On the application of graph colouring techniques in round-robin sports scheduling

Rhyd Lewis and Jonathan Thompson

School of Mathematics, Cardiff University, LANCS Initiative

A case study at the Welsh Rugby Union
Round-robin scheduling: the basics

We have n teams, and all teams play all others m times in $m(n-1)$ rounds.
Typically, $m = 1$ or 2.
Linear algorithms exist for producing such schedules such as the greedy polygon, and canonical methods.
These “standard solutions” are actually isomorphic.
However, additional constraints will often be imposed that may not fit with such schedules:
- Home/away assignments
- Minimisation of “carryover”
- Broadcaster demands
- Stadium sharing
- Mirroring
- Minimisation of travelling distances.

<table>
<thead>
<tr>
<th>R_1</th>
<th>$(0,1), (2,6), (3,5), (4,7)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_2</td>
<td>$(0,2), (1,7), (3,6), (4,5)$</td>
</tr>
<tr>
<td>R_3</td>
<td>$(0,3), (1,2), (4,6), (5,7)$</td>
</tr>
<tr>
<td>R_4</td>
<td>$(0,4), (1,3), (2,7), (5,6)$</td>
</tr>
<tr>
<td>R_5</td>
<td>$(0,5), (1,4), (2,3), (6,7)$</td>
</tr>
<tr>
<td>R_6</td>
<td>$(0,6), (1,5), (2,4), (3,7)$</td>
</tr>
<tr>
<td>R_7</td>
<td>$(0,7), (1,6), (2,5), (3,4)$</td>
</tr>
<tr>
<td>R_8</td>
<td>$(1,0), (6,2), (5,3), (7,4)$</td>
</tr>
<tr>
<td>R_9</td>
<td>$(2,0), (7,1), (6,3), (5,4)$</td>
</tr>
<tr>
<td>R_{10}</td>
<td>$(3,0), (2,1), (6,4), (7,5)$</td>
</tr>
<tr>
<td>R_{11}</td>
<td>$(4,0), (3,1), (7,2), (6,5)$</td>
</tr>
<tr>
<td>R_{12}</td>
<td>$(5,0), (4,1), (3,2), (7,6)$</td>
</tr>
<tr>
<td>R_{13}</td>
<td>$(6,0), (5,1), (4,2), (7,3)$</td>
</tr>
<tr>
<td>R_{14}</td>
<td>$(7,0), (6,1), (5,2), (4,3)$</td>
</tr>
</tbody>
</table>

Mirrored Schedule for $n = 8, m = 2$
The number of distinct round robin schedules is linked to the number of one-factorisations of a complete graph K_n.

This figure is thought to increase exponentially with n:

- $n = 2,4,6$: 1 one-factorisation
- $n = 8$: 6
- $n = 10$: 396
- $n = 12$: 526,915,620 (Dinitz et al. 1994)
- $n = 14+$: ???

Number of one-factorisations < num round-robins.
Solution methods

- Some formulations are easy to solve in isolation
 - Optimisation of home/away pattern of each team (de Werra, 1988)
 - Maximisation/minimisation of carry-over (for certain n’s) (Russell, 1980; Anderson 1999)

- Other formulations (of which there are many) can be more tricky…
 - What about other constraints & combinations of constraints
 - What if these constraints conflict?
 - ILP and CP techniques have been used in the past (though they can sometimes show scaling-up issues)
 - Metaheuristics also show considerable promise …
Metaheuristics for RR Scheduling: Basic strategy

- Define cost function and move operators
- Produce initial solution(s)

\[\text{while (not stopping criteria)} \]
- Explore search space attempting to optimise cost
- \text{end while}

Global optimum not guaranteed (but run-times can be)
Adaptable to various formulations (just change the cost function)

Issues:
- “Standard solutions” often in particular, disconnected regions and show difficulties with existing search operators
- What if additional “hard constraints” are also considered

