

included extra damping so it did not oscillate on its own. The

signal that was transmitted was a linear combination of the

fast and slow signals.39 The transmitted signal was coupled

into an identical response system using linear diffusive

coupling. The output of the response system was the first

component of the slow variables. As the difference between

the time constants sfast and sslow increased, the low frequency

part of the response system synchronized more and more

closely to the low frequency part of the drive system, even

for noise larger than the drive signal.

The reason the low frequency synchronization was so

stable was traced to the presence of long period unstable

periodic orbits with purely real Floquet multipliers. The pres-

ence of such orbits may be more common than is realized

in other physical systems- in this same paper on chaotic

systems, it was also shown that low period unstable periodic

orbits (UPOs) with real Floquet multipliers were also present

in a published neuron model.40 Such UPOs may have been

responsible for the noise robustness of information transmis-

sion in the neuron model.

IV. THE BEGINNING OF CHAOTIC SYNCHRONIZATION
IN NETWORKS

A. Early work

Above, we mentioned our first venture into synchroniza-

tion of oscillators in a network for a shift-invariant coupling

matrix. As we will show, the analysis of that case leads to a

very general analysis of synchronization in arbitrarily

coupled networks of oscillators. But first we should mention

two other early and important works on synchronization in

networks of coupled, chaotic oscillators.

In 1995 and 1996, Gade et al.41 and Gade,42 respec-

tively, showed that synchronization in certain types of net-

works could have a general form for the analysis of the

system’s stability. In the 1995 paper, they showed that

coupled maps on tree-structured networks would have better

synchronization robustness than the same chaotic maps on a

regular (e.g., nearest neighbor coupled) lattice. They also

exhibited the results for synchronization in the limit of an

infinite lattice. They also showed that solving the eigenvalue

problem for the coupling matrix enabled a very general

solution for the tree network coupling synchronization prob-

lem. The 1996 paper analyzed synchronization of chaotic

maps in networks which had nonlocal coupling, for example,

smallworld networks. Again the eigenvalue spectrum of the

coupling matrix was the key to finding relations between the

coupling constant and synchronization stability.

In 1998, Hu et al.43 showed that diffusively, linearly

coupled oscillators on lattices with periodic boundary condi-

tions can be analyzed for stability of the synchronous state

using an eigenvalue approach. They introduced the idea of a

matrix that picks out which components of each oscillator

will be coupled to others and that the regions of the complex

plane encompassing the eigenvalues of the coupling matrix

will change drastically with choice of oscillator coupling

matrix. They showed that the regions of stability for a spe-

cific type of coupling matrix remained the same as the lattice

of oscillators is increased.

B. The general case and the master stability function
(MSF)

In 1998, we returned to the topic of synchronization of

chaotic systems in networks. We started with the above case

of circulant coupling matrices and quickly decided that we

could do stability analyses for an arbitrary network for which

the coupling matrix was diagonalizable. We started with the

very general set of equations of motion for the coupled

system

_xi ¼ FðxiÞ þ r
X

N

j¼1

GijHðxjÞ; (16)

where everything has the same meaning except that we have

a coupling function H: Rm—> Rm which makes this formu-

lation of the problem very general. We started by assuming

the coupling G is bidirectional, i.e., G is a symmetric, real

matrix and has zero row sum, which enables global synchro-

nization of all oscillators.

Out starting point is the important observation of scaling

as above in Sec. III D. By diagonalizing G, we would end up

using a scaling argument to generate the stability of each

eigenmode from a calculation of only one, as in Eq. (15), but

where kk is an eigenvalue of the coupling matrix under study.

However, we realized that it was better to turn this argument

around. Instead of generating a separate curve for each

eigenmode, we could have a function which was the maxi-

mum Lyapunov exponent for the variational equation

_f ¼ ½DFðsðtÞÞ þ aDHðsðtÞÞ� � f: (17)

Then this function would represent the maximum Lyapunov

exponent as a function of the “coupling” a. To find the stabil-

ity of a particular eigenmode (kk) at a particular value of cou-

pling r, we locate the point on the a axis where a¼r kk. An

example of this function for the R€ossler system where H

merely picks out the x component to use in the coupling is
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shown in Fig. 10(a). The important observation is that

Eq. (17) does not depend on the coupling matrix G, but only

on the dynamics F and the coupling function H. This means

that for symmetric coupling G, Fig. 10(a) shows a stability

function that applies for any bidirectionally coupling net-

work with F and H the same. We named the stability func-

tion the Master Stability Function.