Space of all valid round robins of a particular \(n \)
Metaheuristics for RR Scheduling: Basic strategy

Space of all valid round robins of a particular n

- Define cost function and move operators
- Produce initial solution(s)
- while (not stopping criteria)
 - Explore search space attempting to optimise cost
- end while

- Global optimum not guaranteed (but run-times can be)
- Adaptable to various formulations (just change the cost function)
- Issues:
 - “Standard solutions” often in particular, disconnected regions and show difficulties with existing search operators
 - What if additional “hard constraints” are also considered
Metaheuristics for RR Scheduling: Basic strategy

Space of all valid round robins of a particular n

- Define cost function and move operators
- Produce initial solution(s)
- while (not stopping criteria)
 - Explore search space attempting to optimise cost
- end while

- Global optimum not guaranteed (but run-times can be)
- Adaptable to various formulations (just change the cost function)
- Issues:
 - “Standard solutions” often in particular, disconnected regions and show difficulties with existing search operators
 - What if additional “hard constraints” are also considered

(Infeasible)
e.g. match (i,j) cannot go into round 4
RR scheduling via graph colouring

- For a particular n and m:

 - One node for each match
 - Edges between nodes with a common team
 - All nodes equal in degree
 - Equipartite
 - Interconnected cliques

Graphs for $n = 4, m = 1, 2$

colour the nodes of the graph using $k = m(n - 1)$ colours such that adjacent nodes have different colours.

- Graph colouring methods might be able to produce RR solutions beyond the “standard” ones
- Such graphs are **flat**: but are they difficult to colour?
Are such graphs “hard” to colour?

- Three different algorithms used to try and solve problems of various size.
 - Heuristic backtracking approach (BT)
 - ACO + Local search approach (ACO)
 - Stochastic Hill Climbing approach (HC)
- Success Rate and Solution Times were recorded
- The backtracking approach seems the most successful.
Are such graphs “hard” to colour?

- We also implemented an IP formulation to run with **MP-Xpress**: Given $G(V,E)$, k, and the binary variables:

 \[
 x_{vj} = \begin{cases}
 1 & \text{if vertex } v \text{ assigned to colour } j \\
 0 & \text{otherwise}
 \end{cases}
 \]

 where $1 \leq j \leq k$ and $v \in V$, find an assignment such that:

 \[
 x_{uj} + x_{vj} \leq 1 \quad \forall (u,v) \in E, \quad \forall j
 \]

 \[
 \sum_{j=1}^{k} x_{vj} = 1 \quad \forall v \in V
 \]

 \[
 \sum_{v \in V} x_{vj} = \frac{|V|}{k} \quad \forall j
 \]

- **Less Successful**: No solutions found for $n > 22$ for $m = 1$ and $n > 14$ for $m = 2$
Incorporating additional hard constraints

- A variety of additional hard constraints can be encoded into the graph colouring model. E.g.
 - Match \((i, j)\) cannot occur in round \(r\) (unavailability)
 - Match \((i, j)\) should occur in round \(r\) (preassignment)
 - Matches \((i, j)\) and \((l, m)\) cannot occur simultaneously

- The model allows us to define move operators that only explore the space of feasible RR solutions
- An alternative strategy would be to weight hard constraint violations and hope that they are all satisfied during the search process
Are these new graphs “hard” to colour?

- A problem generator was designed that randomly added constraints of the form “match \((i, j)\) cannot occur in round \(r\)”.

- HC and HCO algorithms consistently find solutions for \(p < 0.6\) (where matches are only feasible in approx. 40% of rounds)

- Beyond this point solutions may not exist anyway

- Point of “unsolvability” tends to move left with larger problems

Results with \(n = 16\), \(m = 2\) (\(|V| = 240\))
Are these new graphs “hard” to colour?

- A problem generator was designed that randomly added constraints of the form “match \((i, j) \) cannot occur in round \(r \)”.

- Similar results with solvable problems, but a phase transition region is clearly visible.

- The phase transition tends to widen and deepens with larger problems.

- Similar results were also witnessed with other types of constraints such as pre-assignments.

Results with solvable \(n = 16, m = 2 (|V| = 240) \)
Exploring the space of feasible RR schedules

- A suitable candidate is the Kempe chain neighbourhood operator.
- Moves are guaranteed to preserve validity and feasibility.
- Note that, moves can be of different sizes and seem to arise with particular probabilities.
- However, this is not the case if Kempe chains are applied to the “standard solutions” (in these cases all moves are of size n) [Perfect 1-factorisations].
Effect of “Move Size” on Cost

“Medium Quality” Solution

- With a “medium quality” solution, larger moves result in a larger variance in cost
- Approximately half of moves do not worsen a solution

“High Quality” Solution

- With a “good” solution, larger moves are associated with larger increases in cost.
- However, larger moves can help to disrupt a solution, helping to escape local optima
Case Study: The Welsh Principality Premiership

- Top domestic rugby union league in Wales: 14 teams to play in a double round-robin tournament
 - Additional Hard Constraints
 - One pair of teams share a stadium
 - Three other teams share stadia with teams from different leagues/sports
 - Local derbies take place on Xmas/Easter weekends
 - Soft constraints
 - \(SC_1 \): Teams to play H-A-H-A... as much as possible
 - \(SC_2 \): Teams cannot play each other twice within 5 rounds, and should meet in different “halves” of the season.

- It was found that hard constraints could be solved quite easily using the three graph colouring methods (though not with IP formulation).
A Multiobjective Approach

- Cost functions c_1 and c_2 used for reflecting level of compliance with SC_1 and SC_2 respectively.
- c_1 and c_2 measure different things: thus a static aggregate cost function not satisfactory.
- Two methods were applied to get around this. The best of these is based on a multi-objective approach of Petrovic and Bykov (2003)
A Multiobjective Approach

- Cost functions c_1 and c_2 used for reflecting level of compliance with SC_1 and SC_2 respectively.
- c_1 and c_2 measure different things: thus a static aggregate cost function not satisfactory.
- Two methods were applied to get around this. The best of these is based on a multi-objective approach of Petrovic and Bykov (2003)

Idea: Reduce both costs simultaneously, but attempt to keep the search path close to the reference line
A Multiobjective Approach

- Cost functions c_1 and c_2 used for reflecting level of compliance with SC_1 and SC_2 respectively.
- c_1 and c_2 measure different things: thus a static aggregate cost function not satisfactory.
- Two methods were applied to get around this. The best of these is based on a multi-objective approach of Petrovic and Bykov (2003)

Idea: Reduce both costs simultaneously, but attempt to keep the search path close to the reference line.
A Multiobjective Approach

- Cost functions c_1 and c_2 used for reflecting level of compliance with SC$_1$ and SC$_2$ respectively.
- c_1 and c_2 measure different things: thus a static aggregate cost function not satisfactory.
- Two methods were applied to get around this. The best of these is based on a multi-objective approach of Petrovic and Bykov (2003)

Hopefully one or more solution will eventually be established that dominates the reference solution.
Example Run with real-world data

- Feasible solution found quickly (<10 CPU sec). Approx 10 min granted to soft constraint optimiser
Example Run with real-world data

- Feasible solution found quickly (<10 CPU sec). Approx 10 min granted to soft constraint optimiser
Conclusions

- Graph colouring methods have the potential to produce feasible round-robin schedules, often in the presence of a large number of additional constraints.
- Generic search operators can also be defined with this model allowing the exploration of the space of feasible round robins (a subset of all valid RRs).
- Over 98% of solutions produced using our methods dominated those manually produced by the league administrators.
- Methods were also seen to perform well on larger/smaller instances.

Ongoing issues:
- Are other graph colouring methods more suitable for such applications?
- Deeper understanding of search space connectivity is needed.
- Are other neighbourhood operators applicable?
- Where else can these solution methods be applied?