We realized that having a symmetric coupling matrix G

is not necessary so long as G is diagonalizable. In general,

the eigenvalues will be complex so we can solve for the

MSF over the complex plane using a complex extension of

Eq. (17), _f ¼ ½DFðsðtÞÞ þ ðaþ ibÞDHðsðtÞÞ� � f. To deter-

mine the stability of an eigenmode, locate the position of the

complex eigenvalue (kk) and determine if it is in the stable or

unstable region of the MSF (see Fig. 10(b)). The value of the

MSF is that is separates the dynamics (the stability) from the

network (the eigenmodes and eigenvalues) so each can be

calculated separately and one calculation of the MSF can be

used for the stability analysis of any network configuration

with the same dynamics.

There is much more that can be done with the MSF, but

we stop at this point. There is a separate article in this issue

that explores many facets of synchronization in networks of

oscillators. We recommend any reader interested in synchro-

nization or collective phenomena in networks explore that

article.

V. THE FUTURE

We complete this overview of synchronization with the

brief mention of two areas of future work using synchroniza-

tion. One is parameter estimation, which is related to a simi-

lar problem in control theory, the other is a continuation of

synchronization into the larger topic of collective behavior

and dynamical patterns in networks.

A. Parameter estimation and data assimilation

1. Some early work

An early exploration of how synchronization can be

used to estimate parameters was the paper by Parlitz.44 In

this paper, he starts with a dynamical system (chaotic or

not), _x ¼ fðx; pÞ, where p is a vector of parameters for the

system, and then shows how to construct a system driven by

a component of the x system, _y ¼ gðs; y; qÞ so that y
synchronizes with x when q¼p. Thus, we can get an esti-

mate of p by synchronizing y to x. The trick is to choose s as

a function of x properly so we get that synchronization.

2. More sophisticated approaches

More recently, a more sophisticated approach has

emerged which takes into consideration the type of stability

of the synchronizing system (y). This is work by Abarbanel

et al.45–47 The basic idea is similar to Parlitz’ above, but

more care is taken to avoid mathematical difficulties and the

method is generalized to more complex situations, including

those involving time series and data using sophisticated

regularization approaches. We do not have sufficient space

here to even crudely cover all the ideas in this work, but we

note that it sets the tone for much more development of the

use of synchronization for parameter estimation and system

analysis. We suggest that this is an area that has much poten-

tial for more development.

B. Networks

With the exception of parameter estimation and data

assimilation (above) the synchronization of two systems by

driving and coupling has been well explored. However, over

the last decade, a new area of more general types of collec-

tive behavior has developed out of the synchronization stud-

ies. This is the area of synchronization patterns in networks

of oscillators. By this, we mean that a network of identical

oscillators may not be fully synchronized as in the above

case of the MSF, but subsets of oscillators can synchronize

to each other within the subset. This has been described in

FIG. 10. Plots of the master stability function in the case of (a) symmetric

coupling matrices (real eigenvalues) and (b) nonsymmetric coupling matri-

ces (complex eigenvalues, in general) for x-coupled R€ossler networks (from

Refs. 23 and 61).
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various terms, but the phrase cluster synchronization (CS)

seems to be most appropriate and common. The term cluster

is used to describe the collection of nodes (oscillators) in a

network that are synchronized. They are not necessarily in

close proximity it is just that their dynamics are the same.

Many versions of CS have been displayed.48–56 These

involve many different scenarios (unidirectional coupling,

time delays, special network structures, etc.), many of which

are engineered to yield certain cluster synchronization pat-

terns. Recently, the use of symmetries57,58 and group theory

has been extended to complex networks to discover patterns

of cluster synchronization which are not obvious or which

are too complicated to be discerned by eye or even human

means.59–61

The area of cluster synchronization of other collective

patterns is large and still growing. It opens up the older

global synchronization (where all oscillators are synchron-

ized) to a much vaster range of possible types of dynamical

order. This area should be fruitful for the future as larger and

more complex networks are explored and more general

approaches to finding and/or engineering synchronization

patterns are discovered.
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